DOI QR코드

DOI QR Code

Noninformative Priors for the Ratio of the Scale Parameters in the Inverted Exponential Distributions

  • Kang, Sang Gil (Department of Computer and Data Information, Sangji University) ;
  • Kim, Dal Ho (Department of Statistics, Kyungpook National University) ;
  • Lee, Woo Dong (Department of Asset Management, Daegu Haany University)
  • Received : 2013.06.12
  • Accepted : 2013.09.25
  • Published : 2013.09.30

Abstract

In this paper, we develop the noninformative priors for the ratio of the scale parameters in the inverted exponential distributions. The first and second order matching priors, the reference prior and Jeffreys prior are developed. It turns out that the second order matching prior matches the alternative coverage probabilities, is a cumulative distribution function matching prior and is a highest posterior density matching prior. In addition, the reference prior and Jeffreys' prior are the second order matching prior. We show that the proposed reference prior matches the target coverage probabilities in a frequentist sense through a simulation study as well as provide an example based on real data is given.

Keywords

References

  1. Abouammoh, A. M. and Alshingiti, A. M. (2009). Reliability estimation of generalized inverted exponential distribution, Journal of Statistical Computation and Simulation, 79, 1301-1315. https://doi.org/10.1080/00949650802261095
  2. Berger, J. O. and Bernardo, J. M. (1989). Estimating a product of means: Bayesian analysis with reference priors, Journal of the American Statistical Association, 84, 200-207. https://doi.org/10.1080/01621459.1989.10478756
  3. Berger, J. O. and Bernardo, J. M. (1992). On the development of reference priors (with discussion), In Bayesian Statistics IV, edited by J. M. Bernardo, et al., Oxford University Press, Oxford, 35-60.
  4. Bernardo, J. M. (1979). Reference posterior distributions for Bayesian inference (with discussion), Journal of Royal Statistical Society B, 41, 113-147.
  5. Bjerkedal, T. (1960). Acquisition of resistance in guinea pigs infected with different doses of virulent tubercle bacilli, American Journal of Epidemiology, 72, 130-148. https://doi.org/10.1093/oxfordjournals.aje.a120129
  6. Cox, D. R. and Reid, N. (1987). Orthogonal parameters and approximate conditional inference (with discussion), Journal of Royal Statistical Society B, 49, 1-39.
  7. Datta, G. S. and Ghosh, M. (1995). Some remarks on noninformative priors, Journal of the American Statistical Association, 90, 1357-1363. https://doi.org/10.1080/01621459.1995.10476640
  8. Datta, G. S. and Ghosh, M. (1996). On the invariance of noninformative priors, The Annals of Statistics, 24, 141-159. https://doi.org/10.1214/aos/1033066203
  9. Datta, G. S., Ghosh, M. and Mukerjee, R. (2000). Some new results on probability matching priors, Calcutta Statistical Association Bulletin, 50, 179-192.
  10. Dey, S. (2007). Inverted exponential distribution as a life time distribution model from a Bayesian viewpoint, Data Science Journal, 6, 107-113. https://doi.org/10.2481/dsj.6.107
  11. DiCiccio, T. J. and Stern, S. E. (1994). Frequentist and Bayesian Bartlett correction of test statistics based on adjusted profile likelihood, Journal of Royal Statistical Society B, 56, 397-408.
  12. Ghosh, J. K. and Mukerjee, R. (1992). Noninformative priors (with discussion), In Bayesian Statistics IV, edited by J. M. Bernardo, et al., Oxford University Press, Oxford, 195-210.
  13. Ghosh, J. K. and Mukerjee, R. (1995). Frequentist validity of highest posterior density regions in the presence of nuisance parameters, Statistics & Decisions, 13, 131-139.
  14. Kang, S. G. (2011). Noninformative priors for the common mean in log-normal distributions, Journal of the Korean Data & Information Science Society, 22, 1241-1250.
  15. Kang, S. G., Kim, D. H. and Lee, W. D. (2012). Noninformative priors for the ratio of the scale parameters in the half logistic distributions, Journal of the Korean Data & Information Science Society, 23, 833-841. https://doi.org/10.7465/jkdi.2012.23.4.833
  16. Killer, A. Z. and Kamath, A. R. (1982). Reliability analysis of CNC machine tools, Reliability Engineering, 3, 449-473. https://doi.org/10.1016/0143-8174(82)90036-1
  17. Lin, C., Duran, B. S. and Lewis, T. O. (1989). Inverted gamma as a life distribution, Microelectronics Reliability, 29, 619-626. https://doi.org/10.1016/0026-2714(89)90352-1
  18. Mukerjee, R. and Dey, D. K. (1993). Frequentist validity of posterior quantiles in the presence of a nuisance parameter: Higher order asymptotics, Biometrika, 80, 499-505. https://doi.org/10.1093/biomet/80.3.499
  19. Mukerjee, R. and Ghosh, M. (1997). Second order probability matching priors, Biometrika, 84, 970-975. https://doi.org/10.1093/biomet/84.4.970
  20. Mukerjee, R. and Reid, N. (1999). On a property of probability matching priors: Matching the alternative coverage probabilities, Biometrika, 86, 333-340. https://doi.org/10.1093/biomet/86.2.333
  21. Singh, S. K., Singh, U. and Kumar, D. (2012). Bayes estimators of the reliability function and parameter of inverted exponential distribution using informative and non-informative priors, Journal of Statistical Computation and Simulation, Under publication.
  22. Stein, C. (1985). On the coverage probability of confidence sets based on a prior distribution, Sequential Methods in Statistics, Banach Center Publications, 16, 485-514.
  23. Tibshirani, R. (1989). Noninformative priors for one parameter of many, Biometrika, 76, 604-608. https://doi.org/10.1093/biomet/76.3.604
  24. Welch, B. L. and Peers, H. W. (1963). On formulae for confidence points based on integrals of weighted likelihood, Journal of Royal Statistical Society B, 25, 318-329.