• Title/Summary/Keyword: exponential attractor

Search Result 11, Processing Time 0.099 seconds

GLOBAL ATTRACTOR FOR A SEMILINEAR STRONGLY DEGENERATE PARABOLIC EQUATION WITH EXPONENTIAL NONLINEARITY IN UNBOUNDED DOMAINS

  • Tu, Nguyen Xuan
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.2
    • /
    • pp.423-443
    • /
    • 2022
  • We study the existence and long-time behavior of weak solutions to a class of strongly degenerate semilinear parabolic equations with exponential nonlinearities on ℝN. To overcome some significant difficulty caused by the lack of compactness of the embeddings, the existence of a global attractor is proved by combining the tail estimates method and the asymptotic a priori estimate method.

NEWTON'S METHOD FOR EQUATIONS RELATED TO EXPONENTIAL FUNCTION

  • Jeong, Moonja
    • Korean Journal of Mathematics
    • /
    • v.9 no.1
    • /
    • pp.67-73
    • /
    • 2001
  • For some equation related with exponential function, we seek roots and find the properties of the roots. By using the relation of the roots and attractors, we find a region in the basin of attraction of the attractor at infinity for Newton's method for solving given equation.

  • PDF

ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO 3D CONVECTIVE BRINKMAN-FORCHHEIMER EQUATIONS WITH FINITE DELAYS

  • Le, Thi Thuy
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.3
    • /
    • pp.527-548
    • /
    • 2021
  • In this paper we prove the existence of global weak solutions, the exponential stability of a stationary solution and the existence of a global attractor for the three-dimensional convective Brinkman-Forchheimer equations with finite delay and fast growing nonlinearity in bounded domains with homogeneous Dirichlet boundary conditions.

GLOBAL ATTRACTOR FOR A SEMILINEAR PSEUDOPARABOLIC EQUATION WITH INFINITE DELAY

  • Thanh, Dang Thi Phuong
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.3
    • /
    • pp.579-600
    • /
    • 2017
  • In this paper we consider a semilinear pseudoparabolic equation with polynomial nonlinearity and infinite delay. We first prove the existence and uniqueness of weak solutions by using the Galerkin method. Then, we prove the existence of a compact global attractor for the continuous semigroup associated to the equation. The existence and exponential stability of weak stationary solutions are also investigated.

WELL-POSEDNESS AND ASYMPTOTIC BEHAVIOR OF PARTLY DISSIPATIVE REACTION DIFFUSION SYSTEMS WITH MEMORY

  • Vu Trong Luong;Nguyen Duong Toan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.61 no.1
    • /
    • pp.161-193
    • /
    • 2024
  • In this paper, we consider the asymptotic behavior of solutions for the partly dissipative reaction diffusion systems of the FitzHugh-Nagumo type with hereditary memory and a very large class of nonlinearities, which have no restriction on the upper growth of the nonlinearity. We first prove the existence and uniqueness of weak solutions to the initial boundary value problem for the above-mentioned model. Next, we investigate the existence of a uniform attractor of this problem, where the time-dependent forcing term h ∈ L2b(ℝ; H-1(ℝN)) is the only translation bounded instead of translation compact. Finally, we prove the regularity of the uniform attractor A, i.e., A is a bounded subset of H2(ℝN) × H1(ℝN) × L2µ(ℝ+, H2(ℝN)). The results in this paper will extend and improve some previously obtained results, which have not been studied before in the case of non-autonomous, exponential growth nonlinearity and contain memory kernels.

GLOBAL ATTRACTORS FOR NONLOCAL PARABOLIC EQUATIONS WITH A NEW CLASS OF NONLINEARITIES

  • Anh, Cung The;Tinh, Le Tran;Toi, Vu Manh
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.3
    • /
    • pp.531-551
    • /
    • 2018
  • In this paper we consider a class of nonlocal parabolic equations in bounded domains with Dirichlet boundary conditions and a new class of nonlinearities. We first prove the existence and uniqueness of weak solutions by using the compactness method. Then we study the existence and fractal dimension estimates of the global attractor for the continuous semigroup generated by the problem. We also prove the existence of stationary solutions and give a sufficient condition for the uniqueness and global exponential stability of the stationary solution. The main novelty of the obtained results is that no restriction is imposed on the upper growth of the nonlinearities.

EXISTENCE AND LONG-TIME BEHAVIOR OF SOLUTIONS TO NAVIER-STOKES-VOIGT EQUATIONS WITH INFINITE DELAY

  • Anh, Cung The;Thanh, Dang Thi Phuong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.2
    • /
    • pp.379-403
    • /
    • 2018
  • In this paper we study the first initial boundary value problem for the 3D Navier-Stokes-Voigt equations with infinite delay. First, we prove the existence and uniqueness of weak solutions to the problem by combining the Galerkin method and the energy method. Then we prove the existence of a compact global attractor for the continuous semigroup associated to the problem. Finally, we study the existence and exponential stability of stationary solutions.

ASYMPTOTIC BEHAVIOR FOR STRONGLY DAMPED WAVE EQUATIONS ON ℝ3 WITH MEMORY

  • Xuan-Quang Bui;Duong Toan Nguyen;Trong Luong Vu
    • Journal of the Korean Mathematical Society
    • /
    • v.61 no.4
    • /
    • pp.797-836
    • /
    • 2024
  • We consider the following strongly damped wave equation on ℝ3 with memory utt - αΔut - βΔu + λu - ∫0 κ'(s)∆u(t - s)ds + f(x, u) + g(x, ut) = h, where a quite general memory kernel and the nonlinearity f exhibit a critical growth. Existence, uniqueness and continuous dependence results are provided as well as the existence of regular global and exponential attractors of finite fractal dimension.

3D Markov chain based multi-priority path selection in the heterogeneous Internet of Things

  • Wu, Huan;Wen, Xiangming;Lu, Zhaoming;Nie, Yao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.11
    • /
    • pp.5276-5298
    • /
    • 2019
  • Internet of Things (IoT) based sensor networks have gained unprecedented popularity in recent years. With the exponential explosion of the objects (sensors and mobiles), the bandwidth and the speed of data transmission are dwarfed by the anticipated emergence of IoT. In this paper, we propose a novel heterogeneous IoT model integrated the power line communication (PLC) and WiFi network to increase the network capacity and cope with the rapid growth of the objects. We firstly propose the mean transmission delay calculation algorithm based the 3D Markov chain according to the multi-priority of the objects. Then, the attractor selection algorithm, which is based on the adaptive behavior of the biological system, is exploited. The combined the 3D Markov chain and the attractor selection model, named MASM, can select the optimal path adaptively in the heterogeneous IoT according to the environment. Furthermore, we verify that the MASM improves the transmission efficiency and reduce the transmission delay effectively. The simulation results show that the MASM is stable to changes in the environment and more applicable for the heterogeneous IoT, compared with the other algorithms.

Using Largest Lyapunov Exponent to Confirm the Intrinsic Stability of Boiling Water Reactors

  • Gavilan-Moreno, Carlos J.;Espinosa-Paredes, Gilberto
    • Nuclear Engineering and Technology
    • /
    • v.48 no.2
    • /
    • pp.434-447
    • /
    • 2016
  • The aim of this paper is the study of instability state of boiling water reactors with a method based in largest Lyapunov exponents (LLEs). Detecting the presence of chaos in a dynamical system is an important problem that is solved by measuring the LLE. Lyapunov exponents quantify the exponential divergence of initially close state-space trajectories and estimate the amount of chaos in a system. This method was applied to a set of signals from several nuclear power plant (NPP) reactors under commercial operating conditions that experienced instabilities events, apparently each of a different nature. Laguna Verde and Forsmark NPPs with in-phase instabilities, and Cofrentes NPP with out-of-phases instability. This study presents the results of intrinsic instability in the boiling water reactors of three NPPs. In the analyzed cases the limit cycle was not reached, which implies that the point of equilibrium exerts influence and attraction on system evolution.