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ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO

3D CONVECTIVE BRINKMAN-FORCHHEIMER EQUATIONS

WITH FINITE DELAYS

Le Thi Thuy

Abstract. In this paper we prove the existence of global weak solu-
tions, the exponential stability of a stationary solution and the exis-

tence of a global attractor for the three-dimensional convective Brinkman-

Forchheimer equations with finite delay and fast growing nonlinearity in
bounded domains with homogeneous Dirichlet boundary conditions.

1. Introduction

Let Ω be a bounded domain in R3 with smooth boundary ∂Ω. In this paper
we consider the following convective Brinkman-Forchheimer (BF) equations
with finite delays

(1)



∂u

∂t
− ν∆u+ (u · ∇)u+∇p+ f(u) = G(u(t− ρ(t))) + h(x), x ∈ Ω, t > 0,

∇ · u = 0, x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

u(x, t) = φ(x, t), x ∈ Ω,

t ∈ (−r, 0),

where u = u(x, t) = (u1, u2, u3) is the velocity field of the fluid, ν > 0 is the
kinematic viscocity, p is the pressure, h is a nondelayed external force field, G
is another external force term and contains some memory effects during a fixed
interval of time of length r > 0, ρ is an adequate given delay function, u0 is
the initial velocity and φ is the initial datum on the interval.

In the special case f(u) ≡ 0 the equations (1) turn to be the Navier-Stokes
equation with delay. Equations of Navier-Stokes type with delay have been
extensively studied in [4–7] for the case of finite delay and in [1, 12, 16–18] for
the case of infinite delay.
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In order to study problem (1), we make the following assumptions:

• The nonlinearity f ∈ C2(R3,R3) satisfies the following conditions:

(2)

{
1) f ′(u)v · v ≥ (−K + κ|u|β−1)|v|2, ∀u, v ∈ R3,

2) |f ′(u)| ≤ Cf (1 + |u|β−1), ∀u ∈ R3,

where K,κ,Cf , are some positive constants, β ≥ 1 (β > 3 to ensure
the uniqueness of solutions) and u · v is the inner product in R3.
A typical example for such a nonlinear term f(u) is the following

(3) f(u) = au+ b|u|β−1u, β ∈ [1,∞),

where a ∈ R and b > 0 are the Darcy and Forchheimer coefficients,
respectively.

• G : R3 → R3 is a function satisfying G(0) = 0, and assume that there
exists LG > 0 such that

(4) |G(u)−G(v)|R3 ≤ LG|u− v|R3 ,∀u, v ∈ R3.

Consider a function ρ(·) ∈ C1(R) such that ρ(t) ≥ 0 for all t ∈ R,
supt∈R ρ(t) = r ∈ (0,∞), and ρ∗ = supt∈R ρ

′(t) < 1.

The convective Brinkman-Forchheimer equations describes the motion of
fluid flow in a saturated porous medium and have been studied in [14]. The
Brinkman-Forchheimer model, that is equation (1) without the convective term
(u · ∇)u, have been studied extensively in [8,11,13,19–22]. For this model, the
case of the so-called subcritical growth rate of the nonlinearity f (i.e., β ≤ 3 in
(3)) has been widely considered. The main contribution of [14] is to remove this
growth restriction and verify the global existence, uniqueness and dissipativity
of smooth solutions for a large class of nonlinearity f with an arbitrary growth
exponent β > 3.

In this paper, we consider problem (1) when the nonlinear term f(u) satisfied
(2) and the forcing term with bounded variable delay G(·) satisfied (4). We
will discuss the existence and long-time behavior of solutions in terms of the
stability of stationary solutions and the existence of a global attractor. Here
the existence and uniqueness of solutions are studied by combining the Galerkin
approximation method and the energy method. The existence of a stationary
solution is established by a corollary of the Brouwer fixed point theorem, while
its exponential stability is proved by using the Gronwall-like lemma. Finally,
we use the energy method to show the existence of a global attractor in the
phase space L2(−r, 0;H)×H.

The paper is organized as follows. In Section 2, we recall some function
spaces and lemmas which will be used frequently later. Section 3 is devoted
to the existence and uniqueness of weak solutions. In Section 4, we study the
existence and exponential stability of a stationary solution. The existence of
a global attractor for the continuous semigroup generated by problem (1) is
shown in the last section.
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2. Preliminaries

Let us recall function spaces, operators, inequalities and notations which are
frequently used in the paper.

Putting

V =
{
u ∈ (C∞0 (Ω))3 : ∇ · u = 0

}
.

Denote H as the closure of V in (L2(Ω))3 with the norm | · | and the inner
product (·, ·) defined by

(u, v) =

3∑
j=1

∫
Ω

uj(x)vj(x)dx for u, v ∈ (L2(Ω))3.

We also denote V as the closure of V in (H1
0 (Ω))3 with the norm ‖ · ‖ and the

associated scalar product ((, )) defined by

((u, v)) =

3∑
i,j=1

∫
Ω

∂uj
∂xj

∂vj
∂xi

dx for u, v ∈ (H1
0 (Ω))3.

We use ‖ · ‖∗ for the norm in V ′ and 〈·, ·〉V,V ′ for the dual pairing between
V and V ′. We recall the Stokes operator A : V → V ′ by 〈Au, v〉 = ((u, v)).
Denote by P the Helmholtz-Leray orthogonal projection in (H1

0 (Ω))3 onto the
space V . Then Au = −P∆u for all u ∈ D(A) = (H2(Ω))3 ∩ V . The Stokes
operator A is a positive self-adjoint operator with compact inverse. Hence
there exists a complete orthonormal set of eigenfunctions {wj}∞j=1 ⊂ H such
that Awj = λjwj and

0 < λ1 ≤ λ2 ≤ λ3 ≤ · · · , λj → +∞ as j →∞.

We have the following Poincaré inequalities

(5) ‖u‖2 ≥ λ1|u|2, ∀u ∈ V,

|u|2 ≥ λ1‖u‖2∗, ∀u ∈ H.
We define the trilinear form b on V × V × V by

b(u, v, w) =
3∑

i,j=1

∫
Ω

ui
∂vj
∂xi

wjdx,∀u, v, w ∈ V,

and B : V × V → V ′ by 〈B(u, v), w〉 = b(u, v, w). We can write B(u, v) =
P [(u ·∇)v]. It is easy to check that if u, v, w ∈ V , then b(u, v, w) = −b(u,w, v),
and in particular,

(6) b(u, v, v) = 0, ∀u, v ∈ V.

Using Hölder’s and Ladyzhenskaya’s inequalities, we can choose the best posi-
tive constant c0 such that

(7) |b(u, v, w)| ≤ c0‖u‖‖v‖|w|1/2‖w‖1/2, ∀u, v, w ∈ V.
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From (7) and using Poincaré’s inequality (5), we obtain that

(8) |b(u, v, w)| ≤ c0λ−1/4
1 ‖u‖‖v‖‖w‖, ∀u, v, w ∈ V.

We also use the following inequality in [10]

(9) |b(u, v, u)| ≤ c1|u|‖u‖‖v‖ for all u, v ∈ V.
To prove the existence of a stationary solution, we need the following lemma.

Lemma 2.1 ([3]). Let X be a finite dimensional Hilbert space with scalar
product [·, ·] and norm [·] and let P be a continuous mapping from X into itself
such that

[P (ξ), ξ] > 0 for [ξ] = k > 0.

Then there exists ξ ∈ X, [ξ] < k, such that

P (ξ) = 0.

The following lemma is the Gronwall-like lemma (see [9]).

Lemma 2.2. Let y(·) : [−r,+∞)→ [0,+∞) be a function. Assume that there
exist positive numbers γ, α1 and α2 such that the following inequality holds

y(t) ≤

{
α1e
−γt + α2

∫ t
0
e−γ(t−s) supθ∈[−r,0] y(s+ θ)ds, t ≥ 0,

α2e
−γt, t ∈ [−r, 0].

Then
y(t) ≤ α1e

−νt for t ≥ −r,
where ν ∈ (0, γ) is the unique root of the equation α2

γ−ν e
νr = 1 in this interval.

We can rewrite the 3D convective Brinkman-Forchheimer equations (1) in
the following functional form

(10)


∂tu+ νAu+B(u, u) + Pf(u) = PG(u(t− ρ(t))) + Ph,

u(0) = u0,

u(θ) = φ(θ), θ ∈ (−r, 0).

3. Existence and uniqueness of weak solutions

We first give the definition of weak solutions.

Definition. A function u is said to be a weak solution of problem (1) if u(0) =
u0, u(t) = φ(t) for a.e. t ∈ (−r, 0),

u ∈ L2(−r, T ;V ) ∩ L∞(0, T ;H) ∩ Lβ+1(0, T ;Lβ+1(Ω)) for all T > 0,

and
d

dt
(u(t), v)+ν((u(t), v))+b(u(t), u(t), v)+〈f(u), v〉 = (G(u(t−ρ(t))), v)+(h, v)

for all test functions v ∈ V .

We now prove the following theorem.
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Theorem 3.1. Suppose that (2) and (4) hold, and u0, h ∈ H,φ ∈ L2(−r, 0;H)

are given. Then if ν2 >
2L2

G

λ2
1(1−ρ∗) , then there exists a unique weak solution to

problem (1).

Proof. Existence. Let {wj} be a basis in V ∩ (H2(Ω))3, which is orthonormal
in H, consisting of all eigenfunctions of the Stokes operator A. Denote Vm =
span{w1, . . . , wm} and consider the projector Pmu =

∑m
j=1(u, vj)wj . Define

also

um(t) =

m∑
j=1

γm,j(t)wj ,

where the coefficients γm,j are required to satisfy the following system

(11)


d

dt
(um(t), wj) + ν((um(t), wj)) + b(um(t), um(t), wj) + 〈f(um(t)), wj〉

= (G(um(t− ρ(t))), wj) + (h,wj) in D′(0, T ), 1 ≤ j ≤ m,
um(0) = Pmu0, um(t) = Pmφ(t), t ∈ (−r, 0).

Observe that (11) is a system of ordinary functional differential equations in the
unknown γm(t) = (γm1(t), . . . , γmm(t)). By a classical result in the theory of
ordinary functional differential equations, problem (11) has a solution defined
in an interval [0, t∗] with 0 < t∗ ≤ T . However, by the a priori estimates below,
we can set t∗ = T .

Multiplying (11) by γmj(t) then summing in j from 1 to m, and using (6),
we have

1

2

d

dt
|um(t)|2 + ν‖um(t)‖2 +

∫
Ω

f(um(t))um(t)dx

=

∫
Ω

G(um(t− ρ(t)))um(t)dx+

∫
Ω

h(x)um(t)dx.

Using the inequality f(u) · u ≥ −C + κ|u|β+1, we get

1

2

d

dt
|um(t)|2 + ν‖um(t)‖2 + κ

∫
Ω

|um|β+1dx

≤ C + |G(um(t− ρ(t)))| · |um(t)|+ |h| · |um(t)|.

Assumption (4) implies that

(12) |G(ξ)| ≤ LG|ξ|.
Then, we obtain

1

2

d

dt
|um(t)|2 + ν‖um(t)‖2 + κ

∫
Ω

|um|β+1dx

≤ C + LG|um(t− ρ(t))| · |um(t)|+ |h| · |um(t)|.
By the Cauchy inequality,

1

2

d

dt
|um(t)|2 + ν‖um(t)‖2 + κ

∫
Ω

|um|β+1dx
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≤ C +
L2
G

λ1ν
|um(t− ρ(t))|2 +

λ1ν

4
|um(t)|2 +

1

λ1ν
|h|2 +

λ1ν

4
|um(t)|2.

Integrating from 0 to t and using (12), we have

|um(t)|2 + 2ν

∫ t

0

‖um(s)‖2ds+ 2κ

∫ t

0

‖um(s)‖β+1
Lβ+1(Ω)

ds

≤ 2CT + |u0|2 +
2L2

G

λ1ν

∫ t

0

|um(s− ρ(s))|2ds+
2

λ1ν

∫ t

0

|h|2ds

+ λ1ν

∫ t

0

|um(s)|2ds.

From (5) we deduce that

(13)

|um(t)|2 + ν

∫ t

0

‖um(s)‖2ds+ 2κ

∫ t

0

‖um(s)‖β+1
Lβ+1(Ω)

ds

≤ 2CT + |u0|2 +
2L2

G

λ1ν

∫ t

0

|um(s− ρ(s))|2ds+
2

λ1ν

∫ t

0

|h|2ds.

Let τ = s− ρ(s), and since ρ(s) ∈ [0, r] and 1
1−ρ′ ≤

1
1−ρ∗ . Then

(14)

∫ t

0

|um(s− ρ(s))|2ds =
1

1− ρ′

∫ t

−r
|um(τ)|2dτ

≤ 1

1− ρ∗

∫ t

−r
|um(τ)|2dτ

=
1

1− ρ∗

∫ 0

−r
|um(τ)|2dτ +

1

1− ρ∗

∫ t

0

|um(τ)|2dτ.

Using (13), (14), and the fact that u(t) = φ(t), t ∈ (−r, 0), we have

|um(t)|2 + ν

∫ t

0

‖um‖2ds+ 2κ

∫ t

0

‖um(s)‖β+1
Lβ+1(Ω)

ds

≤ 2CT + |u0|2 +
2L2

G

λ1ν(1− ρ∗)

∫ 0

−r
|φ(τ)|2dτ

+
2L2

G

λ1ν(1− ρ∗)

∫ t

0

|um(τ)|2dτ +
2

λ1ν

∫ t

0

|h|2ds.

Using inequality (5) once again, we obtain

(15)

|um(t)|2+
(
ν− 2L2

G

λ2
1ν(1−ρ∗)

)∫ t

0

‖um(s)‖2ds+ 2κ

∫ t

0

‖um(s)‖β+1
Lβ+1(Ω)

ds

≤ 2CT + |u0|2 +
2L2

G

λ1ν(1− ρ∗)

∫ 0

−r
|φ(τ)|2dτ +

2

λ1ν

∫ t

0

|h|2ds.

Since ν2 >
2L2

G

λ2
1(1−ρ∗) and φ ∈ L2(−r, 0;H), it follows that {um} is bounded

in L2(0, T ;V ) ∩ L∞(0, T ;H) ∩ Lβ+1(0, T ;Lβ+1(Ω)). Moreover, observe that
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um = Pmφ in (−r, 0) and, by the choice of the basis {wj}, the sequence {um}
weakly converges to φ in L2(−r, 0;H).

Moreover, {G(um)} is bounded in L2(0, T ;H) and it is straight forward to
bound the nonlinear term {b(um, um, ·)}. Using (2), we obtain that |f(u)| ≤
C(1 + |u|β) with C depending on Cf . Hence,∫ t

0

∫
Ω

|f(u)|
β+1
β dxdt ≤ C

∫ t

0

∫
Ω

(1 + |u|β)
β+1
β dxdt

≤ C
∫ t

0

∫
Ω

(1 + |u|β+1)dxdt.

Hence,

{f(um)} is bounded in L(β+1)/β(0, T ;L(β+1)/β(Ω)).

Now, we prove the boundedness of {dumdt }. We have

(16)

d

dt
um(t) =− νAum(t)− PmB(um, um)− Pf(um)

+ Pmh+ PmG(t, um(t− ρ(t))).

From (8), (15) and (16), it follows that∥∥∥ d
dt
um

∥∥∥
∗
≤ ν‖Aum‖∗ + ‖B(um, um)‖∗ + ‖f(um)‖L(β+1)/β(Ω) + |h|

+ ‖G(t, um(t− ρ(t)))‖∗
≤ ν‖um‖+ c0λ

−1/4
1 ‖um‖+ ‖f(um)‖L(β+1)/β(Ω) + |h|

+ λ
−1/2
1 |G(t, um(t− ρ(t)))|

≤ ν‖um‖+ c0λ
−1/4
1 ‖um‖+ ‖f(um)‖L(β+1)/β(Ω) + |h|

+ LGλ
−1/2
1 |um(t− ρ(t))|

≤ C, ∀m ≥ 1.

This implies that {dumdt } is bounded in the space

L2(0, T ;V ′) + L(β+1)/β(0, T ;L(β+1)/β(Ω)).

Using the compactness of the injection of the space W = {u ∈ L2(0, T ;V ); dudt ∈
L2(0, T ;V ′) +L(β+1)/β(0, T ;L(β+1)/β(Ω))} into L2(0, T ;H), and from the pre-
ceding analysis and the assumptions on G, we can deduce that there exist a
subsequence (denoted again by {um}) and a function u ∈ L2(0, T ;V ) such that

um → u weakly in L2(0, T ;V ),

um → u weakly star in L∞(0, T ;H),

um → φ weakly in L2(−r, 0;H),

f(um)→ χ weakly in L(β+1)/β(0, T ;L(β+1)/β(Ω)),

G(um)→ G(u) weakly in L2(0, T ;H),



534 L. T. THUY

dum
dt
→ du

dt
weakly in L2(0, T ;H).

Since {um} is bounded in L2(0, T ;V ), {dumdt } is bounded in L2(0, T ;H), us-
ing the Aubin-Lions compactness lemma we deduce that um → u strongly in
L2(0, T ; (L2(Ω))3), up to a subsequence. Thus, we have (up to a subsequence)

um → u a.e. in ΩT .

From the continuity of f(·) we obtain that

f(um)→ f(u) a.e. in ΩT .

Since the uniqueness of the weak limit, we have f(u) ≡ χ.
Arguing now as in the non-delay case, we can take the limits in (11) to show

that u is a weak solution to problem (1).
Uniqueness. Let u and v be two weak solutions of problem (1) and let

w = u− v. Then, we have

(17)


dw

dt
− ν∆w + (w · ∇)u+ (v · ∇)w + f(u)− f(v)

= G(u(t− ρ(t)))−G(v(t− ρ(t))),

∇ · w = 0,

w(θ) = 0, θ ∈ (−r, 0].

It is well known (see, e.g. [2]) that there exist two nonnegative constants α =
α(β) and Cf such that

(18) 2

∫
Ω

(f(u)−f(v))(u−v)dx ≥ −Cf |u−v|2+α

∫
Ω

(|u|β−1+|v|β−1)|u−v|2dx.

Multiplying the first equation in (17) by w and integrating by parts, and then
noticing that f satisfies (18) and using the definition of b(w, v, w), we have

(19)

d

dt
|w|2 + 2ν‖w‖2 + α

∫
Ω

(|u|β−1 + |v|β−1)|u− v|2dx

≤ Cf |w|2 + 2

∫
Ω

|((w · ∇)u) · w|dx

+ 2

∫
Ω

|G(u(t− ρ(t)))−G(v(t− ρ(t)))| · |w(t)|dx.

By the Holder inequality and the Young inequality, we have

2

∫
Ω

|((w · ∇)u) · w|dx ≤ 2|u||w||∇w| ≤ ν

2
|∇w|2 + C|u|2|w|2,

where C = C(ν). Assuming that β − 1 > 2 and using the Young inequality
again, we obtain

2

∫
Ω

|((w · ∇)u) · w|dx ≤ ν

2
|∇w|2 + α

∫
Ω

(|u|β−1 + |v|β−1)|w|2dx+ C|w|2,



THE CONVECTIVE BRINKMAN-FORCHHEIMER EQUATIONS WITH DELAYS 535

where C = C(ν, α). Thus, (19) implies that

d

dt
|w|2 + 2ν‖w‖2 ≤ Cf |w|2 +

ν

2
|∇w|2 + C|w|2

+ 2

∫
Ω

|G(u(t− ρ(t)))−G(v(t− ρ(t)))| · |w(t)|dx.

Combining with (4), we get

d

dt
|w|2 + 2ν‖w‖2 ≤ (Cf + C)|w|2 +

ν

2
|∇w|2

+ 2

∫
Ω

LG|u(t− ρ(t))− v(t− ρ(t))| · |w(t)|dx.

By the Cauchy inequality, we obtain

d

dt
|w|2 + 2ν‖w‖2 ≤ (Cf + C)|w|2 +

ν

2
|∇w|2 +

2L2
G

λ1ν
|w(t− ρ(t))|2 +

λ1ν

2
|w|2.

Using inequality (5), we have

d

dt
|w|2 + ν‖w‖2 ≤ (Cf + C)|w|2 +

2L2
G

λ1ν
|w(t− ρ(t))|2.

Intergrating from 0 to t, we get

|w|2 + ν

∫ t

0

‖w‖2ds

≤ |w(0)|2 + (Cf + C)

∫ t

0

|w|2ds+
2L2

G

λ1ν

∫ t

0

|w(s− ρ(s))|2ds.

Using (14) again, we have

|w|2 + ν

∫ t

0

‖w‖2ds

≤ |w(0)|2 + (Cf + C)

∫ t

0

|w|2ds+
2L2

G

λ1ν(1− ρ∗)

∫ t

−r
|w(τ)|2dτ.

Note that w(s) = 0 for s ∈ (−r, 0) and (5), we obtain

|w(t)|2 + ν

∫ t

0

‖w(s)‖2ds

≤ |w(0)|2 + (Cf + C)

∫ t

0

|w(s)|2ds+
2L2

G

λ2
1ν(1− ρ∗)

∫ t

0

‖w(s))‖2ds.

Thus,

|w(t)|2 +
(
ν − 2L2

G

λ2
1ν(1− ρ∗)

)∫ t

0

‖w(s)‖2ds ≤ |w(0)|2 + (Cf + C)

∫ t

0

|w(s)|2ds.

Note that ν2 >
2L2

G

λ2
1(1−ρ∗) and w(0) = 0, we get the uniqueness of solutions by

using the Gronwall lemma. �
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4. Existence and exponential stability of a stationary solution

Let us recall the definition of stationary solutions to problem (1).

Definition. A weak stationary solution to problem (1) is an element u∗ ∈ V
such that

ν((u∗, v)) + b(u∗, u∗, v) + 〈f(u∗), v〉 = (G(u∗), v) + (h, v)

for all test functions v ∈ V .

Theorem 4.1. Suppose that G satisfies (4) and 2LG < νλ1. Then, there exists
a weak stationary solution of problem (1). Moreover, if

(20) ν >
Cf
λ1

+
LG
λ1

+
c1√
λ1

√
2Cfλ1ν + |h|2

ν(νλ1 − 2LG)
,

where c1 is the positive constant in inequality (9), then this stationary solution
is unique.

Proof. Let {wj} be a Hilbert basis of (L2(Ω))3 such that Vm = span{wj}j≥1

is dense in (H1
0 (Ω))2 ∩ (Lβ+1(Ω))3. For each integer m ≥ 1, we find the

approximate stationary solution in the form

um(t) =

m∑
j=1

γmj(t)wj ,

where

(21)
ν((um(t), wj)) + b(um(t), um(t), wj) + 〈f(um(t)), wj〉

= (G(um), wj) + (h,wj)

for all j = 1, . . . ,m. We apply Lemma 2.1 to prove the existence of um as
follows.

Let X = (H1
0 (Ω))3 ∩ (Lβ+1(Ω))3 and Rm : Vm → Vm be defined by

((Rmu, v)) = ν((u, v)) + b(u, u, v) + 〈f(u), v〉− (G(u), v)− (h, v), ∀u, v,∈ Vm.
For all u ∈ Vm, we have

((Rmu, u)) ≥ ν‖u‖2 + b(u, u, u) + κ‖u‖β+1
Lβ+1 − Cf − LG|u| · |u| − |h| · |u|

≥ ν‖u‖2 + κ‖u‖β+1
Lβ+1 − Cf −

LG
λ1
‖u‖2 − 1

2λ1ν
|h|2 − ν

2
‖u‖2

≥
(ν

2
− LG
λ1

)
‖u‖2 + κ‖u‖β+1

Lβ+1 − Cf −
1

2λ1ν
|h|2.

It follows that ((Rmu, u)) ≥ 0 for ‖u‖X = ‖u‖+ ‖u‖Lp+1 = k sufficiently large,
and thus we obtain

k =
(2Cfλ1ν + |h|2

ν(λ1ν − 2LG)

)1/2

+
(2Cfλ1ν + |h|2

2λ1νκ

)1/(β+1)

,

where LG < νλ1

2 . Thus, there exists a solution um ∈ Vm satisfyingRm(um) = 0.
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Now multiplying (21) by γmj and adding resulting equalities for j = 1, . . . ,m,
we obtain

ν‖um‖2 + 〈f(um), um〉 = (G(um), um) + (h, um).

Hence we have the estimate

(22)
(ν

2
− LG
λ1

)
‖um‖2 + κ‖um‖β+1

Lβ+1 ≤ Cf +
1

2λ1ν
|h|2.

Then {um} is bounded in (H1
0 (Ω))3 ∩ (Lβ+1(Ω))3, and therefore there exists

some u∗ in (H1
0 (Ω))3 ∩ (Lβ+1(Ω))3 and a subsequence n→∞ such that

un ⇀ u∗ weakly in (H1
0 (Ω))3 ∩ (Lβ+1(Ω))3.

On the other hand, using (2) and applying the Aubin-Lions lemma (see [15]),
we can conclude that

f(um) ⇀ f(u∗) weakly in (L(β+1)/β(Ω))3.

Finally, using (4), we have

G(um) ⇀ G(u∗) weakly in (L2(Ω))3.

Combining the above, we conclude that u∗ is a weak stationary solution to
problem (1).

Now let u and v be two stationary solutions to problem (1). Denote w =
u− v, we have

ν‖u− v‖2 + (f(u)− f(v), u− v) = (G(u)−G(v), u− v) + 2

∫
Ω

|((w ·∇)v) ·w|dx.

By inequality (9), we have

2

∫
Ω

|((w · ∇)v) · w|dx ≤ c1|w| · ‖w‖ · ‖v‖ ≤
c1√
λ1

‖v‖ · ‖w‖2.

From inequality
∫

Ω
(f(u)− f(v))(u− v)dx ≥ −Cf |u− v|2 and (4), we obtain

ν‖w‖2 ≤ Cf |w|2 + LG|w|2 +
c1√
λ1

‖v‖ · ‖w‖2.

Hence,

ν‖w‖2 ≤ (Cf + LG)|w|2 +
c1√
λ1

‖v‖ · ‖w‖2

≤ (
Cf
λ1

+
LG
λ1

+
c1√
λ1

‖v‖)‖w‖2.

Finally, we get

(ν − Cf
λ1
− LG
λ1
− c1√

λ1

‖v‖)‖u− v‖2 ≤ 0,

where ‖v‖ satisfies the a priori estimate like (22). Hence we get the uniqueness
of stationary solutions. �

Theorem 4.2. Assume that the assumptions of Theorem 4.1 and (20) hold.
Then the unique stationary solution u∗ of problem (1) is exponentially stable.
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Proof. Notice that we can write the solution u(t) to problem (1) in the form
u(t) = u∗ + v(t), for v(t) satisfies

dv

dt
− ν∆v + (u · ∇)u− (u∗ · ∇)u∗ + f(u(t))− f(u∗)=G(u(t)− ρ(t))−G(u∗).

Multiplying this equation by v and an exponential term eλt with a positive λ
to be fixed later on, we obtain

d

dt
(eλt|v(t)|2)− λeλt|v(t)|2 + 2νeλt‖v(t)‖2 + 2eλt(f(u(t)− f(u∗), u(t)− u∗)

≤ 2eλt(G(u(t− ρ(t)))−G(u∗), u(t)− u∗)− 2eλtb(u− u∗, u∗, u− u∗).

Using the facts that
∫

Ω
(f(u)− f(v))(u− v)dx ≥ −Cf |u− v|2 and that

b(u− u∗, u∗, u− u∗) ≤ c1|u− u∗| · ‖u− u∗‖ · ‖u∗‖

≤ c1√
λ1

‖u∗‖ · ‖u− u∗‖2,

we then have
d

dt
(eλt|v(t)|2) + 2νeλt‖v(t)‖2

≤ λeλt|v(t)|2 + 2Cfe
λt|v(t)|2 + 2eλt(G(u(t− ρ(t)))−G(u∗), u(t)− u∗)

+ 2eλt
c1√
λ1

‖u∗‖ · ‖v(t)‖2.

From (4), we get

d

dt
(eλt|v(t)|2) + 2νeλt‖v(t)‖2

≤ λeλt|v(t)|2 + 2Cfe
λt|v(t)|2 + 2LGe

λt|v(t− ρ(t))| · |v(t)|

+ 2eλt
c1√
λ1

‖u∗‖ · ‖v(t)‖2.

Using the Cauchy inequality, we have

d

dt
(eλt|v(t)|2)

≤ (λ+ 2Cf )eλt|v(t)|2 − 2
(
ν − c1√

λ1

‖u∗‖
)
eλt‖v(t)‖2

+ LGe
λt|v(t− ρ(t))|2 + LGe

λt|v(t)|2

≤ (λ+ 2Cf + LG)eλt|v(t)|2 − 2
(
ν − c1√

λ1

‖u∗‖
)
eλt‖v(t)‖2

+ LGe
λt|v(t− ρ(t))|2

≤ (λ+ 2Cf + LG)eλt|v(t)|2 − 2λ1

(
ν − c1√

λ1

‖u∗‖
)
eλt|v(t)|2

+ LGe
λt|v(t− ρ(t))|2

≤ (λ+ 2Cf + LG + 2
√
c1λ1‖u∗‖ − 2νλ1)eλt|v(t)|2 + LGe

λt|v(t− ρ(t))|2.
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Integrating from 0 to t, we obtain

eλt|v(t)|2 ≤ |v(0)|2 + (λ+ 2Cf + LG + 2
√
c1λ1‖u∗‖ − 2νλ1)

∫ t

0

eλs‖v(s)‖2

+ LG

∫ t

0

eλs|v(s− ρ(s))|2ds.

Consequently,

|v(t)|2

≤ e−λt|v(0)|2

+ (λ+ 2Cf + 2LG + 2
√
c1λ1‖u∗‖ − 2νλ1)

∫ t

0

e−λ(t−s) sup
θ∈[−r;0]

|v(s+ θ)|2ds.

If 2νλ1 > 2Cf + 2LG + 2
√
c1λ1‖u∗‖, then there exists λ > 0 such that

λ+ 2Cf + 2LG + 2
√
c1λ1‖u∗‖ − 2νλ1 > 0.

By Lemma 2.2, it follows that

|u(t)− u∗|2 ≤Me−γt, t ≥ 0,

where γ ∈ (0, λ). The proof is complete. �

5. Existence of a global attractor

By Theorem 3.1, we can define a semigroup S(t) : L2(−r, 0;H) × H →
L2(−r, 0;H)×H by

S(t)(φ, u0) = (ut, u(t)),

where u(·) is the unique weak solution of problem (1) with the initial datum
(φ, u0).

We first prove the following continuity result.

Lemma 5.1. Under the assumptions of Theorem 3.1, the mapping S(t) :
L2(−r, 0;H)×H → L2(−r, 0;H)×H is continuous for any t > 0.

Proof. Let (φ, u0), (ψ, v0) ∈ L2(−r, 0;H)×H be two pairs of initial data, and
u, v are the corresponding solutions to problem (1). We have

d

dt
(u− v)− ν∆(u− v) + (u · ∇)u− (v · ∇)v +∇(pu − pv) + (f(u)− f(v))

= G(u(t− ρ(t)))−G(v(t− ρ(t))).

Setting w = u− v and multiplying the above equality by w, we deduce that

1

2

d

dt
|w|2 + ν‖w‖2 + 〈(u · ∇)u− (v · ∇)v, w〉+ 〈f(u)− f(v), w〉

= (G(u(t− ρ(t)))−G(v(t− ρ(t))), w).
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Therefore, from the assumption of f and (9) we get

1

2

d

dt
|w|2 + ν‖w‖2

≤ Cf |w|2 + c1|w|‖u‖‖w‖+ LG|u(t− ρ(t))− v(t− ρ(t))| · |w|

≤ Cf |w|2 + c2|w|2‖u‖2 + ν‖w‖2 +
LG
2
|(u(t− ρ(t))− v(t− ρ(t))|2 +

1

2
|w|2.

From (4) we obtain

d

dt
|w|2 ≤ (Cf + 2c2‖u‖2 + 1)|w|2 + LG|w(t− ρ(t))|2.

Using (14) we have

|w(t)|2 ≤ |w(0)|2+

∫ t

0

(Cf + 2c2‖u(s)‖2 + 1)|w(s)|2ds+LG

∫ t

0

|w(s− ρ(s))|2ds

≤ |u0 − v0|2+

∫ t

0

(Cf + 2c2‖u(s)‖2 + 1)|w(s)|2ds+
LG

1− ρ∗

∫ 0

−r
|w(τ)|2dτ

+
LG

1− ρ∗

∫ t

0

|w(τ)|2dτ.

Consequently,

|w(t)|2 ≤ |u0 − v0|2 +
LG

1− ρ∗

∫ 0

−r
|φ− ψ|2ds

+

∫ t

0

(
Cf + 2c2‖u(s)‖2 + 1 +

LG
1− ρ∗

)
|w(s)|2ds

≤ |u0 − v0|2 +
LG

1− ρ∗
|φ− ψ|2L2(−r,0;H)

+

∫ t

0

(
Cf + 2c2‖u(s)‖2 + 1 +

LG
1− ρ∗

)
|w(s)|2ds.

Using the Gronwall lemma, we have

|w(t)|2 = |u(t)− v(t)|2

≤
(
|u0 − v0|2 +

LG
1− ρ∗

|φ− ψ|2L2(−r,0;H)

)
× exp

(∫ t

0

(
Cf + 2c2‖u(s)‖2 + 1 +

LG
1− ρ∗

)
ds
)
.

For θ ∈ [−r, 0], assume now that

|ut − vt|2 ≤ sup
θ∈[−r,0]

|u(t+ θ)− v(t+ θ)|2

≤
(
|u0 − v0|2 +

LG
1− ρ∗

|φ− ψ|2L2(−r,0;H)

)
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× exp
(∫ t+θ

0

(
Cf + 2c2‖u(s)‖2 + 1 +

LG
1− ρ∗

)
ds
)

≤
(
|u0 − v0|2 +

LG
1− ρ∗

|φ− ψ|2L2(−r,0;H)

)
× exp

(∫ t

0

(
Cf + 2c2‖u(s)‖2 + 1 +

LG
1− ρ∗

)
ds
)
.

Thus,

|ut − vt|2L2(−r,0;H) =

∫ 0

−r
|ut(θ)− vt(θ)|2dθ

≤
∫ 0

−r
sup

θ∈[−r,0]

|u(t+ θ)− v(t+ θ)|2dθ

≤
∫ 0

−r

(
|u0 − v0|2 +

LG
1− ρ∗

|φ− ψ|2L2(−r,0;H)

)
× exp

(∫ t+θ

0

(
Cf + 2c2‖u(s)‖2 + 1 +

LG
1− ρ∗

)
ds
)
dθ

≤
∫ 0

−r

(
|u0 − v0|2 +

LG
1− ρ∗

|φ− ψ|2L2(−r,0;H)

)
× exp

(∫ t

0

(
Cf + 2c2‖u(s)‖2 + 1 +

LG
1− ρ∗

)
ds
)
dθ

≤ r
(
|u0 − v0|2 +

LG
1− ρ∗

|φ− ψ|2L2(−r,0;H)

)
× exp

(∫ t

0

(
2c2‖u(s)‖2 + 1 +

LG
1− ρ∗

)
ds
)
.

The proof is now complete. �

We now prove the existence of an absorbing set in L2(−r, 0;H)×H.

Lemma 5.2. Suppose that the assumptions of Theorem 3.1 hold and 2LG <
νλ1. Then the semigroup S(t) has an absorbing set BH in L2(−r, 0;H)×H.

Proof. Multiplying the first equation in (1) by u, we obtain

1

2

d

dt
|u|2 + ν‖u‖2 + 〈f(u), u〉 = (h, u) + (G(u(t− ρ(t))), u).

Using the inequality f(u) · u ≥ −C + κ|u|β+1 and (4), we have

1

2

d

dt
|u|2 + ν‖u‖2 + κ

∫
Ω

|u|β+1dx ≤ C + LG|u(t− ρ(t))| · |u|+ |h| · |u|.
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Choose σ > 0 small enough such that λ1ν > 2LG+σ. By the Cauchy inequality,
we have

1

2

d

dt
|u|2 + ν‖u‖2 + κ

∫
Ω

|u|β+1dx

≤ C +
LG
8
|u(t− ρ(t))|2 + 2LG|u|2 +

1

4σ
|h|2 + σ|u|2.

By inequality (5), we have

d

dt
|u|2 ≤ 2C +

1

2σ
|h|2 +

LG
4
|u(t− ρ(t))|2 − (2νλ1 − (2σ + 4LG))|u|2.

We now choose m ∈ (0,m0), m0 > 0, such that

νλ1 >
LG

8(1− ρ∗)
emr + 2LG + σ +

m

2
.

Then

d

dt
(emt|u|2) = memt|u|2 + emt

d

dt
|u|2

≤ memt|u|2 + 2Cemt +
1

2σ
emt|h|2 +

LG
4
emt|u(t− ρ(t))|2

− (2νλ1 − (2σ + 4LG)) emt|u|2.
Hence,

d

dt
(emt|u|2) ≤ 2Cemt +

1

2σ
emt|h|2

+
LG
4
emt|u(t− ρ(t))|2 + (m− (2νλ1 − (σ + LG))) emt|u|2.

Integrating between 0 and t we obtain

emt|u(t)|2 − |u0|2 ≤
2

m
Cemt +

1

2mσ
emt|h|2 +

LG
4

∫ t

0

ems|u(s− ρ(s))|2ds

+ (m− (2νλ1 − (2σ + 4LG)))

∫ t

0

ems|u(s)|2ds.(23)

Now, let τ = s− ρ(s). In view of ρ(s) ∈ [0, r] and 1
1−ρ <

1
1−ρ∗ , then

(24)

∫ t

0

ems|u(s− ρ(s))|2ds ≤ 1

1− ρ∗

∫ t

−r
em(τ+r)u(τ)dτ

=
emr

1− ρ∗

∫ t

−r
emτ |u(τ)|dτ.

Combining (23) and (24), we have

emt|u(t)|2 − |u0|2 ≤
2

m
Cemt +

1

2mσ
emt|h|2 +

LG
4(1− ρ∗)

emr
∫ t

−r
ems|u(s)|2ds

+ (m− (2νλ1 − (2σ + 4LG)))

∫ t

0

ems|u(s)|2ds.
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Since u(t) = φ(t) for t ∈ (−r, 0), we obtain

emt|u(t)|2 − |u0|2

≤ 2

m
Cemt +

1

2mσ
emt|h|2 +

LG
4(1− ρ∗)

emr
∫ 0

−r
ems|φ(s)|2ds

+
LG

4(1− ρ∗)
emr

∫ t

0

ems|u(s)|2ds

+ (m− (2νλ1 − (2σ + 4LG)))

∫ t

0

ems|u(s)|2ds

=
2

m
Cemt +

1

2mσ
emt|h|2 +

LG
4(1− ρ∗)

emr
∫ 0

−r
ems|φ(s)|2ds

+
(
m+

LG
4(1− ρ∗)

emr − (2νλ1 − (2σ + 4LG))
)∫ t

0

ems|u(s)|2ds

≤ 2

m
Cemt +

1

2mσ
emt|h|2 +

LG
4(1− ρ∗)

emr
∫ 0

−r
ems|φ(s)|2ds.

Thus,

emt|u(t)|2 ≤ |u0|2 +
2

m
Cemt +

1

2mσ
|h|2 +

LG
4(1− ρ∗)

emr
∫ 0

−r
ems|φ(s)|2ds

and

|u(t)|2 ≤ 2

m
C +

1

2mσ
|h|2 + e−mt

(
|u0|2 +

LG
4(1− ρ∗)

emr
∫ 0

−r
ems|φ(s)|2ds

)
.

Therefore,

|u(t− ρ(t))|2

≤ 2

m
C +

1

2mσ
|h|2 + e−m(t−ρ(t))

(
|u0|2 +

LG
4(1− ρ∗)

emr
∫ 0

−r
ems|φ(s)|2ds

)
≤ 2

m
C +

1

2mσ
|h|2 + e−mt · emρ(t)

(
|u0|2 +

LG
4(1− ρ∗)

emr
∫ 0

−r
ems|φ(s)|2ds

)
≤ 2

m
C +

1

2mσ
|h|2 + e−mt · emr

(
|u0|2 +

LG
4(1− ρ∗)

emr
∫ 0

−r
ems|φ(s)|2ds

)
for ρ ∈ [0, r]. For θ ∈ [−r, 0], we have

|u(t+ θ)|2

≤ 2

m
C +

1

2mσ
|h|2 + e−m(t+θ)

(
|u0|2 +

LG
4(1− ρ∗)

emr
∫ 0

−r
ems|φ(s)|2ds

)
≤ 2

m
C +

1

2mσ
|h|2 + e−m(t−r)

(
|u0|2 +

LG
4(1− ρ∗)

emr
∫ 0

−r
ems|φ(s)|2ds

)
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=
2

m
C +

1

2mσ
|h|2 + e−mt

(
emr|u0|2 +

LG
4(1− ρ∗)

e2mr

∫ 0

−r
ems|φ(s)|2ds

)
.

Hence,

|ut|2 ≤
2

m
C +

1

2mσ
|h|2 + e−mt

(
emr|u0|2 +

LG
4(1− ρ∗)

e2mr

∫ 0

−r
ems|φ(s)|2ds

)
.

Denoting
ρH
2

=
2

m
C +

1

2mσ
|h|2, we have

(25) |ut|2 ≤ ρH .
This implies the existence of an absorbing set for the semigroup S(t). �

Lemma 5.3. Under the assumptions of Lemma 5.2, the semigroup S(t) is
asymptotically compact in L2(−r, 0;H)×H.

Proof. Let B be a bounded set in L2(−r, 0;H) × H and un(·) be a sequence
of solutions in [0,+∞) with initial data (φn, un0 ) ∈ B. Consider the sequence
ξn = S(tn)(φn, un0 ), where tn → +∞ as n → +∞. We will show that this
sequence is relatively compact in L2(−r, 0;H)×H.

First, let T > 0. We will prove that ξn is relatively compact in L2(−r, 0;H)×
H. It follows from (25) that there exists n0 such that tn ≥ T for all n > n0

and

(26) |ξn|2L2(−r,0;H) ≤ ρH .

Let yn(·) = untn−T (·) = un(·+ tn − T ). Then for each n ≥ 1 such that tn ≥ T ,
the function yn is a solution on [0, T ] of a similar problem to (1), namely,

d

dt
yn(t)− ν∆yn + (yn · ∇)yn + f(yn(t)) = G(yn(t− ρ(t))) + h,

with yn0 = untn−T , ynT = ξn. Then yn0 satisfies the estimates in (26) for all
n > n0. Using arguments as in the proof of Theorem 3.1, we have

yn(tn) ⇀ y(t0) weakly in V if tn → t0 ∈ [0, T ].

Also, by (4), we obtain∫ t

0

|G(yn(t− ρ(t)))|2ds ≤ Ct,∀0 ≤ t ≤ T,

where C > 0 does not depend either on n or t. Since G(yn(t−ρ(t))) ⇀ ξ−ρ(t)
in L2(0, T ;H), we get∫ t

s

|ξ|2dτ ≤ lim inf
n→+∞

∫ t

s

|G(ynτ − ρ(τ))|dτ ≤ C(t− s),∀0 ≤ s ≤ t ≤ T.

Thus, we can pass to the limits and prove that y is a solution of a similar
problem to (1), that is

d

dt
(y(t), v) + ν((y(t), v)) +B(y(t), v) +

∫
Ω

〈f(y(t)), v〉dx = (ξ, v) + 〈h, v〉
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for all v ∈ L∞(0, T ;V ) ∩ Lβ+1(0, T ;Lβ+1(Ω)). Since∫ t

s

∫
Ω

G(zr − ρ(t))z(r)dxdr ≤ 1

2λ1ν

∫ t

s

|G(zr − ρ(t))|2dr +
λ1ν

2

∫ t

s

|z(r)|2dr,

we obtain the energy inequality

|z(t)|2 + ν

∫ t

s

‖z(t)‖2dr + 2

∫ t

0

〈f(z(r)), z(r)〉

= |z(s)|2 + 2

∫ t

s

〈h, z(r)〉dr + 2C(t− s),∀0 ≤ s ≤ t ≤ T,

where z = yn or z = y.
Now, consider two functions Jn, J : [0, T ]→ R defined by

Jn(t) =
1

2
|yn(t)|2 +

∫ t

0

〈f(yn(r)), yn(r)〉dr −
∫ t

0

〈h, yn(r)〉dr − Ct,

J(t) =
1

2
|y(t)|2 +

∫ t

0

〈f(y(r)), y(r)〉dr −
∫ t

0

〈h, y(r)〉dr − Ct.

It is clear that Jn and J are non-increasing and continuous functions. Since
yn(t) converges to y(t) for a.e. t ∈ (0, T ), we obtain

Jn(t)→ J(t) for a.e. t ∈ [0, T ].

Analogously as we did in the proof of Theorem 3.1, for a fixed t0 > 0, using
a sequence {tk} with tk → t0, we are able to establish the convergence of the
norms

lim
n→∞

|yn(tn)| = |y(t0)|.

And therefore, jointly with the weak convergence already proved, we deduce
that yn → y in C([0, T ];H).

Now, since T > 0 and yn → y in C([0, T ];H), we obtain that ξn → ϕ
in C([0, T ];H), where ϕ(s) = y(s + T ) for s ∈ [−r, 0]. Repeating the same
procedure for 2T, 3T , etc., for a diagonal subsequence (relabeled the same) we
can obtain a continuous function ϕ : (−r, 0]→ H and a subsequence such that
ξn → ϕ in C([−r, 0];H) on every interval [−r, 0]. Moreover, for a fixed T > 0,
we also have

|ϕ(s)| ≤ ρH ,∀s ∈ [−r, 0],∀T > 0.

Second, we claim that ξn converges to ϕ in L2(−r, 0;H). Indeed, we have to
prove that for every ε > 0, there exists nε such that

(27) |ξn(s)− ϕ(s)|2 ≤ ε,∀n ≥ nε.

Fix Tε > 0 such that ρ2
H ≤ ε

4 .

From the first step, we have ξn → ϕ in L2(−r, 0;H), so there exists nε =
nε(Tε) such that for all n ≥ nε, we obtain

|ξn(s)− ϕ(s)|2 ≤ ε,∀tn ≥ Tε.
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In order to prove (27), we only have to check that

|ξn(s)− ϕ(s)|2 ≤ ε,∀n ≥ nε.
Because of (26) and the choice of Tε, we can check that for all k ∈ N∪{0} and
s ∈ [−(Tε + k + 1),−(Tε + k)], the following holds∫ 0

−r
|ϕ(s)|2ds ≤

∫ 0

−r
|ϕ(s− Tε − k)|2ds ≤ ε

4
.

Thus, it suffices to prove that

|ξn(s)|2 ≤ ε

4
,∀n ≥ nε.

We have

ξn(s) =

{
φn(s+ tn), if s ∈ [−r,−tn],

un(s+ tn), if s ∈ [−tn, 0].

Hence the proof is finished if we prove that

max
{∫ 0

−r
|φn(s+ tn)|2ds,

∫ 0

−r
|un(s+ tn)|2ds

}
≤ ε

4
.

The first term above can be estimated as follows∫ 0

−r
|φn(s+ tn)|2ds ≤ ε

4
.

And, finally, for the second term, we obtain∫ 0

−r
|un(s+ tn)|2ds ≤ ε

4
.

This completes the proof. �

From Lemmas 5.2 and 5.3, we obtain the following theorem.

Theorem 5.4. Under the assumptions of Lemma 5.2, the semigroup S(t) has
a compact global attractor in the phase space L2(−r, 0;H)×H.
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