ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO 3D CONVECTIVE BRINKMAN-FORCHHEIMER EQUATIONS WITH FINITE DELAYS

Le Thi Thuy

Abstract

In this paper we prove the existence of global weak solutions, the exponential stability of a stationary solution and the existence of a global attractor for the three-dimensional convective BrinkmanForchheimer equations with finite delay and fast growing nonlinearity in bounded domains with homogeneous Dirichlet boundary conditions.

1. Introduction

Let Ω be a bounded domain in \mathbb{R}^{3} with smooth boundary $\partial \Omega$. In this paper we consider the following convective Brinkman-Forchheimer (BF) equations with finite delays

$$
\begin{cases}\frac{\partial u}{\partial t}-\nu \Delta u+(u \cdot \nabla) u+\nabla p+f(u)=G(u(t-\rho(t)))+h(x), & x \in \Omega, t>0, \tag{1}\\ \nabla \cdot u=0, & x \in \Omega, t>0, \\ u(x, t)=0, & x \in \partial \Omega, t>0, \\ u(x, 0)=u_{0}(x), & x \in \Omega, \\ u(x, t)=\phi(x, t), & x \in \Omega, \\ & t \in(-r, 0),\end{cases}
$$

where $u=u(x, t)=\left(u_{1}, u_{2}, u_{3}\right)$ is the velocity field of the fluid, $\nu>0$ is the kinematic viscocity, p is the pressure, h is a nondelayed external force field, G is another external force term and contains some memory effects during a fixed interval of time of length $r>0, \rho$ is an adequate given delay function, u_{0} is the initial velocity and ϕ is the initial datum on the interval.

In the special case $f(u) \equiv 0$ the equations (1) turn to be the Navier-Stokes equation with delay. Equations of Navier-Stokes type with delay have been extensively studied in [4-7] for the case of finite delay and in $[1,12,16-18]$ for the case of infinite delay.

Received July 9, 2020; Revised November 18, 2020; Accepted November 23, 2020.
2010 Mathematics Subject Classification. 35B41, 35Q30, 35D30.
Key words and phrases. Brinkman-Forchheimer equation, delays, weak solution, stationary solution, global attractor.

In order to study problem (1), we make the following assumptions:

- The nonlinearity $f \in C^{2}\left(\mathbb{R}^{3}, \mathbb{R}^{3}\right)$ satisfies the following conditions:

$$
\left\{\begin{array}{l}
\text { 1) } f^{\prime}(u) v \cdot v \geq\left(-K+\kappa|u|^{\beta-1}\right)|v|^{2}, \quad \forall u, v \in \mathbb{R}^{3}, \tag{2}\\
\text { 2) }\left|f^{\prime}(u)\right| \leq C_{f}\left(1+|u|^{\beta-1}\right), \quad \forall u \in \mathbb{R}^{3},
\end{array}\right.
$$

where K, κ, C_{f}, are some positive constants, $\beta \geq 1$ ($\beta>3$ to ensure the uniqueness of solutions) and $u \cdot v$ is the inner product in \mathbb{R}^{3}.
A typical example for such a nonlinear term $f(u)$ is the following

$$
f(u)=a u+b|u|^{\beta-1} u, \beta \in[1, \infty),
$$

where $a \in \mathbb{R}$ and $b>0$ are the Darcy and Forchheimer coefficients, respectively.

- $G: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is a function satisfying $G(0)=0$, and assume that there exists $L_{G}>0$ such that

$$
|G(u)-G(v)|_{\mathbb{R}^{3}} \leq L_{G}|u-v|_{\mathbb{R}^{3}}, \forall u, v \in \mathbb{R}^{3} .
$$

Consider a function $\rho(\cdot) \in C^{1}(\mathbb{R})$ such that $\rho(t) \geq 0$ for all $t \in \mathbb{R}$, $\sup _{t \in \mathbb{R}} \rho(t)=r \in(0, \infty)$, and $\rho_{*}=\sup _{t \in \mathbb{R}} \rho^{\prime}(t)<1$.
The convective Brinkman-Forchheimer equations describes the motion of fluid flow in a saturated porous medium and have been studied in [14]. The Brinkman-Forchheimer model, that is equation (1) without the convective term $(u \cdot \nabla) u$, have been studied extensively in $[8,11,13,19-22]$. For this model, the case of the so-called subcritical growth rate of the nonlinearity f (i.e., $\beta \leq 3$ in (3)) has been widely considered. The main contribution of [14] is to remove this growth restriction and verify the global existence, uniqueness and dissipativity of smooth solutions for a large class of nonlinearity f with an arbitrary growth exponent $\beta>3$.

In this paper, we consider problem (1) when the nonlinear term $f(u)$ satisfied (2) and the forcing term with bounded variable delay $G(\cdot)$ satisfied (4). We will discuss the existence and long-time behavior of solutions in terms of the stability of stationary solutions and the existence of a global attractor. Here the existence and uniqueness of solutions are studied by combining the Galerkin approximation method and the energy method. The existence of a stationary solution is established by a corollary of the Brouwer fixed point theorem, while its exponential stability is proved by using the Gronwall-like lemma. Finally, we use the energy method to show the existence of a global attractor in the phase space $L^{2}(-r, 0 ; H) \times H$.

The paper is organized as follows. In Section 2, we recall some function spaces and lemmas which will be used frequently later. Section 3 is devoted to the existence and uniqueness of weak solutions. In Section 4, we study the existence and exponential stability of a stationary solution. The existence of a global attractor for the continuous semigroup generated by problem (1) is shown in the last section.

2. Preliminaries

Let us recall function spaces, operators, inequalities and notations which are frequently used in the paper.

Putting

$$
\mathcal{V}=\left\{u \in\left(C_{0}^{\infty}(\Omega)\right)^{3}: \nabla \cdot u=0\right\}
$$

Denote H as the closure of \mathcal{V} in $\left(L^{2}(\Omega)\right)^{3}$ with the norm $|\cdot|$ and the inner product (\cdot, \cdot) defined by

$$
(u, v)=\sum_{j=1}^{3} \int_{\Omega} u_{j}(x) v_{j}(x) d x \text { for } u, v \in\left(L^{2}(\Omega)\right)^{3}
$$

We also denote V as the closure of \mathcal{V} in $\left(H_{0}^{1}(\Omega)\right)^{3}$ with the norm $\|\cdot\|$ and the associated scalar product $(()$,$) defined by$

$$
((u, v))=\sum_{i, j=1}^{3} \int_{\Omega} \frac{\partial u_{j}}{\partial x_{j}} \frac{\partial v_{j}}{\partial x_{i}} d x \text { for } u, v \in\left(H_{0}^{1}(\Omega)\right)^{3}
$$

We use $\|\cdot\|_{*}$ for the norm in V^{\prime} and $\langle\cdot, \cdot\rangle_{V, V^{\prime}}$ for the dual pairing between V and V^{\prime}. We recall the Stokes operator $A: V \rightarrow V^{\prime}$ by $\langle A u, v\rangle=((u, v))$. Denote by P the Helmholtz-Leray orthogonal projection in $\left(H_{0}^{1}(\Omega)\right)^{3}$ onto the space V. Then $A u=-P \Delta u$ for all $u \in D(A)=\left(H^{2}(\Omega)\right)^{3} \cap V$. The Stokes operator A is a positive self-adjoint operator with compact inverse. Hence there exists a complete orthonormal set of eigenfunctions $\left\{w_{j}\right\}_{j=1}^{\infty} \subset H$ such that $A w_{j}=\lambda_{j} w_{j}$ and

$$
0<\lambda_{1} \leq \lambda_{2} \leq \lambda_{3} \leq \cdots, \lambda_{j} \rightarrow+\infty \text { as } j \rightarrow \infty
$$

We have the following Poincaré inequalities

$$
\begin{align*}
& \|u\|^{2} \geq \lambda_{1}|u|^{2}, \quad \forall u \in V \tag{5}\\
& |u|^{2} \geq \lambda_{1}\|u\|_{*}^{2}, \forall u \in H .
\end{align*}
$$

We define the trilinear form b on $V \times V \times V$ by

$$
b(u, v, w)=\sum_{i, j=1}^{3} \int_{\Omega} u_{i} \frac{\partial v_{j}}{\partial x_{i}} w_{j} d x, \forall u, v, w \in V
$$

and $B: V \times V \rightarrow V^{\prime}$ by $\langle B(u, v), w\rangle=b(u, v, w)$. We can write $B(u, v)=$ $P[(u \cdot \nabla) v]$. It is easy to check that if $u, v, w \in V$, then $b(u, v, w)=-b(u, w, v)$, and in particular,

$$
\begin{equation*}
b(u, v, v)=0, \quad \forall u, v \in V \tag{6}
\end{equation*}
$$

Using Hölder's and Ladyzhenskaya's inequalities, we can choose the best positive constant c_{0} such that

$$
\begin{equation*}
|b(u, v, w)| \leq c_{0}\|u\|\|v\||w|^{1 / 2}\|w\|^{1 / 2}, \quad \forall u, v, w \in V . \tag{7}
\end{equation*}
$$

From (7) and using Poincaré's inequality (5), we obtain that

$$
\begin{equation*}
|b(u, v, w)| \leq c_{0} \lambda_{1}^{-1 / 4}\|u\|\|v\|\|w\|, \quad \forall u, v, w \in V \tag{8}
\end{equation*}
$$

We also use the following inequality in [10]

$$
\begin{equation*}
|b(u, v, u)| \leq c_{1}|u|\|u\|\|v\| \text { for all } u, v \in V \tag{9}
\end{equation*}
$$

To prove the existence of a stationary solution, we need the following lemma.
Lemma 2.1 ([3]). Let X be a finite dimensional Hilbert space with scalar product $[\cdot, \cdot]$ and norm $[\cdot]$ and let P be a continuous mapping from X into itself such that

$$
[P(\xi), \xi]>0 \text { for }[\xi]=k>0
$$

Then there exists $\xi \in X,[\xi]<k$, such that

$$
P(\xi)=0
$$

The following lemma is the Gronwall-like lemma (see [9]).
Lemma 2.2. Let $y(\cdot):[-r,+\infty) \rightarrow[0,+\infty)$ be a function. Assume that there exist positive numbers γ, α_{1} and α_{2} such that the following inequality holds

$$
y(t) \leq\left\{\begin{array}{l}
\alpha_{1} e^{-\gamma t}+\alpha_{2} \int_{0}^{t} e^{-\gamma(t-s)} \sup _{\theta \in[-r, 0]} y(s+\theta) d s, \quad t \geq 0 \\
\alpha_{2} e^{-\gamma t}, \quad t \in[-r, 0]
\end{array}\right.
$$

Then

$$
y(t) \leq \alpha_{1} e^{-\nu t} \text { for } t \geq-r
$$

where $\nu \in(0, \gamma)$ is the unique root of the equation $\frac{\alpha_{2}}{\gamma-\nu} e^{\nu r}=1$ in this interval.
We can rewrite the 3D convective Brinkman-Forchheimer equations (1) in the following functional form

$$
\begin{cases}\partial_{t} u+\nu A u+B(u, u)+P f(u) & =P G(u(t-\rho(t)))+P h \tag{10}\\ u(0) & =u_{0} \\ u(\theta) & =\phi(\theta), \theta \in(-r, 0)\end{cases}
$$

3. Existence and uniqueness of weak solutions

We first give the definition of weak solutions.
Definition. A function u is said to be a weak solution of problem (1) if $u(0)=$ $u_{0}, u(t)=\phi(t)$ for a.e. $t \in(-r, 0)$,
$u \in L^{2}(-r, T ; V) \cap L^{\infty}(0, T ; H) \cap L^{\beta+1}\left(0, T ; L^{\beta+1}(\Omega)\right)$ for all $T>0$,
and
$\frac{d}{d t}(u(t), v)+\nu((u(t), v))+b(u(t), u(t), v)+\langle f(u), v\rangle=(G(u(t-\rho(t))), v)+(h, v)$ for all test functions $v \in V$.

We now prove the following theorem.

Theorem 3.1. Suppose that (2) and (4) hold, and $u_{0}, h \in H, \phi \in L^{2}(-r, 0 ; H)$ are given. Then if $\nu^{2}>\frac{2 L_{G}^{2}}{\lambda_{1}^{2}\left(1-\rho_{*}\right)}$, then there exists a unique weak solution to problem (1).

Proof. Existence. Let $\left\{w_{j}\right\}$ be a basis in $V \cap\left(H^{2}(\Omega)\right)^{3}$, which is orthonormal in H, consisting of all eigenfunctions of the Stokes operator A. Denote $V_{m}=$ $\operatorname{span}\left\{w_{1}, \ldots, w_{m}\right\}$ and consider the projector $P_{m} u=\sum_{j=1}^{m}\left(u, v_{j}\right) w_{j}$. Define also

$$
u_{m}(t)=\sum_{j=1}^{m} \gamma_{m, j}(t) w_{j}
$$

where the coefficients $\gamma_{m, j}$ are required to satisfy the following system

$$
\left\{\begin{array}{l}
\frac{d}{d t}\left(u_{m}(t), w_{j}\right)+\nu\left(\left(u_{m}(t), w_{j}\right)\right)+b\left(u_{m}(t), u_{m}(t), w_{j}\right)+\left\langle f\left(u_{m}(t)\right), w_{j}\right\rangle \tag{11}\\
=\left(G\left(u_{m}(t-\rho(t))\right), w_{j}\right)+\left(h, w_{j}\right) \text { in } D^{\prime}(0, T), 1 \leq j \leq m, \\
u_{m}(0)=P_{m} u_{0}, \quad u_{m}(t)=P_{m} \phi(t), \quad t \in(-r, 0) .
\end{array}\right.
$$

Observe that (11) is a system of ordinary functional differential equations in the unknown $\gamma^{m}(t)=\left(\gamma_{m 1}(t), \ldots, \gamma_{m m}(t)\right)$. By a classical result in the theory of ordinary functional differential equations, problem (11) has a solution defined in an interval $\left[0, t^{*}\right]$ with $0<t^{*} \leq T$. However, by the a priori estimates below, we can set $t^{*}=T$.

Multiplying (11) by $\gamma_{m j}(t)$ then summing in j from 1 to m, and using (6), we have

$$
\begin{aligned}
& \frac{1}{2} \frac{d}{d t}\left|u_{m}(t)\right|^{2}+\nu\left\|u_{m}(t)\right\|^{2}+\int_{\Omega} f\left(u_{m}(t)\right) u_{m}(t) d x \\
= & \int_{\Omega} G\left(u_{m}(t-\rho(t))\right) u_{m}(t) d x+\int_{\Omega} h(x) u_{m}(t) d x .
\end{aligned}
$$

Using the inequality $f(u) \cdot u \geq-C+\kappa|u|^{\beta+1}$, we get

$$
\begin{aligned}
& \frac{1}{2} \frac{d}{d t}\left|u_{m}(t)\right|^{2}+\nu\left\|u_{m}(t)\right\|^{2}+\kappa \int_{\Omega}\left|u_{m}\right|^{\beta+1} d x \\
\leq & C+\left|G\left(u_{m}(t-\rho(t))\right)\right| \cdot\left|u_{m}(t)\right|+|h| \cdot\left|u_{m}(t)\right|
\end{aligned}
$$

Assumption (4) implies that

$$
\begin{equation*}
|G(\xi)| \leq L_{G}|\xi| . \tag{12}
\end{equation*}
$$

Then, we obtain

$$
\begin{aligned}
& \frac{1}{2} \frac{d}{d t}\left|u_{m}(t)\right|^{2}+\nu\left\|u_{m}(t)\right\|^{2}+\kappa \int_{\Omega}\left|u_{m}\right|^{\beta+1} d x \\
\leq & C+L_{G}\left|u_{m}(t-\rho(t))\right| \cdot\left|u_{m}(t)\right|+|h| \cdot\left|u_{m}(t)\right| .
\end{aligned}
$$

By the Cauchy inequality,

$$
\frac{1}{2} \frac{d}{d t}\left|u_{m}(t)\right|^{2}+\nu\left\|u_{m}(t)\right\|^{2}+\kappa \int_{\Omega}\left|u_{m}\right|^{\beta+1} d x
$$

$$
\leq C+\frac{L_{G}^{2}}{\lambda_{1} \nu}\left|u_{m}(t-\rho(t))\right|^{2}+\frac{\lambda_{1} \nu}{4}\left|u_{m}(t)\right|^{2}+\frac{1}{\lambda_{1} \nu}|h|^{2}+\frac{\lambda_{1} \nu}{4}\left|u_{m}(t)\right|^{2} .
$$

Integrating from 0 to t and using (12), we have

$$
\begin{aligned}
& \left|u_{m}(t)\right|^{2}+2 \nu \int_{0}^{t}\left\|u_{m}(s)\right\|^{2} d s+2 \kappa \int_{0}^{t}\left\|u_{m}(s)\right\|_{L^{\beta+1}(\Omega)}^{\beta+1} d s \\
& \leq \\
& 2 C T+\left|u_{0}\right|^{2}+\frac{2 L_{G}^{2}}{\lambda_{1} \nu} \int_{0}^{t}\left|u_{m}(s-\rho(s))\right|^{2} d s+\frac{2}{\lambda_{1} \nu} \int_{0}^{t}|h|^{2} d s \\
& \\
& \quad+\lambda_{1} \nu \int_{0}^{t}\left|u_{m}(s)\right|^{2} d s
\end{aligned}
$$

From (5) we deduce that

$$
\begin{align*}
& \left|u_{m}(t)\right|^{2}+\nu \int_{0}^{t}\left\|u_{m}(s)\right\|^{2} d s+2 \kappa \int_{0}^{t}\left\|u_{m}(s)\right\|_{L^{\beta+1}(\Omega)}^{\beta+1} d s \tag{13}\\
\leq & 2 C T+\left|u_{0}\right|^{2}+\frac{2 L_{G}^{2}}{\lambda_{1} \nu} \int_{0}^{t}\left|u_{m}(s-\rho(s))\right|^{2} d s+\frac{2}{\lambda_{1} \nu} \int_{0}^{t}|h|^{2} d s
\end{align*}
$$

Let $\tau=s-\rho(s)$, and since $\rho(s) \in[0, r]$ and $\frac{1}{1-\rho^{\prime}} \leq \frac{1}{1-\rho_{*}}$. Then

$$
\begin{align*}
\int_{0}^{t}\left|u_{m}(s-\rho(s))\right|^{2} d s & =\frac{1}{1-\rho^{\prime}} \int_{-r}^{t}\left|u_{m}(\tau)\right|^{2} d \tau \\
& \leq \frac{1}{1-\rho_{*}} \int_{-r}^{t}\left|u_{m}(\tau)\right|^{2} d \tau \tag{14}\\
& =\frac{1}{1-\rho_{*}} \int_{-r}^{0}\left|u_{m}(\tau)\right|^{2} d \tau+\frac{1}{1-\rho_{*}} \int_{0}^{t}\left|u_{m}(\tau)\right|^{2} d \tau
\end{align*}
$$

Using (13), (14), and the fact that $u(t)=\phi(t), t \in(-r, 0)$, we have

$$
\begin{aligned}
& \left|u_{m}(t)\right|^{2}+\nu \int_{0}^{t}\left\|u_{m}\right\|^{2} d s+2 \kappa \int_{0}^{t}\left\|u_{m}(s)\right\|_{L^{\beta+1}(\Omega)}^{\beta+1} d s \\
\leq & 2 C T+\left|u_{0}\right|^{2}+\frac{2 L_{G}^{2}}{\lambda_{1} \nu\left(1-\rho_{*}\right)} \int_{-r}^{0}|\phi(\tau)|^{2} d \tau \\
& +\frac{2 L_{G}^{2}}{\lambda_{1} \nu\left(1-\rho_{*}\right)} \int_{0}^{t}\left|u_{m}(\tau)\right|^{2} d \tau+\frac{2}{\lambda_{1} \nu} \int_{0}^{t}|h|^{2} d s .
\end{aligned}
$$

Using inequality (5) once again, we obtain

$$
\begin{align*}
& \left|u_{m}(t)\right|^{2}+\left(\nu-\frac{2 L_{G}^{2}}{\lambda_{1}^{2} \nu\left(1-\rho_{*}\right)}\right) \int_{0}^{t}\left\|u_{m}(s)\right\|^{2} d s+2 \kappa \int_{0}^{t}\left\|u_{m}(s)\right\|_{L^{\beta+1}(\Omega)}^{\beta+1} d s \tag{15}\\
\leq & 2 C T+\left|u_{0}\right|^{2}+\frac{2 L_{G}^{2}}{\lambda_{1} \nu\left(1-\rho_{*}\right)} \int_{-r}^{0}|\phi(\tau)|^{2} d \tau+\frac{2}{\lambda_{1} \nu} \int_{0}^{t}|h|^{2} d s .
\end{align*}
$$

Since $\nu^{2}>\frac{2 L_{G}^{2}}{\lambda_{1}^{2}\left(1-\rho_{*}\right)}$ and $\phi \in L^{2}(-r, 0 ; H)$, it follows that $\left\{u_{m}\right\}$ is bounded in $L^{2}(0, T ; V) \cap L^{\infty}(0, T ; H) \cap L^{\beta+1}\left(0, T ; L^{\beta+1}(\Omega)\right)$. Moreover, observe that
$u_{m}=P_{m} \phi$ in $(-r, 0)$ and, by the choice of the basis $\left\{w_{j}\right\}$, the sequence $\left\{u_{m}\right\}$ weakly converges to ϕ in $L^{2}(-r, 0 ; H)$.

Moreover, $\left\{G\left(u_{m}\right)\right\}$ is bounded in $L^{2}(0, T ; H)$ and it is straight forward to bound the nonlinear term $\left\{b\left(u_{m}, u_{m}, \cdot\right)\right\}$. Using (2), we obtain that $|f(u)| \leq$ $C\left(1+|u|^{\beta}\right)$ with C depending on C_{f}. Hence,

$$
\begin{aligned}
\int_{0}^{t} \int_{\Omega}|f(u)|^{\frac{\beta+1}{\beta}} d x d t & \leq C \int_{0}^{t} \int_{\Omega}\left(1+|u|^{\beta}\right)^{\frac{\beta+1}{\beta}} d x d t \\
& \leq C \int_{0}^{t} \int_{\Omega}\left(1+|u|^{\beta+1}\right) d x d t
\end{aligned}
$$

Hence,

$$
\left\{f\left(u_{m}\right)\right\} \text { is bounded in } L^{(\beta+1) / \beta}\left(0, T ; L^{(\beta+1) / \beta}(\Omega)\right) .
$$

Now, we prove the boundedness of $\left\{\frac{d u_{m}}{d t}\right\}$. We have

$$
\begin{align*}
\frac{d}{d t} u_{m}(t)= & -\nu A u_{m}(t)-P_{m} B\left(u_{m}, u_{m}\right)-P f\left(u_{m}\right) \tag{16}\\
& +P_{m} h+P_{m} G\left(t, u_{m}(t-\rho(t))\right)
\end{align*}
$$

From (8), (15) and (16), it follows that

$$
\begin{aligned}
\left\|\frac{d}{d t} u_{m}\right\|_{*} \leq & \nu\left\|A u_{m}\right\|_{*}+\left\|B\left(u_{m}, u_{m}\right)\right\|_{*}+\left\|f\left(u_{m}\right)\right\|_{L^{(\beta+1) / \beta}(\Omega)}+|h| \\
& +\left\|G\left(t, u_{m}(t-\rho(t))\right)\right\|_{*} \\
\leq & \nu\left\|u_{m}\right\|+c_{0} \lambda_{1}^{-1 / 4}\left\|u_{m}\right\|+\left\|f\left(u_{m}\right)\right\|_{L^{(\beta+1) / \beta}(\Omega)}+|h| \\
& +\lambda_{1}^{-1 / 2}\left|G\left(t, u_{m}(t-\rho(t))\right)\right| \\
\leq & \nu\left\|u_{m}\right\|+c_{0} \lambda_{1}^{-1 / 4}\left\|u_{m}\right\|+\left\|f\left(u_{m}\right)\right\|_{L^{(\beta+1) / \beta}(\Omega)}+|h| \\
& +L_{G} \lambda_{1}^{-1 / 2}\left|u_{m}(t-\rho(t))\right| \\
\leq & C, \forall m \geq 1 .
\end{aligned}
$$

This implies that $\left\{\frac{d u_{m}}{d t}\right\}$ is bounded in the space

$$
L^{2}\left(0, T ; V^{\prime}\right)+L^{(\beta+1) / \beta}\left(0, T ; L^{(\beta+1) / \beta}(\Omega)\right)
$$

Using the compactness of the injection of the space $W=\left\{u \in L^{2}(0, T ; V) ; \frac{d u}{d t} \in\right.$ $\left.L^{2}\left(0, T ; V^{\prime}\right)+L^{(\beta+1) / \beta}\left(0, T ; L^{(\beta+1) / \beta}(\Omega)\right)\right\}$ into $L^{2}(0, T ; H)$, and from the preceding analysis and the assumptions on G, we can deduce that there exist a subsequence (denoted again by $\left\{u_{m}\right\}$) and a function $u \in L^{2}(0, T ; V)$ such that

$$
\begin{aligned}
& u_{m} \rightarrow u \text { weakly in } L^{2}(0, T ; V), \\
& u_{m} \rightarrow u \text { weakly star in } L^{\infty}(0, T ; H), \\
& u_{m} \rightarrow \phi \text { weakly in } L^{2}(-r, 0 ; H), \\
& f\left(u_{m}\right) \rightarrow \chi \text { weakly in } L^{(\beta+1) / \beta}\left(0, T ; L^{(\beta+1) / \beta}(\Omega)\right), \\
& G\left(u_{m}\right) \rightarrow G(u) \text { weakly in } L^{2}(0, T ; H),
\end{aligned}
$$

$$
\frac{d u_{m}}{d t} \rightarrow \frac{d u}{d t} \text { weakly in } L^{2}(0, T ; H)
$$

Since $\left\{u_{m}\right\}$ is bounded in $L^{2}(0, T ; V),\left\{\frac{d u_{m}}{d t}\right\}$ is bounded in $L^{2}(0, T ; H)$, using the Aubin-Lions compactness lemma we deduce that $u_{m} \rightarrow u$ strongly in $L^{2}\left(0, T ;\left(L^{2}(\Omega)\right)^{3}\right)$, up to a subsequence. Thus, we have (up to a subsequence)

$$
u_{m} \rightarrow u \text { a.e. in } \Omega_{T}
$$

From the continuity of $f(\cdot)$ we obtain that

$$
f\left(u_{m}\right) \rightarrow f(u) \text { a.e. in } \Omega_{T}
$$

Since the uniqueness of the weak limit, we have $f(u) \equiv \chi$.
Arguing now as in the non-delay case, we can take the limits in (11) to show that u is a weak solution to problem (1).

Uniqueness. Let u and v be two weak solutions of problem (1) and let $w=u-v$. Then, we have

$$
\left\{\begin{array}{l}
\frac{d w}{d t}-\nu \Delta w+(w \cdot \nabla) u+(v \cdot \nabla) w+f(u)-f(v) \tag{17}\\
=G(u(t-\rho(t)))-G(v(t-\rho(t))) \\
\nabla \cdot w=0 \\
w(\theta)=0, \quad \theta \in(-r, 0]
\end{array}\right.
$$

It is well known (see, e.g. [2]) that there exist two nonnegative constants $\alpha=$ $\alpha(\beta)$ and C_{f} such that
(18) $2 \int_{\Omega}(f(u)-f(v))(u-v) d x \geq-C_{f}|u-v|^{2}+\alpha \int_{\Omega}\left(|u|^{\beta-1}+|v|^{\beta-1}\right)|u-v|^{2} d x$.

Multiplying the first equation in (17) by w and integrating by parts, and then noticing that f satisfies (18) and using the definition of $b(w, v, w)$, we have

$$
\begin{align*}
& \frac{d}{d t}|w|^{2}+2 \nu\|w\|^{2}+\alpha \int_{\Omega}\left(|u|^{\beta-1}+|v|^{\beta-1}\right)|u-v|^{2} d x \\
\leq & C_{f}|w|^{2}+2 \int_{\Omega}|((w \cdot \nabla) u) \cdot w| d x \tag{19}\\
& +2 \int_{\Omega}|G(u(t-\rho(t)))-G(v(t-\rho(t)))| \cdot|w(t)| d x
\end{align*}
$$

By the Holder inequality and the Young inequality, we have

$$
2 \int_{\Omega}|((w \cdot \nabla) u) \cdot w| d x \leq 2|u||w||\nabla w| \leq \frac{\nu}{2}|\nabla w|^{2}+C|u|^{2}|w|^{2}
$$

where $C=C(\nu)$. Assuming that $\beta-1>2$ and using the Young inequality again, we obtain

$$
2 \int_{\Omega}|((w \cdot \nabla) u) \cdot w| d x \leq \frac{\nu}{2}|\nabla w|^{2}+\alpha \int_{\Omega}\left(|u|^{\beta-1}+|v|^{\beta-1}\right)|w|^{2} d x+C|w|^{2}
$$

where $C=C(\nu, \alpha)$. Thus, (19) implies that

$$
\begin{aligned}
\frac{d}{d t}|w|^{2}+2 \nu\|w\|^{2} \leq & C_{f}|w|^{2}+\frac{\nu}{2}|\nabla w|^{2}+C|w|^{2} \\
& +2 \int_{\Omega}|G(u(t-\rho(t)))-G(v(t-\rho(t)))| \cdot|w(t)| d x
\end{aligned}
$$

Combining with (4), we get

$$
\begin{aligned}
\frac{d}{d t}|w|^{2}+2 \nu\|w\|^{2} \leq & \left(C_{f}+C\right)|w|^{2}+\frac{\nu}{2}|\nabla w|^{2} \\
& +2 \int_{\Omega} L_{G}|u(t-\rho(t))-v(t-\rho(t))| \cdot|w(t)| d x
\end{aligned}
$$

By the Cauchy inequality, we obtain

$$
\frac{d}{d t}|w|^{2}+2 \nu\|w\|^{2} \leq\left(C_{f}+C\right)|w|^{2}+\frac{\nu}{2}|\nabla w|^{2}+\frac{2 L_{G}^{2}}{\lambda_{1} \nu}|w(t-\rho(t))|^{2}+\frac{\lambda_{1} \nu}{2}|w|^{2} .
$$

Using inequality (5), we have

$$
\frac{d}{d t}|w|^{2}+\nu\|w\|^{2} \leq\left(C_{f}+C\right)|w|^{2}+\frac{2 L_{G}^{2}}{\lambda_{1} \nu}|w(t-\rho(t))|^{2}
$$

Intergrating from 0 to t, we get

$$
\begin{aligned}
& |w|^{2}+\nu \int_{0}^{t}\|w\|^{2} d s \\
\leq & |w(0)|^{2}+\left(C_{f}+C\right) \int_{0}^{t}|w|^{2} d s+\frac{2 L_{G}^{2}}{\lambda_{1} \nu} \int_{0}^{t}|w(s-\rho(s))|^{2} d s
\end{aligned}
$$

Using (14) again, we have

$$
\begin{aligned}
& |w|^{2}+\nu \int_{0}^{t}\|w\|^{2} d s \\
\leq & |w(0)|^{2}+\left(C_{f}+C\right) \int_{0}^{t}|w|^{2} d s+\frac{2 L_{G}^{2}}{\lambda_{1} \nu\left(1-\rho_{*}\right)} \int_{-r}^{t}|w(\tau)|^{2} d \tau
\end{aligned}
$$

Note that $w(s)=0$ for $s \in(-r, 0)$ and (5), we obtain

$$
\begin{aligned}
& |w(t)|^{2}+\nu \int_{0}^{t}\|w(s)\|^{2} d s \\
\leq & \left.|w(0)|^{2}+\left(C_{f}+C\right) \int_{0}^{t}|w(s)|^{2} d s+\frac{2 L_{G}^{2}}{\lambda_{1}^{2} \nu\left(1-\rho_{*}\right)} \int_{0}^{t} \| w(s)\right) \|^{2} d s
\end{aligned}
$$

Thus,
$|w(t)|^{2}+\left(\nu-\frac{2 L_{G}^{2}}{\lambda_{1}^{2} \nu\left(1-\rho_{*}\right)}\right) \int_{0}^{t}\|w(s)\|^{2} d s \leq|w(0)|^{2}+\left(C_{f}+C\right) \int_{0}^{t}|w(s)|^{2} d s$.
Note that $\nu^{2}>\frac{2 L_{G}^{2}}{\lambda_{1}^{2}\left(1-\rho_{*}\right)}$ and $w(0)=0$, we get the uniqueness of solutions by using the Gronwall lemma.

4. Existence and exponential stability of a stationary solution

Let us recall the definition of stationary solutions to problem (1).
Definition. A weak stationary solution to problem (1) is an element $u^{*} \in V$ such that

$$
\nu\left(\left(u^{*}, v\right)\right)+b\left(u^{*}, u^{*}, v\right)+\left\langle f\left(u^{*}\right), v\right\rangle=\left(G\left(u^{*}\right), v\right)+(h, v)
$$

for all test functions $v \in V$.
Theorem 4.1. Suppose that G satisfies (4) and $2 L_{G}<\nu \lambda_{1}$. Then, there exists a weak stationary solution of problem (1). Moreover, if

$$
\begin{equation*}
\nu>\frac{C_{f}}{\lambda_{1}}+\frac{L_{G}}{\lambda_{1}}+\frac{c_{1}}{\sqrt{\lambda_{1}}} \sqrt{\frac{2 C_{f} \lambda_{1} \nu+|h|^{2}}{\nu\left(\nu \lambda_{1}-2 L_{G}\right)}}, \tag{20}
\end{equation*}
$$

where c_{1} is the positive constant in inequality (9), then this stationary solution is unique.
Proof. Let $\left\{w_{j}\right\}$ be a Hilbert basis of $\left(L^{2}(\Omega)\right)^{3}$ such that $V_{m}=\operatorname{span}\left\{w_{j}\right\}_{j \geq 1}$ is dense in $\left(H_{0}^{1}(\Omega)\right)^{2} \cap\left(L^{\beta+1}(\Omega)\right)^{3}$. For each integer $m \geq 1$, we find the approximate stationary solution in the form

$$
u_{m}(t)=\sum_{j=1}^{m} \gamma_{m j}(t) w_{j}
$$

where

$$
\begin{align*}
& \nu\left(\left(u_{m}(t), w_{j}\right)\right)+b\left(u_{m}(t), u_{m}(t), w_{j}\right)+\left\langle f\left(u_{m}(t)\right), w_{j}\right\rangle \\
= & \left(G\left(u_{m}\right), w_{j}\right)+\left(h, w_{j}\right) \tag{21}
\end{align*}
$$

for all $j=1, \ldots, m$. We apply Lemma 2.1 to prove the existence of u_{m} as follows.

Let $X=\left(H_{0}^{1}(\Omega)\right)^{3} \cap\left(L^{\beta+1}(\Omega)\right)^{3}$ and $R_{m}: V_{m} \rightarrow V_{m}$ be defined by $\left(\left(R_{m} u, v\right)\right)=\nu((u, v))+b(u, u, v)+\langle f(u), v\rangle-(G(u), v)-(h, v), \quad \forall u, v, \in V_{m}$.
For all $u \in V_{m}$, we have

$$
\begin{aligned}
\left(\left(R_{m} u, u\right)\right) & \geq \nu\|u\|^{2}+b(u, u, u)+\kappa\|u\|_{L^{\beta+1}}^{\beta+1}-C_{f}-L_{G}|u| \cdot|u|-|h| \cdot|u| \\
& \geq \nu\|u\|^{2}+\kappa\|u\|_{L^{\beta+1}}^{\beta+1}-C_{f}-\frac{L_{G}}{\lambda_{1}}\|u\|^{2}-\frac{1}{2 \lambda_{1} \nu}|h|^{2}-\frac{\nu}{2}\|u\|^{2} \\
& \geq\left(\frac{\nu}{2}-\frac{L_{G}}{\lambda_{1}}\right)\|u\|^{2}+\kappa\|u\|_{L^{\beta+1}}^{\beta+1}-C_{f}-\frac{1}{2 \lambda_{1} \nu}|h|^{2} .
\end{aligned}
$$

It follows that $\left(\left(R_{m} u, u\right)\right) \geq 0$ for $\|u\|_{X}=\|u\|+\|u\|_{L^{p+1}}=k$ sufficiently large, and thus we obtain

$$
k=\left(\frac{2 C_{f} \lambda_{1} \nu+|h|^{2}}{\nu\left(\lambda_{1} \nu-2 L_{G}\right)}\right)^{1 / 2}+\left(\frac{2 C_{f} \lambda_{1} \nu+|h|^{2}}{2 \lambda_{1} \nu \kappa}\right)^{1 /(\beta+1)}
$$

where $L_{G}<\frac{\nu \lambda_{1}}{2}$. Thus, there exists a solution $u_{m} \in V_{m}$ satisfying $R_{m}\left(u_{m}\right)=0$.

Now multiplying (21) by $\gamma_{m j}$ and adding resulting equalities for $j=1, \ldots, m$, we obtain

$$
\nu\left\|u_{m}\right\|^{2}+\left\langle f\left(u_{m}\right), u_{m}\right\rangle=\left(G\left(u_{m}\right), u_{m}\right)+\left(h, u_{m}\right)
$$

Hence we have the estimate

$$
\begin{equation*}
\left(\frac{\nu}{2}-\frac{L_{G}}{\lambda_{1}}\right)\left\|u_{m}\right\|^{2}+\kappa\left\|u_{m}\right\|_{L^{\beta+1}}^{\beta+1} \leq C_{f}+\frac{1}{2 \lambda_{1} \nu}|h|^{2} . \tag{22}
\end{equation*}
$$

Then $\left\{u_{m}\right\}$ is bounded in $\left(H_{0}^{1}(\Omega)\right)^{3} \cap\left(L^{\beta+1}(\Omega)\right)^{3}$, and therefore there exists some u^{*} in $\left(H_{0}^{1}(\Omega)\right)^{3} \cap\left(L^{\beta+1}(\Omega)\right)^{3}$ and a subsequence $n \rightarrow \infty$ such that

$$
u_{n} \rightharpoonup u^{*} \text { weakly in }\left(H_{0}^{1}(\Omega)\right)^{3} \cap\left(L^{\beta+1}(\Omega)\right)^{3} .
$$

On the other hand, using (2) and applying the Aubin-Lions lemma (see [15]), we can conclude that

$$
f\left(u_{m}\right) \rightharpoonup f\left(u^{*}\right) \text { weakly in }\left(L^{(\beta+1) / \beta}(\Omega)\right)^{3} .
$$

Finally, using (4), we have

$$
G\left(u_{m}\right) \rightharpoonup G\left(u^{*}\right) \text { weakly in }\left(L^{2}(\Omega)\right)^{3} .
$$

Combining the above, we conclude that u^{*} is a weak stationary solution to problem (1).

Now let u and v be two stationary solutions to problem (1). Denote $w=$ $u-v$, we have
$\nu\|u-v\|^{2}+(f(u)-f(v), u-v)=(G(u)-G(v), u-v)+2 \int_{\Omega}|((w \cdot \nabla) v) \cdot w| d x$.
By inequality (9), we have

$$
2 \int_{\Omega}|((w \cdot \nabla) v) \cdot w| d x \leq c_{1}|w| \cdot\|w\| \cdot\|v\| \leq \frac{c_{1}}{\sqrt{\lambda_{1}}}\|v\| \cdot\|w\|^{2} .
$$

From inequality $\int_{\Omega}(f(u)-f(v))(u-v) d x \geq-C_{f}|u-v|^{2}$ and (4), we obtain

$$
\nu\|w\|^{2} \leq C_{f}|w|^{2}+L_{G}|w|^{2}+\frac{c_{1}}{\sqrt{\lambda_{1}}}\|v\| \cdot\|w\|^{2} .
$$

Hence,

$$
\begin{aligned}
\nu\|w\|^{2} & \leq\left(C_{f}+L_{G}\right)|w|^{2}+\frac{c_{1}}{\sqrt{\lambda_{1}}}\|v\| \cdot\|w\|^{2} \\
& \leq\left(\frac{C_{f}}{\lambda_{1}}+\frac{L_{G}}{\lambda_{1}}+\frac{c_{1}}{\sqrt{\lambda_{1}}}\|v\|\right)\|w\|^{2}
\end{aligned}
$$

Finally, we get

$$
\left(\nu-\frac{C_{f}}{\lambda_{1}}-\frac{L_{G}}{\lambda_{1}}-\frac{c_{1}}{\sqrt{\lambda_{1}}}\|v\|\right)\|u-v\|^{2} \leq 0
$$

where $\|v\|$ satisfies the a priori estimate like (22). Hence we get the uniqueness of stationary solutions.
Theorem 4.2. Assume that the assumptions of Theorem 4.1 and (20) hold. Then the unique stationary solution u^{*} of problem (1) is exponentially stable.

Proof. Notice that we can write the solution $u(t)$ to problem (1) in the form $u(t)=u^{*}+v(t)$, for $v(t)$ satisfies

$$
\frac{d v}{d t}-\nu \Delta v+(u \cdot \nabla) u-\left(u^{*} \cdot \nabla\right) u^{*}+f(u(t))-f\left(u^{*}\right)=G(u(t)-\rho(t))-G\left(u^{*}\right)
$$

Multiplying this equation by v and an exponential term $e^{\lambda t}$ with a positive λ to be fixed later on, we obtain

$$
\begin{aligned}
& \frac{d}{d t}\left(e^{\lambda t}|v(t)|^{2}\right)-\lambda e^{\lambda t}|v(t)|^{2}+2 \nu e^{\lambda t}\|v(t)\|^{2}+2 e^{\lambda t}\left(f\left(u(t)-f\left(u^{*}\right), u(t)-u^{*}\right)\right. \\
\leq & 2 e^{\lambda t}\left(G(u(t-\rho(t)))-G\left(u^{*}\right), u(t)-u^{*}\right)-2 e^{\lambda t} b\left(u-u^{*}, u^{*}, u-u^{*}\right)
\end{aligned}
$$

Using the facts that $\int_{\Omega}(f(u)-f(v))(u-v) d x \geq-C_{f}|u-v|^{2}$ and that

$$
\begin{aligned}
b\left(u-u^{*}, u^{*}, u-u^{*}\right) & \leq c_{1}\left|u-u^{*}\right| \cdot\left\|u-u^{*}\right\| \cdot\left\|u^{*}\right\| \\
& \leq \frac{c_{1}}{\sqrt{\lambda_{1}}}\left\|u^{*}\right\| \cdot\left\|u-u^{*}\right\|^{2},
\end{aligned}
$$

we then have

$$
\begin{aligned}
& \frac{d}{d t}\left(e^{\lambda t}|v(t)|^{2}\right)+2 \nu e^{\lambda t}\|v(t)\|^{2} \\
\leq & \lambda e^{\lambda t}|v(t)|^{2}+2 C_{f} e^{\lambda t}|v(t)|^{2}+2 e^{\lambda t}\left(G(u(t-\rho(t)))-G\left(u^{*}\right), u(t)-u^{*}\right) \\
& +2 e^{\lambda t} \frac{c_{1}}{\sqrt{\lambda_{1}}}\left\|u^{*}\right\| \cdot\|v(t)\|^{2} .
\end{aligned}
$$

From (4), we get

$$
\begin{aligned}
& \frac{d}{d t}\left(e^{\lambda t}|v(t)|^{2}\right)+2 \nu e^{\lambda t}\|v(t)\|^{2} \\
\leq & \lambda e^{\lambda t}|v(t)|^{2}+2 C_{f} e^{\lambda t}|v(t)|^{2}+2 L_{G} e^{\lambda t}|v(t-\rho(t))| \cdot|v(t)| \\
& +2 e^{\lambda t} \frac{c_{1}}{\sqrt{\lambda_{1}}}\left\|u^{*}\right\| \cdot\|v(t)\|^{2} .
\end{aligned}
$$

Using the Cauchy inequality, we have

$$
\begin{aligned}
& \frac{d}{d t}\left(e^{\lambda t}|v(t)|^{2}\right) \\
\leq & \left(\lambda+2 C_{f}\right) e^{\lambda t}|v(t)|^{2}-2\left(\nu-\frac{c_{1}}{\sqrt{\lambda_{1}}}\left\|u^{*}\right\|\right) e^{\lambda t}\|v(t)\|^{2} \\
& +L_{G} e^{\lambda t}|v(t-\rho(t))|^{2}+L_{G} e^{\lambda t}|v(t)|^{2} \\
\leq & \left(\lambda+2 C_{f}+L_{G}\right) e^{\lambda t}|v(t)|^{2}-2\left(\nu-\frac{c_{1}}{\sqrt{\lambda_{1}}}\left\|u^{*}\right\|\right) e^{\lambda t}\|v(t)\|^{2} \\
& +L_{G} e^{\lambda t}|v(t-\rho(t))|^{2} \\
\leq & \left(\lambda+2 C_{f}+L_{G}\right) e^{\lambda t}|v(t)|^{2}-2 \lambda_{1}\left(\nu-\frac{c_{1}}{\sqrt{\lambda_{1}}}\left\|u^{*}\right\|\right) e^{\lambda t}|v(t)|^{2} \\
& +L_{G} e^{\lambda t}|v(t-\rho(t))|^{2} \\
\leq & \left(\lambda+2 C_{f}+L_{G}+2 \sqrt{c_{1} \lambda_{1}}\left\|u^{*}\right\|-2 \nu \lambda_{1}\right) e^{\lambda t}|v(t)|^{2}+L_{G} e^{\lambda t}|v(t-\rho(t))|^{2} .
\end{aligned}
$$

Integrating from 0 to t, we obtain

$$
\begin{aligned}
e^{\lambda t}|v(t)|^{2} \leq & |v(0)|^{2}+\left(\lambda+2 C_{f}+L_{G}+2 \sqrt{c_{1} \lambda_{1}}\left\|u^{*}\right\|-2 \nu \lambda_{1}\right) \int_{0}^{t} e^{\lambda s}\|v(s)\|^{2} \\
& +L_{G} \int_{0}^{t} e^{\lambda s}|v(s-\rho(s))|^{2} d s
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
& |v(t)|^{2} \\
\leq & e^{-\lambda t}|v(0)|^{2} \\
& +\left(\lambda+2 C_{f}+2 L_{G}+2 \sqrt{c_{1} \lambda_{1}}\left\|u^{*}\right\|-2 \nu \lambda_{1}\right) \int_{0}^{t} e^{-\lambda(t-s)} \sup _{\theta \in[-r ; 0]}|v(s+\theta)|^{2} d s
\end{aligned}
$$

If $2 \nu \lambda_{1}>2 C_{f}+2 L_{G}+2 \sqrt{c_{1} \lambda_{1}}\left\|u^{*}\right\|$, then there exists $\lambda>0$ such that

$$
\lambda+2 C_{f}+2 L_{G}+2 \sqrt{c_{1} \lambda_{1}}\left\|u^{*}\right\|-2 \nu \lambda_{1}>0
$$

By Lemma 2.2, it follows that

$$
\left|u(t)-u^{*}\right|^{2} \leq M e^{-\gamma t}, \quad t \geq 0
$$

where $\gamma \in(0, \lambda)$. The proof is complete.

5. Existence of a global attractor

By Theorem 3.1, we can define a semigroup $S(t): L^{2}(-r, 0 ; H) \times H \rightarrow$ $L^{2}(-r, 0 ; H) \times H$ by

$$
S(t)\left(\phi, u_{0}\right)=\left(u_{t}, u(t)\right)
$$

where $u(\cdot)$ is the unique weak solution of problem (1) with the initial datum $\left(\phi, u_{0}\right)$.

We first prove the following continuity result.
Lemma 5.1. Under the assumptions of Theorem 3.1, the mapping $S(t)$: $L^{2}(-r, 0 ; H) \times H \rightarrow L^{2}(-r, 0 ; H) \times H$ is continuous for any $t>0$.
Proof. Let $\left(\phi, u_{0}\right),\left(\psi, v_{0}\right) \in L^{2}(-r, 0 ; H) \times H$ be two pairs of initial data, and u, v are the corresponding solutions to problem (1). We have

$$
\begin{aligned}
& \frac{d}{d t}(u-v)-\nu \Delta(u-v)+(u \cdot \nabla) u-(v \cdot \nabla) v+\nabla\left(p_{u}-p_{v}\right)+(f(u)-f(v)) \\
= & G(u(t-\rho(t)))-G(v(t-\rho(t)))
\end{aligned}
$$

Setting $w=u-v$ and multiplying the above equality by w, we deduce that

$$
\begin{aligned}
& \frac{1}{2} \frac{d}{d t}|w|^{2}+\nu\|w\|^{2}+\langle(u \cdot \nabla) u-(v \cdot \nabla) v, w\rangle+\langle f(u)-f(v), w\rangle \\
= & (G(u(t-\rho(t)))-G(v(t-\rho(t))), w) .
\end{aligned}
$$

Therefore, from the assumption of f and (9) we get

$$
\begin{aligned}
& \frac{1}{2} \frac{d}{d t}|w|^{2}+\nu\|w\|^{2} \\
\leq & C_{f}|w|^{2}+c_{1}|w|\|u\|\|w\|+L_{G}|u(t-\rho(t))-v(t-\rho(t))| \cdot|w| \\
\leq & \left.C_{f}|w|^{2}+c_{2}|w|^{2}\|u\|^{2}+\nu\|w\|^{2}+\frac{L_{G}}{2} \right\rvert\,\left(u(t-\rho(t))-\left.v(t-\rho(t))\right|^{2}+\frac{1}{2}|w|^{2}\right.
\end{aligned}
$$

From (4) we obtain

$$
\frac{d}{d t}|w|^{2} \leq\left(C_{f}+2 c_{2}\|u\|^{2}+1\right)|w|^{2}+L_{G}|w(t-\rho(t))|^{2}
$$

Using (14) we have

$$
\begin{aligned}
|w(t)|^{2} \leq & |w(0)|^{2}+\int_{0}^{t}\left(C_{f}+2 c_{2}\|u(s)\|^{2}+1\right)|w(s)|^{2} d s+L_{G} \int_{0}^{t}|w(s-\rho(s))|^{2} d s \\
\leq & \left|u_{0}-v_{0}\right|^{2}+\int_{0}^{t}\left(C_{f}+2 c_{2}\|u(s)\|^{2}+1\right)|w(s)|^{2} d s+\frac{L_{G}}{1-\rho_{*}} \int_{-r}^{0}|w(\tau)|^{2} d \tau \\
& +\frac{L_{G}}{1-\rho_{*}} \int_{0}^{t}|w(\tau)|^{2} d \tau .
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
|w(t)|^{2} \leq & \left|u_{0}-v_{0}\right|^{2}+\frac{L_{G}}{1-\rho_{*}} \int_{-r}^{0}|\phi-\psi|^{2} d s \\
& +\int_{0}^{t}\left(C_{f}+2 c_{2}\|u(s)\|^{2}+1+\frac{L_{G}}{1-\rho_{*}}\right)|w(s)|^{2} d s \\
\leq & \left|u_{0}-v_{0}\right|^{2}+\frac{L_{G}}{1-\rho_{*}}|\phi-\psi|_{L^{2}(-r, 0 ; H)}^{2} \\
& +\int_{0}^{t}\left(C_{f}+2 c_{2}\|u(s)\|^{2}+1+\frac{L_{G}}{1-\rho_{*}}\right)|w(s)|^{2} d s
\end{aligned}
$$

Using the Gronwall lemma, we have

$$
\begin{aligned}
|w(t)|^{2}= & |u(t)-v(t)|^{2} \\
\leq & \left(\left|u_{0}-v_{0}\right|^{2}+\frac{L_{G}}{1-\rho_{*}}|\phi-\psi|_{L^{2}(-r, 0 ; H)}^{2}\right) \\
& \times \exp \left(\int_{0}^{t}\left(C_{f}+2 c_{2}\|u(s)\|^{2}+1+\frac{L_{G}}{1-\rho_{*}}\right) d s\right) .
\end{aligned}
$$

For $\theta \in[-r, 0]$, assume now that

$$
\begin{aligned}
\left|u_{t}-v_{t}\right|^{2} & \leq \sup _{\theta \in[-r, 0]}|u(t+\theta)-v(t+\theta)|^{2} \\
& \leq\left(\left|u_{0}-v_{0}\right|^{2}+\frac{L_{G}}{1-\rho_{*}}|\phi-\psi|_{L^{2}(-r, 0 ; H)}^{2}\right)
\end{aligned}
$$

THE CONVECTIVE BRINKMAN-FORCHHEIMER EQUATIONS WITH DELAYS 541

$$
\begin{aligned}
& \times \exp \left(\int_{0}^{t+\theta}\left(C_{f}+2 c_{2}\|u(s)\|^{2}+1+\frac{L_{G}}{1-\rho_{*}}\right) d s\right) \\
\leq & \left(\left|u_{0}-v_{0}\right|^{2}+\frac{L_{G}}{1-\rho_{*}}|\phi-\psi|_{L^{2}(-r, 0 ; H)}^{2}\right) \\
& \times \exp \left(\int_{0}^{t}\left(C_{f}+2 c_{2}\|u(s)\|^{2}+1+\frac{L_{G}}{1-\rho_{*}}\right) d s\right) .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\left|u_{t}-v_{t}\right|_{L^{2}(-r, 0 ; H)}^{2}= & \int_{-r}^{0}\left|u_{t}(\theta)-v_{t}(\theta)\right|^{2} d \theta \\
\leq & \int_{-r}^{0} \sup _{\theta \in[-r, 0]}|u(t+\theta)-v(t+\theta)|^{2} d \theta \\
\leq & \int_{-r}^{0}\left(\left|u_{0}-v_{0}\right|^{2}+\frac{L_{G}}{1-\rho_{*}}|\phi-\psi|_{L^{2}(-r, 0 ; H)}^{2}\right) \\
& \times \exp \left(\int_{0}^{t+\theta}\left(C_{f}+2 c_{2}\|u(s)\|^{2}+1+\frac{L_{G}}{1-\rho_{*}}\right) d s\right) d \theta \\
\leq & \int_{-r}^{0}\left(\left|u_{0}-v_{0}\right|^{2}+\frac{L_{G}}{1-\rho_{*}}|\phi-\psi|_{L^{2}(-r, 0 ; H)}^{2}\right) \\
& \times \exp \left(\int_{0}^{t}\left(C_{f}+2 c_{2}\|u(s)\|^{2}+1+\frac{L_{G}}{1-\rho_{*}}\right) d s\right) d \theta \\
\leq & r\left(\left|u_{0}-v_{0}\right|^{2}+\frac{L_{G}}{1-\rho_{*}}|\phi-\psi|_{L^{2}(-r, 0 ; H)}^{2}\right) \\
& \times \exp \left(\int_{0}^{t}\left(2 c_{2}\|u(s)\|^{2}+1+\frac{L_{G}}{1-\rho_{*}}\right) d s\right) .
\end{aligned}
$$

The proof is now complete.
We now prove the existence of an absorbing set in $L^{2}(-r, 0 ; H) \times H$.
Lemma 5.2. Suppose that the assumptions of Theorem 3.1 hold and $2 L_{G}<$ $\nu \lambda_{1}$. Then the semigroup $S(t)$ has an absorbing set \mathcal{B}_{H} in $L^{2}(-r, 0 ; H) \times H$.

Proof. Multiplying the first equation in (1) by u, we obtain

$$
\frac{1}{2} \frac{d}{d t}|u|^{2}+\nu\|u\|^{2}+\langle f(u), u\rangle=(h, u)+(G(u(t-\rho(t))), u) .
$$

Using the inequality $f(u) \cdot u \geq-C+\kappa|u|^{\beta+1}$ and (4), we have

$$
\frac{1}{2} \frac{d}{d t}|u|^{2}+\nu\|u\|^{2}+\kappa \int_{\Omega}|u|^{\beta+1} d x \leq C+L_{G}|u(t-\rho(t))| \cdot|u|+|h| \cdot|u| .
$$

Choose $\sigma>0$ small enough such that $\lambda_{1} \nu>2 L_{G}+\sigma$. By the Cauchy inequality, we have

$$
\begin{aligned}
& \frac{1}{2} \frac{d}{d t}|u|^{2}+\nu\|u\|^{2}+\kappa \int_{\Omega}|u|^{\beta+1} d x \\
\leq & C+\frac{L_{G}}{8}|u(t-\rho(t))|^{2}+2 L_{G}|u|^{2}+\frac{1}{4 \sigma}|h|^{2}+\sigma|u|^{2}
\end{aligned}
$$

By inequality (5), we have

$$
\frac{d}{d t}|u|^{2} \leq 2 C+\frac{1}{2 \sigma}|h|^{2}+\frac{L_{G}}{4}|u(t-\rho(t))|^{2}-\left(2 \nu \lambda_{1}-\left(2 \sigma+4 L_{G}\right)\right)|u|^{2}
$$

We now choose $m \in\left(0, m_{0}\right), m_{0}>0$, such that

$$
\nu \lambda_{1}>\frac{L_{G}}{8\left(1-\rho_{*}\right)} e^{m r}+2 L_{G}+\sigma+\frac{m}{2} .
$$

Then

$$
\begin{aligned}
\frac{d}{d t}\left(e^{m t}|u|^{2}\right)= & m e^{m t}|u|^{2}+e^{m t} \frac{d}{d t}|u|^{2} \\
\leq & m e^{m t}|u|^{2}+2 C e^{m t}+\frac{1}{2 \sigma} e^{m t}|h|^{2}+\frac{L_{G}}{4} e^{m t}|u(t-\rho(t))|^{2} \\
& -\left(2 \nu \lambda_{1}-\left(2 \sigma+4 L_{G}\right)\right) e^{m t}|u|^{2}
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\frac{d}{d t}\left(e^{m t}|u|^{2}\right) \leq & 2 C e^{m t}+\frac{1}{2 \sigma} e^{m t}|h|^{2} \\
& +\frac{L_{G}}{4} e^{m t}|u(t-\rho(t))|^{2}+\left(m-\left(2 \nu \lambda_{1}-\left(\sigma+L_{G}\right)\right)\right) e^{m t}|u|^{2}
\end{aligned}
$$

Integrating between 0 and t we obtain

$$
e^{m t}|u(t)|^{2}-\left|u_{0}\right|^{2} \leq \frac{2}{m} C e^{m t}+\frac{1}{2 m \sigma} e^{m t}|h|^{2}+\frac{L_{G}}{4} \int_{0}^{t} e^{m s}|u(s-\rho(s))|^{2} d s
$$

$$
\begin{equation*}
+\left(m-\left(2 \nu \lambda_{1}-\left(2 \sigma+4 L_{G}\right)\right)\right) \int_{0}^{t} e^{m s}|u(s)|^{2} d s \tag{23}
\end{equation*}
$$

Now, let $\tau=s-\rho(s)$. In view of $\rho(s) \in[0, r]$ and $\frac{1}{1-\rho}<\frac{1}{1-\rho_{*}}$, then

$$
\begin{align*}
\int_{0}^{t} e^{m s}|u(s-\rho(s))|^{2} d s & \leq \frac{1}{1-\rho_{*}} \int_{-r}^{t} e^{m(\tau+r)} u(\tau) d \tau \\
& =\frac{e^{m r}}{1-\rho_{*}} \int_{-r}^{t} e^{m \tau}|u(\tau)| d \tau \tag{24}
\end{align*}
$$

Combining (23) and (24), we have

$$
\begin{aligned}
e^{m t}|u(t)|^{2}-\left|u_{0}\right|^{2} \leq & \frac{2}{m} C e^{m t}+\frac{1}{2 m \sigma} e^{m t}|h|^{2}+\frac{L_{G}}{4\left(1-\rho_{*}\right)} e^{m r} \int_{-r}^{t} e^{m s}|u(s)|^{2} d s \\
& +\left(m-\left(2 \nu \lambda_{1}-\left(2 \sigma+4 L_{G}\right)\right)\right) \int_{0}^{t} e^{m s}|u(s)|^{2} d s
\end{aligned}
$$

Since $u(t)=\phi(t)$ for $t \in(-r, 0)$, we obtain

$$
\begin{aligned}
& e^{m t}|u(t)|^{2}-\left|u_{0}\right|^{2} \\
\leq & \frac{2}{m} C e^{m t}+\frac{1}{2 m \sigma} e^{m t}|h|^{2}+\frac{L_{G}}{4\left(1-\rho_{*}\right)} e^{m r} \int_{-r}^{0} e^{m s}|\phi(s)|^{2} d s \\
& +\frac{L_{G}}{4\left(1-\rho_{*}\right)} e^{m r} \int_{0}^{t} e^{m s}|u(s)|^{2} d s \\
& +\left(m-\left(2 \nu \lambda_{1}-\left(2 \sigma+4 L_{G}\right)\right)\right) \int_{0}^{t} e^{m s}|u(s)|^{2} d s \\
= & \frac{2}{m} C e^{m t}+\frac{1}{2 m \sigma} e^{m t}|h|^{2}+\frac{L_{G}}{4\left(1-\rho_{*}\right)} e^{m r} \int_{-r}^{0} e^{m s}|\phi(s)|^{2} d s \\
& +\left(m+\frac{L_{G}}{4\left(1-\rho_{*}\right)} e^{m r}-\left(2 \nu \lambda_{1}-\left(2 \sigma+4 L_{G}\right)\right)\right) \int_{0}^{t} e^{m s}|u(s)|^{2} d s \\
\leq & \frac{2}{m} C e^{m t}+\frac{1}{2 m \sigma} e^{m t}|h|^{2}+\frac{L_{G}}{4\left(1-\rho_{*}\right)} e^{m r} \int_{-r}^{0} e^{m s}|\phi(s)|^{2} d s .
\end{aligned}
$$

Thus,

$$
e^{m t}|u(t)|^{2} \leq\left|u_{0}\right|^{2}+\frac{2}{m} C e^{m t}+\frac{1}{2 m \sigma}|h|^{2}+\frac{L_{G}}{4\left(1-\rho_{*}\right)} e^{m r} \int_{-r}^{0} e^{m s}|\phi(s)|^{2} d s
$$

and

$$
|u(t)|^{2} \leq \frac{2}{m} C+\frac{1}{2 m \sigma}|h|^{2}+e^{-m t}\left(\left|u_{0}\right|^{2}+\frac{L_{G}}{4\left(1-\rho_{*}\right)} e^{m r} \int_{-r}^{0} e^{m s}|\phi(s)|^{2} d s\right) .
$$

Therefore,

$$
\begin{aligned}
& |u(t-\rho(t))|^{2} \\
\leq & \frac{2}{m} C+\frac{1}{2 m \sigma}|h|^{2}+e^{-m(t-\rho(t))}\left(\left|u_{0}\right|^{2}+\frac{L_{G}}{4\left(1-\rho_{*}\right)} e^{m r} \int_{-r}^{0} e^{m s}|\phi(s)|^{2} d s\right) \\
\leq & \frac{2}{m} C+\frac{1}{2 m \sigma}|h|^{2}+e^{-m t} \cdot e^{m \rho(t)}\left(\left|u_{0}\right|^{2}+\frac{L_{G}}{4\left(1-\rho_{*}\right.} e^{m r} \int_{-r}^{0} e^{m s}|\phi(s)|^{2} d s\right) \\
\leq & \frac{2}{m} C+\frac{1}{2 m \sigma}|h|^{2}+e^{-m t} \cdot e^{m r}\left(\left|u_{0}\right|^{2}+\frac{L_{G}}{4\left(1-\rho_{*}\right)} e^{m r} \int_{-r}^{0} e^{m s}|\phi(s)|^{2} d s\right)
\end{aligned}
$$

for $\rho \in[0, r]$. For $\theta \in[-r, 0]$, we have

$$
\begin{aligned}
& |u(t+\theta)|^{2} \\
\leq & \frac{2}{m} C+\frac{1}{2 m \sigma}|h|^{2}+e^{-m(t+\theta)}\left(\left|u_{0}\right|^{2}+\frac{L_{G}}{4\left(1-\rho_{*}\right)} e^{m r} \int_{-r}^{0} e^{m s}|\phi(s)|^{2} d s\right) \\
\leq & \frac{2}{m} C+\frac{1}{2 m \sigma}|h|^{2}+e^{-m(t-r)}\left(\left|u_{0}\right|^{2}+\frac{L_{G}}{4\left(1-\rho_{*}\right)} e^{m r} \int_{-r}^{0} e^{m s}|\phi(s)|^{2} d s\right)
\end{aligned}
$$

$$
=\frac{2}{m} C+\frac{1}{2 m \sigma}|h|^{2}+e^{-m t}\left(e^{m r}\left|u_{0}\right|^{2}+\frac{L_{G}}{4\left(1-\rho_{*}\right)} e^{2 m r} \int_{-r}^{0} e^{m s}|\phi(s)|^{2} d s\right)
$$

Hence,

$$
\left|u_{t}\right|^{2} \leq \frac{2}{m} C+\frac{1}{2 m \sigma}|h|^{2}+e^{-m t}\left(e^{m r}\left|u_{0}\right|^{2}+\frac{L_{G}}{4\left(1-\rho_{*}\right)} e^{2 m r} \int_{-r}^{0} e^{m s}|\phi(s)|^{2} d s\right) .
$$

Denoting $\frac{\rho_{H}}{2}=\frac{2}{m} C+\frac{1}{2 m \sigma}|h|^{2}$, we have

$$
\begin{equation*}
\left|u_{t}\right|^{2} \leq \rho_{H} \tag{25}
\end{equation*}
$$

This implies the existence of an absorbing set for the semigroup $S(t)$.
Lemma 5.3. Under the assumptions of Lemma 5.2, the semigroup $S(t)$ is asymptotically compact in $L^{2}(-r, 0 ; H) \times H$.

Proof. Let B be a bounded set in $L^{2}(-r, 0 ; H) \times H$ and $u^{n}(\cdot)$ be a sequence of solutions in $[0,+\infty)$ with initial data $\left(\phi^{n}, u_{0}^{n}\right) \in B$. Consider the sequence $\xi^{n}=S\left(t_{n}\right)\left(\phi^{n}, u_{0}^{n}\right)$, where $t_{n} \rightarrow+\infty$ as $n \rightarrow+\infty$. We will show that this sequence is relatively compact in $L^{2}(-r, 0 ; H) \times H$.

First, let $T>0$. We will prove that ξ^{n} is relatively compact in $L^{2}(-r, 0 ; H) \times$ H. It follows from (25) that there exists n_{0} such that $t_{n} \geq T$ for all $n>n_{0}$ and

$$
\begin{equation*}
\left|\xi^{n}\right|_{L^{2}(-r, 0 ; H)}^{2} \leq \rho_{H} \tag{26}
\end{equation*}
$$

Let $y^{n}(\cdot)=u_{t_{n}-T}^{n}(\cdot)=u^{n}\left(\cdot+t_{n}-T\right)$. Then for each $n \geq 1$ such that $t_{n} \geq T$, the function y^{n} is a solution on $[0, T]$ of a similar problem to (1), namely,

$$
\frac{d}{d t} y^{n}(t)-\nu \Delta y^{n}+\left(y^{n} \cdot \nabla\right) y^{n}+f\left(y^{n}(t)\right)=G\left(y^{n}(t-\rho(t))\right)+h
$$

with $y_{0}^{n}=u_{t_{n}-T}^{n}, y_{T}^{n}=\xi^{n}$. Then y_{0}^{n} satisfies the estimates in (26) for all $n>n_{0}$. Using arguments as in the proof of Theorem 3.1, we have

$$
y^{n}\left(t_{n}\right) \rightharpoonup y\left(t_{0}\right) \text { weakly in } V \text { if } t_{n} \rightarrow t_{0} \in[0, T]
$$

Also, by (4), we obtain

$$
\int_{0}^{t}\left|G\left(y^{n}(t-\rho(t))\right)\right|^{2} d s \leq C t, \forall 0 \leq t \leq T
$$

where $C>0$ does not depend either on n or t. Since $G\left(y^{n}(t-\rho(t))\right) \rightharpoonup \xi-\rho(t)$ in $L^{2}(0, T ; H)$, we get

$$
\int_{s}^{t}|\xi|^{2} d \tau \leq \liminf _{n \rightarrow+\infty} \int_{s}^{t}\left|G\left(y_{\tau}^{n}-\rho(\tau)\right)\right| d \tau \leq C(t-s), \forall 0 \leq s \leq t \leq T
$$

Thus, we can pass to the limits and prove that y is a solution of a similar problem to (1), that is

$$
\frac{d}{d t}(y(t), v)+\nu((y(t), v))+B(y(t), v)+\int_{\Omega}\langle f(y(t)), v\rangle d x=(\xi, v)+\langle h, v\rangle
$$

for all $v \in L^{\infty}(0, T ; V) \cap L^{\beta+1}\left(0, T ; L^{\beta+1}(\Omega)\right)$. Since

$$
\int_{s}^{t} \int_{\Omega} G\left(z_{r}-\rho(t)\right) z(r) d x d r \leq \frac{1}{2 \lambda_{1} \nu} \int_{s}^{t}\left|G\left(z_{r}-\rho(t)\right)\right|^{2} d r+\frac{\lambda_{1} \nu}{2} \int_{s}^{t}|z(r)|^{2} d r
$$

we obtain the energy inequality

$$
\begin{aligned}
& |z(t)|^{2}+\nu \int_{s}^{t}\|z(t)\|^{2} d r+2 \int_{0}^{t}\langle f(z(r)), z(r)\rangle \\
= & |z(s)|^{2}+2 \int_{s}^{t}\langle h, z(r)\rangle d r+2 C(t-s), \forall 0 \leq s \leq t \leq T
\end{aligned}
$$

where $z=y^{n}$ or $z=y$.
Now, consider two functions $J_{n}, J:[0, T] \rightarrow \mathbb{R}$ defined by

$$
\begin{aligned}
J_{n}(t) & =\frac{1}{2}\left|y_{n}(t)\right|^{2}+\int_{0}^{t}\left\langle f\left(y^{n}(r)\right), y^{n}(r)\right\rangle d r-\int_{0}^{t}\left\langle h, y^{n}(r)\right\rangle d r-C t \\
J(t) & =\frac{1}{2}|y(t)|^{2}+\int_{0}^{t}\langle f(y(r)), y(r)\rangle d r-\int_{0}^{t}\langle h, y(r)\rangle d r-C t
\end{aligned}
$$

It is clear that J_{n} and J are non-increasing and continuous functions. Since $y^{n}(t)$ converges to $y(t)$ for a.e. $t \in(0, T)$, we obtain

$$
J_{n}(t) \rightarrow J(t) \text { for a.e. } t \in[0, T] .
$$

Analogously as we did in the proof of Theorem 3.1, for a fixed $t_{0}>0$, using a sequence $\left\{t_{k}\right\}$ with $t_{k} \rightarrow t_{0}$, we are able to establish the convergence of the norms

$$
\lim _{n \rightarrow \infty}\left|y^{n}\left(t_{n}\right)\right|=\left|y\left(t_{0}\right)\right| .
$$

And therefore, jointly with the weak convergence already proved, we deduce that $y^{n} \rightarrow y$ in $C([0, T] ; H)$.

Now, since $T>0$ and $y^{n} \rightarrow y$ in $C([0, T] ; H)$, we obtain that $\xi^{n} \rightarrow \varphi$ in $C([0, T] ; H)$, where $\varphi(s)=y(s+T)$ for $s \in[-r, 0]$. Repeating the same procedure for $2 T, 3 T$, etc., for a diagonal subsequence (relabeled the same) we can obtain a continuous function $\varphi:(-r, 0] \rightarrow H$ and a subsequence such that $\xi^{n} \rightarrow \varphi$ in $C([-r, 0] ; H)$ on every interval $[-r, 0]$. Moreover, for a fixed $T>0$, we also have

$$
|\varphi(s)| \leq \rho_{H}, \forall s \in[-r, 0], \forall T>0
$$

Second, we claim that ξ^{n} converges to φ in $L^{2}(-r, 0 ; H)$. Indeed, we have to prove that for every $\varepsilon>0$, there exists n_{ε} such that

$$
\begin{equation*}
\left|\xi^{n}(s)-\varphi(s)\right|^{2} \leq \varepsilon, \forall n \geq n_{\varepsilon} \tag{27}
\end{equation*}
$$

Fix $T_{\varepsilon}>0$ such that $\rho_{H}^{2} \leq \frac{\varepsilon}{4}$.
From the first step, we have $\xi^{n} \rightarrow \varphi$ in $L^{2}(-r, 0 ; H)$, so there exists $n_{\varepsilon}=$ $n_{\varepsilon}\left(T_{\varepsilon}\right)$ such that for all $n \geq n_{\varepsilon}$, we obtain

$$
\left|\xi^{n}(s)-\varphi(s)\right|^{2} \leq \varepsilon, \forall t_{n} \geq T_{\varepsilon}
$$

In order to prove (27), we only have to check that

$$
\left|\xi^{n}(s)-\varphi(s)\right|^{2} \leq \varepsilon, \forall n \geq n_{\varepsilon}
$$

Because of (26) and the choice of T_{ε}, we can check that for all $k \in \mathbb{N} \cup\{0\}$ and $s \in\left[-\left(T_{\varepsilon}+k+1\right),-\left(T_{\varepsilon}+k\right)\right]$, the following holds

$$
\int_{-r}^{0}|\varphi(s)|^{2} d s \leq \int_{-r}^{0}\left|\varphi\left(s-T_{\varepsilon}-k\right)\right|^{2} d s \leq \frac{\varepsilon}{4}
$$

Thus, it suffices to prove that

$$
\left|\xi^{n}(s)\right|^{2} \leq \frac{\varepsilon}{4}, \forall n \geq n_{\varepsilon}
$$

We have

$$
\xi^{n}(s)= \begin{cases}\phi^{n}\left(s+t_{n}\right), & \text { if } s \in\left[-r,-t_{n}\right] \\ u^{n}\left(s+t_{n}\right), & \text { if } s \in\left[-t_{n}, 0\right]\end{cases}
$$

Hence the proof is finished if we prove that

$$
\max \left\{\int_{-r}^{0}\left|\phi^{n}\left(s+t_{n}\right)\right|^{2} d s, \int_{-r}^{0}\left|u^{n}\left(s+t_{n}\right)\right|^{2} d s\right\} \leq \frac{\varepsilon}{4}
$$

The first term above can be estimated as follows

$$
\int_{-r}^{0}\left|\phi^{n}\left(s+t_{n}\right)\right|^{2} d s \leq \frac{\varepsilon}{4}
$$

And, finally, for the second term, we obtain

$$
\int_{-r}^{0}\left|u^{n}\left(s+t_{n}\right)\right|^{2} d s \leq \frac{\varepsilon}{4} .
$$

This completes the proof.
From Lemmas 5.2 and 5.3, we obtain the following theorem.
Theorem 5.4. Under the assumptions of Lemma 5.2, the semigroup $S(t)$ has a compact global attractor in the phase space $L^{2}(-r, 0 ; H) \times H$.

References

[1] C. T. Anh and D. T. P. Thanh, Existence and long-time behavior of solutions to Navier-Stokes-Voigt equations with infinite delay, Bull. Korean Math. Soc. 55 (2018), no. 2, 379-403. https://doi.org/10.4134/BKMS.b170044
[2] J. W. Barrett and W. B. Liu, Finite element approximation of the parabolic p-Laplacian, SIAM J. Numer. Anal. 31 (1994), no. 2, 413-428. https://doi.org/10.1137/0731022
[3] L. E. J. Brouwer, Beweis der Invarianz der Dimensionenzahl, Math. Ann. 70 (1911), no. 2, 161-165. https://doi.org/10.1007/BF01461154
[4] T. Caraballo and X. Han, A survey on Navier-Stokes models with delays: existence, uniqueness and asymptotic behavior of solutions, Discrete Contin. Dyn. Syst. Ser. S 8 (2015), no. 6, 1079-1101. https://doi.org/10.3934/dcdss.2015.8.1079
[5] T. Caraballo, A. M. Márquez-Durán, and J. Real, Asymptotic behaviour of the threedimensional α-Navier-Stokes model with delays, J. Math. Anal. Appl. 340 (2008), no. 1, 410-423. https://doi.org/10.1016/j.jmaa.2007.08.011
[6] T. Caraballo and J. Real, Navier-Stokes equations with delays, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 457 (2001), no. 2014, 2441-2453. https://doi.org/10.1098/ rspa. 2001.0807
[7] , Asymptotic behaviour of two-dimensional Navier-Stokes equations with delays, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 459 (2003), no. 2040, 3181-3194. https://doi.org/10.1098/rspa.2003.1166
[8] A. O. Çelebi, V. K. Kalantarov, and D. Uğurlu, On continuous dependence on coefficients of the Brinkman-Forchheimer equations, Appl. Math. Lett. 19 (2006), no. 8, 801-807. https://doi.org/10.1016/j.aml.2005.11.002
[9] H. Chen, Asymptotic behavior of stochastic two-dimensional Navier-Stokes equations with delays, Proc. Indian Acad. Sci. Math. Sci. 122 (2012), no. 2, 283-295. https: //doi.org/10.1007/s12044-012-0071-x
[10] P. Constantin and C. Foias, Navier-Stokes Equations, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1988.
[11] F. Franchi and B. Straughan, Continuous dependence and decay for the Forchheimer equations, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 459 (2003), no. 2040, 3195-3202. https://doi.org/10.1098/rspa.2003. 1169
[12] J. García-Luengo, P. Marín-Rubio, and J. Real, Regularity of pullback attractors and attraction in H^{1} in arbitrarily large finite intervals for 2D Navier-Stokes equations with infinite delay, Discrete Contin. Dyn. Syst. 34 (2014), no. 1, 181-201. https://doi.org/ 10.3934/dcds.2014.34.181
[13] K. W. Hajduk and J. C. Robinson, Energy equality for the 3D critical convective Brinkman-Forchheimer equations, J. Differential Equations 263 (2017), no. 11, 71417161. https://doi.org/10.1016/j.jde.2017.08.001
[14] V. Kalantarov and S. Zelik, Smooth attractors for the Brinkman-Forchheimer equations with fast growing nonlinearities, Commun. Pure Appl. Anal. 11 (2012), no. 5, 20372054. https://doi.org/10.3934/cpaa.2012.11.2037
[15] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, 1969.
[16] P. Marín-Rubio, A. M. Márquez-Durán, and J. Real, Three dimensional system of globally modified Navier-Stokes equations with infinite delays, Discrete Contin. Dyn. Syst. Ser. B 14 (2010), no. 2, 655-673. https://doi.org/10.3934/dcdsb.2010.14.655
[17] _ Pullback attractors for globally modified Navier-Stokes equations with infinite delays, Discrete Contin. Dyn. Syst. 31 (2011), no. 3, 779-796. https://doi.org/10. 3934/dcds.2011.31.779
[18] P. Marín-Rubio, J. Real, and J. Valero, Pullback attractors for a two-dimensional Navier-Stokes model in an infinite delay case, Nonlinear Anal. 74 (2011), no. 5, 20122030. https://doi.org/10.1016/j.na.2010.11.008
[19] M. T. Mohan, Asymptotic analysis of the 2D convective Brinkman-Forchheimer equations in unbounded domains: Global attractors and upper semicontinuity, arXiv: 2010.12814, 2020.
[20] D. Uğurlu, On the existence of a global attractor for the Brinkman-Forchheimer equations, Nonlinear Anal. 68 (2008), no. 7, 1986-1992. https://doi.org/10.1016/j.na. 2007.01.025
[21] S. Whitaker, The Forchheimer equation: a theoretical development, Transport in Porous Media 25 (1996), 272.
[22] C. Zhao, L. Kong, G. Liu, and M. Zhao, The trajectory attractor and its limiting behavior for the convective Brinkman-Forchheimer equations, Topol. Methods Nonlinear Anal. 44 (2014), no. 2, 413-433. https://doi.org/10.12775/TMNA. 2014.054

Le Thi Thuy
Department of Mathematics
Electric Power University
235, Hoang Quoc Viet, Hanoi, Vietnam
Email address: thuylephuong@gmail.com, thuylt@epu.edu.vn

