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Abstract

In this paper, we develop the noninformative priors for the product of different
powers of k means in the exponential distribution. We developed the first and second
order matching priors. It turns out that the second order matching prior matches the
alternative coverage probabilities, and is the highest posterior density matching prior.
Also we revealed that the derived reference prior is the second order matching prior, and
Jeffreys’ prior and reference prior are the same. We showed that the proposed reference
prior matches very well the target coverage probabilities in a frequentist sense through
simulation study, and an example based on real data is given.

Keywords: Matching prior, nonlinear functions of exponential means, reference prior.

1. Introduction

The exponential distribution plays an important role in the field of reliability. The useful-
ness of the exponential distribution in reliability applications can be found in the early work
of Davis (1952), Epstein and Sobel (1953), and others. Further justification, in the form of
theoretical arguments to support the use of the exponential distribution as the failure law of
complex equipment, is presented in the book by Barlow and Proschan (1975) and Lawless
(2003).

The problem of making inference about the product of means has been studied by South-
wood (1978) and Yfantis and Flatman (1991). A problem of making inference about the
product of normal means can be recognized as the determination of an area of a rectangle
based on measurements of length and width when the distribution of the length and width is
normal. Also it can be viewed as the volume of a cuboid when the length, width, and height
represent the means of three normal random variables. In environmental applications, such
as exposure assessment and risk modeling, the estimation of product of normal means is
desired (Southwood, 1978; Yfantis and Flatman, 1991).

In Bayesian view points, Berger and Bernardo (1989) studied the reference prior analysis
for product of means of two normal populations with common known variance. Sun and
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Ye (1995) developed the two group reference prior for k normal populations with common
known variance. In general, the variances are seldom known in real applications. So Sun and
Ye (1999) derived the two group reference prior for k normal populations with unknown
variances. It is very difficult or impossible to compute reference priors for other groups of
ordering of parameters (Sun and Ye, 1995, 1999). Also for Poisson distributions, Kim (2006)
and Raubenheimer (2012) derived the probability matching prior for the product of different
powers of k Poisson rates.

Suppose that Xij , i = 1, · · · , k, j = 1, · · · , ni are independent exponential random vari-

ables with mean λi for i = 1, · · · , k. The parameter of interest is, θ =
∏k
i=1 λ

ci
i , nonlinear

functions of k means. When ci = 1/k, then θ is the geometric mean, and the estimation of
θ arises in environmental applications and in economic applications (Kenneth et al., 1998).
For ci = 1, the θ is the product of means. When k = 2, c1 = 1 and c2 = −1, θ is the ratio of
two means. When k = 4, c1 = c2 = 1/2 and c3 = c4 = −1/2, θ is the ratio of two geometric
means.

In this paper, we focus on the development of noninformative priors for θ. For the Bayesian
inference of θ, we want to develop noninformative priors for this parameter. The Bayesian
analysis using the noninformative or objective prior has been very popular and many authors
have made an effort for developing the noninformative priors in various parameters of interest
under many statistical models.

We consider two kinds of noninformative prior in this paper. One is a probability matching
prior introduced by Welch and Peers (1963) which matches the posterior and frequentist
probabilities of confidence intervals. Interest in such priors has been revived with the work
of Stein (1985) and Tibshirani (1989). Among others, we may cite the work of Mukerjee and
Dey (1993), DiCiccio and Stern (1994), Datta and Ghosh (1995, 1996), Mukerjee and Ghosh
(1997). The other is the reference prior introduced by Bernardo (1979) which maximizes
the Kullback-Leibler divergence between the prior and the posterior. Ghosh and Mukerjee
(1992), and Berger and Bernardo (1989, 1992) give a general algorithm to derive a reference
prior by splitting the parameters into several groups according to their order of inferential
importance. This approach is very successful in various practical problems (Kang et al.,
2013, 2014). Quite often reference priors satisfy the matching criterion described earlier.

The outline of the remaining sections is as follows. In Section 2, we develop the first order
and the second order probability matching priors. We reveal that the second order match-
ing prior is a highest posterior density (HPD) matching prior and matches the alternative
coverage probabilities up to the second order. Also we derive the reference priors for the
parameter. It turns out that the reference prior and Jeffreys’ prior are the second order
matching prior. Section 3 devotes to show that the propriety of the posterior distribution
for the general prior including the reference prior and the matching prior. In Section 4,
simulated frequentist coverage probabilities under the proposed prior and an example are
given.
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2. The noninformative priors

Let xi1, xi2, · · · , xini
denote observations from the exponential distribution with mean

λi, i = 1, · · · , k. Then likelihood function is given by

f(x|λ1, · · · , λk) =

ni∏
i=1

λ−ni exp

−
k∑
i=1

ni∑
j=1

xij
λi

 , (2.1)

where x = (x1, · · · ,xk) and xi = (xi1, · · · , xini). We want to make a Bayesian inference
about the product of different powers of k means based on noninformative prior or objective
priors. Therefore we will develop the noninformative priors for

∏k
i=1 λ

ci
i , −∞ < ci <∞, i =

1, · · · , k.

2.1. The probability matching priors

For a prior π, let θ1−α1 (π;X) denote the (1− α)th posterior quantile of θ1, that is,

Pπ[θ1 ≤ θ1−α1 (π;X)|X] = 1− α, (2.2)

where θ = (θ1, · · · , θt)T and θ1 is the parameter of interest. We want to find priors π for
which

Pθ[θ1 ≤ θ1−α1 (π;X)] = 1− α+ o(n−r), (2.3)

for some r > 0, as n goes to infinity. Priors π satisfying (2.3) are called matching priors. If
r = 1/2, then π is referred to as a first order matching prior, while if r = 1, π is referred to
as a second order matching prior.

Firstly, we develop the matching prior for the scale parameter. In order to find such
matching priors π, let

θ1 =

k∏
i=1

λcii and θi = λ
− ci/ni

c1/n1
1 λi, i = 2, · · · , k.

With this parametrization, the likelihood function of parameters (θ1, · · · , θk) is given by

L(θ1, · · · , θk) (2.4)

∝ θ
−

∑k
i=1 ci∑k

i=1
c2
i
/ni

1

k∏
i=2

θ
−ni+

ci
∑k

j=1 cj∑k
j=1

c2
j
/nj

i

× exp

−
[

θ1∏k
i=2 θ

ci
i

]− c1/n1∑k
i=1

c2
i
/ni

S1 −
k∑
i=2

[
θ1∏k
j=2 θ

cj
j

]− ci/ni∑k
j=1

c2
j
/nj

θ−1i Si

 , (2.5)

where Si =
∑ni

j=1 xij , i = 1, · · · , k. Based on (2.4), the Fisher information matrix is given
by

I(θ1, · · · , θk) =


[
∑k
i=1 c

2
i /ni]

−1θ−21 0 · · · 0
0 n2θ

−2
2 · · · 0

...
...

. . .
...

0 0 · · · nkθ
−2
k

 . (2.6)
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From the above Fisher information matrix I, θ1 is orthogonal to θ2, · · · , θk in the sense
of Cox and Reid (1987). Following Tibshirani (1989), the class of the first order probability
matching prior is characterized by

π(1)
m (θ1, · · · , θk) ∝ θ−11 d(θ2, · · · , θk), (2.7)

where d(θ2, · · · , θk) > 0 is an arbitrary function differentiable in its argument.
The class of prior given in (2.7) can be narrowed down to the second order probability

matching priors as given in Mukerjee and Ghosh (1997). A second order probability matching
prior is of the form (2.7), and d must satisfy an additional differential equation (2.10) of
Mukerjee and Ghosh (1997), namely

1

6
d(θ2, · · · , θk)

∂

∂θ1
{I−

3
2

11 L1,1,1}+

k∑
s=2

∂

∂θs
{I−

1
2

11 L11sI
ssd(θ2, · · · , θk)} = 0, (2.8)

where

L1,1,1 = E

[(
∂ logL

∂θ1

)3
]

=

k∑
j=1

2c3j/n
2
j

[
∑k
i=1 c

2
i /ni]

3
θ−31 ,

L11s = E

[
∂3 logL

∂θ21∂θs

]
= −cs

 k∑
j=1

c3j/n
2
j

[
∑k
i=1 c

2
i /ni]

3
+

1∑k
i=1 c

2
i /ni

 θ−21 θ−1s , s = 2, · · · , k,

I11 =

[
k∑
i=1

c2i /ni

]−1
θ−21 , Iss =

θ2s
ns
, s = 2, · · · , k.

Then (2.8) simplifies to

k∑
s=2

∂

∂θs

 cs
ns

 k∑
j=1

c3j/n
2
j

[
∑k
i=1 c

2
i /ni]

3
+

1∑k
i=1 c

2
i /ni

 θ−11 θsd(θ2, · · · , θk)

 = 0. (2.9)

A solution of (2.9) is of the form d(θ2, · · · , θk) =
∏k
i=2 θ

−1
i . Thus the resulting second

order probability matching prior is

π(2)
m (θ1, · · · , θk) ∝ θ−11 · · · θ

−1
k . (2.10)

Remark 2.1 There are alternative ways through which matching can be accomplished.
Datta et al. (2000) provided a theorem which establishes the equivalence of second order
matching priors and HPD matching priors (DiCiccio and Stern, 1994; Ghosh and Mukerjee,
1995) within the class of first order matching priors. The equivalence condition is that

I
−3/2
11 L111 dose not depend on θ1. Since

L111 = E

[
∂3 logL

∂θ31

]
=

 k∑
j=1

c3j/n
2
j

[
∑k
i=1 c

2
i /ni]

3
+

3∑k
i=1 c

2
i /ni

 θ−31 ,
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I
−3/2
11 L111 does not depend on θ1. Therefore the second order probability matching prior

(2.10) is a HPD matching prior. Also

L11,1 = E

[
∂2 logL

∂θ21

∂ logL

∂θ1

]
= w1θ

−3
1 ,

L11,j = E

[
∂2 logL

∂θ21

∂ logL

∂θ2

]
= wjθ

−2
1 θ−1j , j = 2, · · · , k,

where wj , j = 1, · · · , k, is a constant. And d(θ2, · · · , θk) = θ−11 · · · θ
−1
k . Then

k∑
s=2

∂

∂θs
{L11sI

ssI
−1/2
11 d(θ2, · · · , θk)} = 0,

k∑
s=2

∂

∂θs
{L11,sI

ssI
−1/2
11 d(θs)} = 0,

∂

∂θ1
{I−3/211 L111} = 0,

∂

∂θ1
{I−3/211 L11,1} = 0.

Therefore the second order matching prior (2.10) matches the alternative coverage proba-
bilities (Mukerjee and Reid, 1999).

2.2. The reference priors

Reference priors introduced by Bernardo (1979), and extended further by Berger and
Bernardo (1992) have become very popular over the years for the development of noninfor-
mative priors. In this section, we derive the reference priors for different groups of ordering
of (θ1, · · · , θk). Then due to the orthogonality of the parameters, following Datta and Ghosh
(1995b), choosing rectangular compacts for each θ1, · · · , θk−1 and θk when θ1 is the param-
eter of interest, the reference priors are given by as follows.

For the likelihood (2.4), if θ1 is the parameter of interest, then the reference prior distri-
butions for group of ordering of {(θ1, · · · , θk)} is

πJ(θ1, · · · , θk) ∝ θ−11 · · · θ
−1
k .

For groups of ordering of {θ1, · · · , θk} and {θ1, (θ2, · · · , θk)}, the reference prior is

πr(θ1, · · · , θk) ∝ θ−11 · · · θ
−1
k .

Remark 2.2 From the above reference priors, we know that the one-at-a-time reference
prior πr and Jeffreys’ prior are the same. Also the one-at-a-time reference prior πr and
Jeffreys’ prior πJ satisfy the second order matching criterion.

3. Implementation of the Bayesian procedure

We investigate the propriety of posteriors for a general class of priors which includes the
reference priors and the matching priors. We consider the class of priors

π(θ1, · · · , θk) ∝ θ−a11 · · · θ−akk , (3.1)

where ai > 0, i = 1, · · · , k. The following general theorem can be proved.
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Theorem 3.1 The posterior distribution of (θ1, · · · , θk) under the prior (3.1) is proper if

n1 + c1(a1 − 1)−
∑k

i=1(ai−1)ci/ni

c1/n1
+ a1 − 1 > 0 and ni + ci(a1 − 1) + ai − 1, i = 2, · · · , k.

Proof : Note that the joint posterior for θ1, · · · , θk−1 and θk given x is given by

π(θ1, · · · , θk|x) ∝ θ
−

∑k
i=1 ci∑k

i=1
c2
i
/ni
−a1

1

k∏
i=2

θ
−ni+

ci
∑k

j=1 cj∑k
j=1

c2
j
/nj
−ai

i (3.2)

× exp

−
[

θ1∏k
i=2 θ

ci
i

]− c1/n1∑k
i=1

c2
i
/ni

S1 −
k∑
i=2

[
θ1∏k
j=2 θ

cj
j

]− ci/ni∑k
j=1

c2
j
/nj Si

θi

 ,

where Si =
∑ni

j=1 xij , i = 1, · · · , k. Let θ1 =
∏k
i=1 λ

ci
i and θi = λ

− ci/ni
c1/n1

1 λi, i = 2, · · · , k.
Then we have

π(λ1, · · · , λk|x) ∝ λ
−(n1+c1(a1−1)−

∑k
i=1(ai−1)ci/ni

c1/n1
+a1)

1

× λ
−(n2+c2(a1−1)+a2)
2 · · ·λ−(nk+ck(a1−1)+ak)

k exp

{
−

k∑
i=1

Si
λi

}
. (3.3)

Thus ∫ ∞
0

· · ·
∫ ∞
0

π(λ1, · · · , λk|x))dλ1 · · · dλk <∞ (3.4)

if n1 + c1(a1 − 1) −
∑k

i=1(ai−1)ci/ni

c1/n1
+ a1 − 1 > 0 and ni + ci(a1 − 1) + ai − 1, i = 2, · · · , k.

This completes the proof. �

Theorem 3.2 Under the prior (3.1), the marginal posterior density of θ1 is given by

π(θ1|x)

∝
∫ ∞
0

· · ·
∫ ∞
0

θ
−

∑k
i=1 ci∑k

i=1
c2
i
/ni
−a1

1

k∏
i=2

θ
−ni+

ci
∑k

j=1 cj∑k
j=1

c2
j
/nj
−ai

i (3.5)

× exp

−
[

θ1∏k
i=2 θ

ci
i

]− c1/n1∑k
i=1

c2
i
/ni

S1 −
k∑
i=2

[
θ1∏k
j=2 θ

cj
j

]− ci/ni∑k
j=1

c2
j
/nj Si

θi

 dθ2 · · · dθk.

Note that actually the marginal density of θ1 requires k − 1 dimensional integration.
Therefore, we use the Markov Chain Monte Carlo numerical integration, and so it is easy to
compute the marginal moments of θ1. In Section 4, we investigate the frequentist coverage
probabilities for Jeffreys’ prior πJ and the reference prior πr, respectively.
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4. Numerical studies

We evaluate the frequentist coverage probability by investigating the credible interval of
the marginal posteriors density of product of means , that is θ1 =

∏k
i=1 λi, under the non-

informative prior π given in (3.1) for several configurations k, (λ1, · · · , λk) and n1, · · · , nk.
That is to say, the frequentist coverage of a (1 − α)th posterior quantile should be close
to 1− α. Since no closed form posteriors are available, the posterior quantiles are obtained
via application of the Markov Chain Monte Carlo numerical integration. We provide below
some of the implementational details.

For general priors, we can derive the conditional posteriors, and so we provide below some
of the implementational details.

The joint posterior of λ1, · · · , λk given x is

π(λ1, · · · , λk|x) ∝ λ
−
(
n1+c1(a1−1)−

∑k
i=1(ai−1)ci/ni

c1/n1
+a1

)
1

× λ
−(n2+c2(a1−1)+a2)
2 · · ·λ−(nk+ck(a1−1)+ak)

k exp

{
−

k∑
i=1

Si
λi

}
.

This leads to the full conditionals

(λ1|λ2, · · · , λk,x) ∝ λ
−
(
n1+c1(a1−1)−

∑k
i=1(ai−1)ci/ni

c1/n1
+a1

)
1 exp

{
−S1

λ1

}
, (4.1)

(λi|λj 6=i,x) ∝ λ
−(ni+ci(a1−1)+ai)
i exp

{
−Si
λi

}
, i = 2, · · · , k, j = 1, · · · , k. (4.2)

Note that the conditionals of λi, i = 1, · · · , k have the inverted gamma distributions.
In each case we generate samples 20, 000 (discarding the first 10,000), compute the θ1 =∏k
i=1 λi each time, and find numerically the 5% and 95% posterior quantiles of

∏k
i=1 λi. The

whole process is repeated 10, 000 times, and we find the proportion of times the true
∏k
i=1 λi

belong to this interval. This is the estimated frequentist coverage probability of the Bayesian
credible interval. Table 4.1 gives numerical values of the frequentist coverage probabilities
of 0.05 (0.95) posterior quantiles for the our prior.

Tables 4.1 indicates that the reference prior meets very well the target coverage proba-
bilities. We also note that the matching prior provides good coverage in small sample size,
and the results are less sensitive to the change of the values of (λ1, · · · , λk) and k. Thus, we
recommend to use the reference prior.

Example 4.1 This example is taken from Saraçcoğlu1 et al. (2012). The following data sets
show the breaking strengths of jute fiber at two different gauge lengths, and used by Xia et
al. (2009).

Breaking strength of jute fiber of gauge length 10 mm:

693.73 704.66 323.83 778.17 123.06 637.66 383.43 151.48 108.94 50.16

671.49 183.16 257.44 727.23 291.27 101.15 376.42 163.40 141.38 700.74

262.90 353.24 422.11 43.93 590.48 212.13 303.90 506.60 530.55 177.25.
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Table 4.1 Frequentist coverage probability of 0.05 (0.95) posterior quantiles of θ1 =
∏k
i=1 λi

k λ1, · · · , λk n πr

2

1.0, 1.0

3,3 0.049 (0.949)
3,5 0.053 (0.949)
5,5 0.050 (0.952)
5,10 0.051 (0.949)
10,10 0.048 (0.952)

1.0, 10.0

3,3 0.050 (0.948)
3,5 0.052 (0.947)
5,5 0.049 (0.952)
5,10 0.049 (0.951)
10,10 0.050 (0.953)

1.0, 100.0

3,3 0.054 (0.952)
3,5 0.048 (0.949)
5,5 0.054 (0.952)
5,10 0.045 (0.951)
10,10 0.048 (0.948)

1.0, 1000.0

3,3 0.050 (0.951)
3,5 0.050 (0.952)
5,5 0.053 (0.952)
5,10 0.048 (0.950)
10,10 0.049 (0.947)

3

1.0, 1.0, 1.0

3,3,3 0.046 (0.949)
3,5,5 0.049 (0.951)
5,5,5 0.051 (0.947)

5,10,10 0.053 (0.953)
10,10,10 0.051 (0.950)

1.0, 2.0, 3.0

3,3,3 0.048 (0.954)
3,5,5 0.049 (0.953)
5,5,5 0.050 (0.952)

5,10,10 0.049 (0.952)
10,10,10 0.043 (0.948)

1.0, 5.0, 10.0

3,3,3 0.047 (0.953)
3,5,5 0.048 (0.949)
5,5,5 0.048 (0.953)

5,10,10 0.051 (0.951)
10,10,10 0.052 (0.954)

1.0, 10.0, 100.0

3,3,3 0.049 (0.952)
3,5,5 0.053 (0.953)
5,5,5 0.050 (0.952)

5,10,10 0.048 (0.950)
10,10,10 0.052 (0.952)

5

1.0, 1.0, 1.0, 1.0, 1.0

3,3,3,3,3 0.051 (0.947)
3,3,5,5,5 0.048 (0.948)
5,5,5,5,5 0.053 (0.950)

5,5,10,10,10 0.053 (0.954)
10,10,10,10,10 0.047 (0.952)

1.0, 2.0, 3.0, 4.0, 5.0

3,3,3,3,3 0.048 (0.952)
3,3,5,5,5 0.048 (0.946)
5,5,5,5,5 0.048 (0.952)

5,5,10,10,10 0.047 (0.950)
10,10,10,10,10 0.049 (0.952)

1.0, 3.0, 5.0, 7.0, 10.0

3,3,3,3,3 0.051 (0.950)
3,3,5,5,5 0.049 (0.952)
5,5,5,5,5 0.050 (0.950)

5,5,10,10,10 0.048 (0.942)
10,10,10,10,10 0.048 (0.953)

1.0, 5.0, 10.0, 50.0, 100.0

3,3,3,3,3 0.052 (0.954)
3,3,5,5,5 0.054 (0.952)
5,5,5,5,5 0.052 (0.951)

5,5,10,10,10 0.048 (0.947)
10,10,10,10,10 0.050 (0.950)

Breaking strength of jute fiber of gauge length 20 mm:

71.46 419.02 284.64 585.57 456.60 113.85 187.85 688.16 662.66 45.58

578.62 756.70 594.29 166.49 99.72 707.36 765.14 187.13 145.96 350.70

547.44 116.99 375.81 581.60 119.86 48.01 200.16 36.75 244.53 83.55.
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For this data sets, the Kolmogorov-Smirnov distances between the empirical distribution
functions and the fitted distribution functions have been used to check the goodness-of-fit.
The Kolmogorov-Smirnov Z values are 0.958 and 0.727 and the associated p values are 0.317
and 0.666, respectively. Therefore one cannot reject the hypothesis that the data are coming
from exponential distributions (Saraçcoğlu1 et al., 2012).

For this data sets, the maximum likelihood estimate (MLE) and the corresponding 90%
asymptotic confidence interval of θ1 = λ2/λ1 are given in Table 4.2. Also Bayes estimate
and the 90% credible interval based on the matching prior given in Table 4.2. For the
Bayesian credible interval, we consider 10 independent sequences with a sample of size
110,000 discarding the first 10,000.

The Bayes estimate based on the reference prior and the MLE give some different results.
Also the confidence interval based on the MLE is slightly shorter than the credible interval
of the reference prior. However we know that the reference prior meets very well the target
coverage probabilities in results of our simulation.

Table 4.2 Estimate and confidence interval for θ1 = λ2
λ1

MLE πr
0.9317 (0.5360, 1.3274) 0.9635 (0.6071, 1.4281)

5. Concluding remarks

In the exponential models, we have found the matching prior and the reference prior for
the product of different powers of means. We revealed that the reference prior and Jeffreys’
prior satisfy a second order matching criterion, and the reference prior and Jeffreys’ prior
are the same. As illustrated in our numerical study, the reference prior meets very well
target coverage probabilities even though small sample size. Thus we recommend the use of
the reference prior for Bayesian inference of nonlinear function of means in the exponential
distributions.
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