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Abstract
This paper develops the noninformative priors for the stress-strength reliability from one parameter gener-

alized exponential distributions. When this reliability is a parameter of interest, we develop the first, second
order matching priors, reference priors in its order of importance in parameters and Jeffreys’ prior. We reveal
that these probability matching priors are not the alternative coverage probability matching prior or a highest
posterior density matching prior, a cumulative distribution function matching prior. In addition, we reveal that
the one-at-a-time reference prior and Jeffreys’ prior are actually a second order matching prior. We show that
the proposed reference prior matches the target coverage probabilities in a frequentist sense through a simulation
study and a provided example.

Keywords: Generalized exponential model, matching prior, reference prior, stress-strength relia-
bility.

1. Introduction

The one parameter generalized exponential distribution was introduced by Gupta and Kundu (1999)
as an alternative to the gamma or Weibull distributions for analyzing lifetime data (Gupta and Kundu,
2001). An advantage of employing the generalized exponential distribution is that the distribution
function can be obtained in a closed form. Kundu and Gupta (2007) showed that the generalized
exponential distribution is quite flexible and can be used very effectively in analyzing positive lifetime
data in place of the gamma or Weibull models. Raqab and Madi (2005) studied the Bayeian inference
for the parameters and reliability function.

Consider X and Y have independent one parameter generalized exponential distributions with
shape parameters λ1 and λ2, respectively. Then the probability density functions of generalized expo-
nential distributions of X and Y are given by

f (x|λ1) = λ1e−x(1 − e−x)λ1−1, x > 0, λ1 > 0, (1.1)

and

f (y|λ2) = λ2e−y(1 − e−y)λ2−1, y > 0, λ2 > 0, (1.2)

respectively. The reliability R = P(Y < X) is given by λ1/(λ1 + λ2). The problem of making inference
about R has received a considerable attention in literature. An item is able to perform its intended
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function if its strength is greater than the stress imposed upon it. The probability that an item is
strong enough to overcome the stress is the measure of confidence of the item and to make statistical
inference about this probability is very important.

The problem of estimating the stress-strength reliability was considered by Kundu and Gupta
(2005). Kundu and Gupta (2005) derived the maximum likelihood estimator, uniformly minimum
variance unbiased estimator and Bayes estimator based on gamma priors, and showed that their per-
formance are quite similar in nature, and the maximum likelihood estimators are marginally better
than the rest. Baklizi (2008) and Wong and Wu (2009) studied interval estimation of the stress-
strength reliability based on record data. In their results, the parametric bootstrap percentile method
(Baklizi , 2008) performs well only in the cases of equal sample sizes. Following Wong and Wu
(2009), the modified signed log-likelihood ratio statistic method gives excellent results even for the
equal and unequal small sample sizes.

This paper focuses on noninformative priors for the reliability R. Subjective priors are ideal when
sufficient information from past experience, expert opinion or previously collected data exist. How-
ever, often even without adequate prior information, one can use Bayesian techniques efficiently with
some noninformative or default priors.

The notion of a noninformative prior has attracted much attention in recent years. There are
different notions of noninformative prior. One is a probability matching prior introduced by Welch
and Peers (1963) which matches the posterior and frequentist probabilities of confidence intervals.
Interest in such priors revived with the work of Stein (1985) and Tibshirani (1989). Among others, we
may cite the work of Mukerjee and Dey (1993), DiCiccio and Stern (1994), Datt and Ghosh (1995a,
1995b, 1996), Mukerjee and Ghosh (1997), Kim et al. (2009), Kang et al. (2011). The other is
the reference prior introduced by Bernardo (1979) which maximizes the Kullback-Leibler divergence
between the prior and the posterior. Ghosh and Mukerjee (1992) and Berger and Bernardo (1989,
1992) give a general algorithm to derive a reference prior by splitting the parameters into several
groups according to their order of inferential importance. This approach is very successful in various
practical problems. Quite often, reference priors satisfy the matching criterion described earlier.

The outline of the remaining sections is as follows. In Section 2, we develop the first order and
second order probability matching priors for R. We reveal that the second order matching prior is not a
highest posterior density (HPD) matching prior or a cumulative distribution function (CDF) matching
prior, and does not match the alternative coverage probabilities up to the second order. We also derive
the reference priors for the parameter of interest. It turns out that the one-at-a-time reference prior
and Jeffreys’ prior are the second order matching prior. We provide the propriety of the posterior
distribution for the general prior including the reference and matching priors. Section 4 shows and
includes an example of the simulated frequentist coverage probabilities under the proposed prior.

2. The Noninformative Priors

2.1. The probability matching priors

For a prior π, let θ1−α
1 (π; X) denote the (1 − α)th posterior quantile of θ1, that is,

Pπ
[
θ1 ≤ θ1−α

1 (π; X)|X
]
= 1 − α, (2.1)

where θ = (θ1, . . . , θt)T and θ1 is the parameter of interest. We want to find priors π for which

P
[
θ1 ≤ θ1−α

1 (π; X)|θ
]
= 1 − α + o

(
n−r) (2.2)
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for some r > 0, as n goes to infinity. Priors π satisfying (2.2) are called matching priors. If r = 1/2,
then π is referred to as a first order matching prior, while if r = 1, π is referred to as a second order
matching prior.

In order to find such matching priors π, let

θ1 =
λ1

λ1 + λ2
and θ2 = λ

n1
1 λ

n2
2 .

With this parametrization, the likelihood function of parameters (θ1, θ2) for the models (1.1) and (1.2)
is given by

L(θ1, θ2) ∝ θ2

 n1∏
i=1

(
1 − e−xi

)θ n2
n1+n2

1 (1−θ1)
−n2

n1+n2 θ
1

n1+n2
2 −1

  n2∏
i=1

(
1 − e−yi

)θ −n1
n1+n2

1 (1−θ1)
n1

n1+n2 θ
1

n1+n2
2 −1

 . (2.3)

Based on (2.3), the Fisher information matrix is given by

I(θ1, θ2) =


n1n2

n1 + n2
θ−2

1 (1 − θ1)−2 0

0
1

n1 + n2
θ−2

2

 . (2.4)

From the above Fisher information matrix I, θ1 is orthogonal to θ2 in the sense of Cox and Reid (1987).
Following Tibshirani (1989), the class of first order probability matching prior is characterized by

π(1)
m (θ1, θ2) ∝ θ−1

1 (1 − θ1)−1d(θ2), (2.5)

where d(θ2) > 0 is an arbitrary function differentiable in its argument.
The class of prior given in (2.5) can be narrowed down to the second order probability matching

priors as given in Mukerjee and Ghosh (1997). A second order probability matching prior is of the
form (2.5), and also d must satisfy an additional differential equation (2.10) of Mukerjee and Ghosh
(1997), namely

1
6

d(θ2)
∂

∂θ1

{
I−

3
2

11 L1,1,1

}
+

∂

∂θ2

{
I−

1
2

11 L112I22d(θ2)
}
= 0, (2.6)

where

L1,1,1 = E

(∂ log L
∂θ1

)3 = −2n1n2(n2 − n1)
(n1 + n2)2 θ−3

1 (1 − θ1)−3,

L112 = E
∂3 log L
∂θ2

1∂θ2

 = − n1n2

(n1 + n2)2 θ
−2
1 (1 − θ1)−2θ−1

2 ,

I11 =
n1n2

n1 + n2
θ−2

1 (1 − θ1)−2, I22 = (n1 + n2)θ2
2.

Then (2.6) simplifies to

∂

∂θ2

− (n1n2)
1
2

(n1 + n2)
1
2

θ1(1 − θ1)−1θ2d(θ2)

 = 0. (2.7)
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Therefore, the set of solution of (2.7) is of the form d(θ2) = θ−1
2 . Thus the resulting second order

probability matching prior is

π(2)
m (θ1, θ2) ∝ θ−1

1 (1 − θ1)−1θ−1
2 . (2.8)

There are alternative ways through which matching can be accomplished. Datta et al. (2000)
provided a theorem which establishes the equivalence of second order matching priors and HPD
matching priors (DiCiccio and Stern, 1994; Ghosh and Mukerjee, 1995) within the class of first order
matching priors. The equivalence condition is that I−3/2

11 L111 does not depend on θ1. Since

L111 = E
∂3 log L

∂θ3
1

 = − 2n1n2

(n1 + n2)2

(n1 + n2)(3θ1 − 1) − n1

θ3
1(1 − θ1)3

.

From the above equation, one can easily verify that I−3/2
11 L111 depends on θ1. Therefore the second

order probability matching prior (2.8) is not a HPD matching prior. In addition, since

∂

∂θ1

{
I−

3
2

11 L111

}
, 0,

then the second order matching prior (2.8) does not match the alternative coverage probabilities (Muk-
erjee and Reid, 1999). Now,

∂

∂θ1

{(
I11

)2
L111π

(2)
m

}
, 0,

so the second order matching prior (2.8) is not a CDF matching prior (Mukerjee and Ghosh, 1997).

2.2. The reference priors

Reference priors introduced by Bernardo (1979), and extended further by Berger and Bernardo (1992)
have become very popular over the years for the development of noninformative priors. From now on,
we derive the reference priors for different groups of ordering of (θ1, θ2). Then due to the orthogonality
of the parameters, following Datta and Ghosh (1995b), choosing rectangular compacts for each θ1 and
θ2 when θ1 is the parameter of interest, the reference priors are given as follows.

For the the stress-strength reliability model (2.3), if θ1 is the parameter of interest, then the refer-
ence prior for group of ordering of {(θ1, θ2)} is, which is also a Jeffreys’ prior,

π1(θ1, θ2) ∝ θ−1
1 (1 − θ1)−1θ−1

2 .

For group of ordering of {θ1, θ2}, which means θ1 is more important than θ2, the reference prior, which
is also called the one-at-a-time reference prior, is

π2(θ1, θ2) ∝ θ−1
1 (1 − θ1)−1θ−1

2 .

From the above reference priors, we know that the one-at-a-time reference prior π2 and Jeffreys’ prior
π1 are the second order matching prior, and all priors are the same. We will simply refer it as a
reference prior.
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3. Implementation of the Bayesian Procedure

We investigate the propriety of posteriors for a general class of priors which include the reference
prior and the matching prior. We consider the class of priors

π(θ1, θ2) ∝ θ−a
1 (1 − θ1)−aθ−b

2 , (3.1)

where a > 0, b > 0 and b , 2. The following general theorem can be proved.

Theorem 1. The posterior distribution of (θ1, θ2) under the prior π in (3.1) is proper if 2n1 − bn1 −
a + 1 > 0, 2n2 − bn2 − a + 1 > 0 or 2n1 − bn1 + a − 1 < 0, 2n2 − bn2 + a − 1 < 0 when a ≥ 1, and
2n1 −bn1 +a−1 > 0, 2n2 −bn2 +a−1 > 0 or 2n1 −bn1 −a+1 < 0, 2n2 −bn2 −a+1 < 0 when a < 1.

Proof: Note that the joint posterior for θ1 and θ2 given x and y is

π(θ1, θ2|x, y) ∝ θ−a
1 (1 − θ1)−aθ−b+1

2

 n1∏
i=1

(
1 − e−xi

)θ n2
n1+n2

1 (1−θ1)
−n2

n1+n2 θ
1

n1+n2
2 −1


×

 n2∏
i=1

(
1 − e−yi

)θ −n1
n1+n2

1 (1−θ1)
n1

n1+n2 θ
1

n1+n2
2 −1

 . (3.2)

Let θ1 = λ1/(λ1 + λ2) and θ2 = λ
n1
1 λ

n2
2 . Then we get

π(λ1, λ2|x, y) ∝ (λ1 + λ2)2a−2λ2n1−bn1−a
1 λ2n2−bn2−a

2

n1∏
i=1

(
1 − e−xi

)λ1

n2∏
i=1

(
1 − e−yi

)λ2 . (3.3)

If a ≥ 1, then

π(λ1, λ2|x, y) ≤ c1λ
2n1−bn1+a−2
1 λ2n2−bn2−a

2

n1∏
i=1

(
1 − e−xi

)λ1

n2∏
i=1

(
1 − e−yi

)λ2

+ c1λ
2n1−bn1−a
1 λ2n2−bn2+a−2

2

n1∏
i=1

(
1 − e−xi

)λ1

n2∏
i=1

(
1 − e−yi

)λ2

≡ π′(λ1, λ2|x, y), (3.4)

where c1 is a constant. Thus the function (3.4) is finite if 2n1 − bn1 + a − 1 > 0, 2n2 − bn2 − a + 1 > 0
or 2n1 − bn1 + a − 1 < 0, 2n2 − bn2 − a + 1 < 0, and 2n1 − bn1 − a + 1 > 0, 2n2 − bn2 + a − 1 > 0 or
2n1 − bn1 − a + 1 < 0, 2n2 − bn2 + a − 1 < 0. If a < 1, then

π(λ1, λ2|x, y) ≤ c2λ
2n1−bn1−a
1 λ2n2−bn2+a−2

2

n1∏
i=1

(
1 − e−xi

)λ1

n2∏
i=1

(
1 − e−yi

)λ2

≡ π′′(λ1, λ2|x, y), (3.5)

where c2 is a constant. Thus the function (3.5) is finite if 2n1 − bn1 − a + 1 > 0, 2n2 − bn2 + a − 1 > 0
or 2n1 − bn1 − a + 1 < 0, 2n2 − bn2 + a − 1 < 0. This completes the proof. �

Remark 1. The conditions of propriety of posterior in Theorem 1 is not a rigid condition. For the
general prior with a = 1 and b = 1, that is, the reference prior, the condition reduced to n1 ≥ 1 and
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n2 ≥ 1. This means that the propriety is easily achieved when the sample size of each population is
greater than or equal to 1.

Theorem 2. Under the prior (3.1), the marginal posterior density of θ1 is given by

π(θ1|x, y) ∝ θ−a
1 (1 − θ1)−a

(1 − θ1

θ1

)− n2
n1+n2

n1∑
i=1

− log(1 − e−xi )

+

(
1 − θ1

θ1

) n1
n1+n2

n2∑
i=1

− log(1 − e−yi )


−(n1+n2)(2−b)

. (3.6)

Note that the marginal density of θ1 required an one dimensional integration. Therefore we have
the marginal posterior density of θ1, and so it is easy to compute the marginal moment of θ1.

4. Numerical Studies

We evaluate the frequentist coverage probability by investigating the credible interval of the marginal
posterior density of θ1 under the reference prior given in the previous section for several configurations
of (λ1, λ2) and (n1, n2). That is to say, the frequentist coverage of a (1 − α)th posterior quantile should
be close to 1−α. This is done numerically. Table 1 gives numerical values of the frequentist coverage
probabilities of 0.05 (0.95) posterior quantiles for the our prior. The computation of these numerical
values is based on the following algorithm for any fixed true (λ1, λ2) and any prespecified probability
value α. Here α is 0.05 (0.95). Let θπ1(α|X,Y) be the posterior α-quantile of θ1 given X and Y. That
is,

F
(
θπ1 (α|X,Y) |X,Y

)
= α,

where F( · |X,Y) is the marginal posterior distribution of θ1. Then the frequentist coverage probability
of this one sided credible interval of θ1 is

P(θ1,θ2)(α; θ1) = P(θ1,θ2)

(
0 < θ1 ≤ θπ1(α|X,Y)

)
. (4.1)

The estimated P(θ1,θ2)(α; θ1) when α = 0.05(0.95) is shown in Table 1. In particular, for fixed n and
(λ1, λ2), we take 10,000 independent random samples of X = (X1, . . . , Xn1 ) and Y = (Y1, . . . , Yn2 ) from
the generalized exponential distributions, respectively.

In Table 1, we can observe that the reference prior meets the target coverage probabilities very
well even for the small sample sizes. In addition, note that the results of table are not very sensitive to
the change of the values of (θ1, λ1).

Example 1. This example taken from Kundu and Gupta (2005), and the data has been generated
using n1 = n2 = 30, λ1 = 1.5 and λ2 = 2.5 with common scale parameter 0.5. Thus the stress-strength
reliability is 0.625. The Y values are 2.58, 3.61, 0.96, 5.55, 6.31, 0.47, 2.30, 0.08, 0.88, 2.90, 2.13,
4.01, 2.01, 1.22, 2.51, 0.92, 1.06, 1.02, 0.66, 1.76 and the corresponding X values are 1.70, 2.11, 2.50,
3.77, 1.41, 3.67, 3.00, 2.59, 1.29, 1.86, 0.64, 0.93, 3.28, 2.69, 0.64, 5.17, 12.24, 1.91, 3.09, 3.21.

For this data, the maximum likelihood estimate(MLE) of θ1 is 0.615 and the corresponding 95%
asymptotic confidence interval of θ1 is (0.460, 0.750) (Kundu and Gupta, 2005). Bayes estimate and
the 95% credible interval based on the reference prior are 0.612 and (0.459, 0.749), respectively. The
Bayes estimate based on the reference prior and the MLE give almost same results.
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Table 1: Frequentist Coverage Probability of 0.05 (0.95) Posterior Quantiles of θ1

θ1 n1 n2 λ1 = 1.0 λ2 = 10.0 λ3 = 100.0
3 0.053(0.954) 0.048(0.953) 0.055(0.950)

3 5 0.052(0.952) 0.047(0.947) 0.048(0.953)
10 0.046(0.950) 0.051(0.951) 0.053(0.952)
3 0.048(0.945) 0.049(0.955) 0.053(0.951)

0.1 5 5 0.049(0.951) 0.053(0.954) 0.052(0.952)
10 0.052(0.948) 0.051(0.950) 0.044(0.946)
3 0.048(0.948) 0.050(0.948) 0.049(0.954)

10 5 0.045(0.951) 0.048(0.953) 0.045(0.951)
10 0.050(0.945) 0.054(0.951) 0.050(0.948)
3 0.051(0.948) 0.045(0.948) 0.050(0.951)

3 5 0.049(0.951) 0.052(0.950) 0.049(0.950)
10 0.046(0.953) 0.049(0.948) 0.054(0.945)
3 0.054(0.951) 0.049(0.949) 0.046(0.950)

0.3 5 5 0.052(0.949) 0.053(0.952) 0.046(0.950)
10 0.052(0.949) 0.050(0.955) 0.051(0.955)
3 0.051(0.950) 0.049(0.949) 0.053(0.949)

10 5 0.049(0.951) 0.048(0.951) 0.051(0.954)
10 0.050(0.950) 0.054(0.950) 0.043(0.948)
3 0.050(0.948) 0.048(0.953) 0.053(0.947)

3 5 0.052(0.954) 0.048(0.951) 0.049(0.950)
10 0.046(0.950) 0.050(0.952) 0.048(0.949)
3 0.052(0.951) 0.047(0.950) 0.053(0.953)

0.5 5 5 0.047(0.950) 0.054(0.947) 0.055(0.949)
10 0.048(0.947) 0.050(0.954) 0.050(0.944)
3 0.053(0.949) 0.050(0.947) 0.050(0.947)

10 5 0.049(0.949) 0.050(0.954) 0.052(0.956)
10 0.052(0.951) 0.050(0.953) 0.047(0.947)
3 0.052(0.951) 0.050(0.948) 0.051(0.949)

3 5 0.049(0.948) 0.047(0.950) 0.052(0.949)
10 0.055(0.949) 0.046(0.949) 0.051(0.947)
3 0.054(0.951) 0.050(0.951) 0.053(0.947)

0.7 5 5 0.045(0.954) 0.049(0.953) 0.051(0.953)
10 0.052(0.949) 0.051(0.947) 0.051(0.953)
3 0.054(0.948) 0.052(0.949) 0.051(0.947)

10 5 0.049(0.950) 0.050(0.948) 0.048(0.947)
10 0.047(0.951) 0.051(0.949) 0.049(0.956)
3 0.050(0.952) 0.053(0.951) 0.049(0.952)

3 5 0.048(0.947) 0.048(0.950) 0.051(0.950)
10 0.052(0.955) 0.049(0.951) 0.051(0.948)
3 0.052(0.949) 0.047(0.952) 0.051(0.951)

0.9 5 5 0.054(0.950) 0.050(0.951) 0.051(0.953)
10 0.047(0.947) 0.051(0.952) 0.052(0.950)
3 0.052(0.949) 0.050(0.945) 0.053(0.947)

10 5 0.052(0.945) 0.046(0.948) 0.049(0.951)
10 0.048(0.953) 0.051(0.951) 0.049(0.948)

5. Concluding Remarks

In the paper, we have found noninformative priors for the stress-strength reliability in generalized
exponential distributions. We revealed that the second order matching prior is not a HPD matching
prior and is not a CDF matching prior, and also does not match the alternative coverage probabilities
up to the second order. It turns out that the reference prior and Jeffreys’ prior are the second order
matching prior. As illustrated in our numerical study, the reference prior meets very well with the
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target coverage probabilities. We recommend the use of the reference prior for Bayesian inference of
the stress-strength reliability in two independent generalized exponential distributions.
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