Browse > Article
http://dx.doi.org/10.1016/j.net.2016.01.002

Using Largest Lyapunov Exponent to Confirm the Intrinsic Stability of Boiling Water Reactors  

Gavilan-Moreno, Carlos J. (Iberdrola Generacion, S.A., Cofrentes Nuclear Power Plant, Project Engineering Department)
Espinosa-Paredes, Gilberto (Area de ingenieria en Recursos Energeticos, Universidad Autonoma Metropolitana-Iztapalapa)
Publication Information
Nuclear Engineering and Technology / v.48, no.2, 2016 , pp. 434-447 More about this Journal
Abstract
The aim of this paper is the study of instability state of boiling water reactors with a method based in largest Lyapunov exponents (LLEs). Detecting the presence of chaos in a dynamical system is an important problem that is solved by measuring the LLE. Lyapunov exponents quantify the exponential divergence of initially close state-space trajectories and estimate the amount of chaos in a system. This method was applied to a set of signals from several nuclear power plant (NPP) reactors under commercial operating conditions that experienced instabilities events, apparently each of a different nature. Laguna Verde and Forsmark NPPs with in-phase instabilities, and Cofrentes NPP with out-of-phases instability. This study presents the results of intrinsic instability in the boiling water reactors of three NPPs. In the analyzed cases the limit cycle was not reached, which implies that the point of equilibrium exerts influence and attraction on system evolution.
Keywords
Attractor; BWR; Instability; Large Lyapunov Exponent; Limit Cycle;
Citations & Related Records
연도 인용수 순위
  • Reference
1 United States Nuclear Regulatory Commission (U.S. NRC), Power Oscillating in Boiling Water Reactor (BWR5) NRC, Washington (DC), Bulletin No. 88, 1988, p. 7.
2 J.L. Munoz-Cobo, G. Verdu, Application of Hopf bifurcation theory and variational methods to the study of limit cycles in boiling water reactors, Ann. Nucl. Energy 18 (1991) 269-302.   DOI
3 C.Y. Yang, N.Z. Cho, Expansion methods for finding nonlinear stability domains of nuclear reactor models, Ann. Nucl. Energy 19 (1992) 347-368.   DOI
4 J.L. Munoz-Cobo, G. Verdu, C. Pereira, Dynamic reconstruction and Lyapunov exponents from time series data in boiling water reactors, application to BWR stability analysis, Ann. Nucl. Energy 19 (1992) 223-235.   DOI
5 J.P. Eckmann, S. Oliffson, D. Ruelle, S. Ciliberto, Lyapunov exponents from time series, Phys. Rev. A 34 (1986) 4971.   DOI
6 J. March-Leuba, Density-wave Instabilities in Boiling Water Reactors (No. NUREG/CR-6003; ORNL/TM-12130), Nuclear Regulatory Commission, Washington, DC, United States, 1992. Division of Systems Technology; Oak Ridge National Laboratory, Oak Ridge (TN).
7 C. Pereira, G. Verdu, J.L. Munoz-Cobo, R. Sanchis, BWR stability from dynamic reconstruction and autoregressive model analysis: application to Cofrentes Nuclear Power Plant, Prog. Nucl. Energy 27 (1992) 51-68.   DOI
8 G. Verdu, D. Ginestar, M.D. Bovea, P. Jimenez, J. Pena, J.L. Munoz-Cobo, Complex Lyapunov exponents from short and noisy sets of data, Application to stability analysis of BWRs, Ann. Nucl. Energy 24 (1997) 973-994.   DOI
9 H. Konno, S. Kanemoto, Y. Takeuchi, Theory of stochastic bifurcation in BWRs and applications, Prog. Nucl. Energy 43 (2003) 201-207.   DOI
10 T. Suzudo, Application of a nonlinear dynamical descriptor to BWR stability analyses, Prog. Nucl. Energy 43 (2003) 217-223.   DOI
11 G. Verdu, D. Ginestar, J.L. Munoz-Cobo, J. Navarro-Esbri, M.J. Palomo, P. Lansaker, J.M. Conde, M. Recio, E. Sartori, Forsmark 1&2 Stability Benchmark. Time Series Analysis Methods for Oscillations during BWR Operation, Final Report, NEA/NSC/DOC, OECD Publications, 2 rue Andre-Pascal, 75775 PARIS CEDEX 16, 2001, p. 2. Printed in France.
12 C.J. Gavilan Moreno, Use of the HURST exponent as a monitor and predictor of BWR reactor instabilities, Ann. Nucl. Energy 37 (2010) 434-442.   DOI
13 R.Castillo,G.Alonso,J.C.Palacios, Determinationoflimitcycles using both the slope of correlation integral and dominant Lyapunov methods, Nucl. Technol. 145 (2004) 139-149.   DOI
14 R. Khoda-Bakhsh, S. Behnia, O. Jahanbakhsh, Stability analysis in nuclear reactor using Lyapunov exponent, Ann. Nucl. Energy 35 (2008) 1370-1372.   DOI
15 F.Y. Li, Z. Chen, Y. Liu, Research on stability of a reactor with power reactivity feedback, Prog. Nucl. Energy 67 (2013) 15-17.   DOI
16 A. Wolf, J.B. Swift, H.L. Swinney, J.A. Vastano, Determining Lyapunov exponents from a time series, Physica D 16 (1985) 285-317.   DOI
17 M.T. Rosenstein, J.J. Collins, C.J. De Luca, A practical method for calculating largest Lyapunov exponents from small data sets, Physica D 65 (1993) 117-134.   DOI
18 S. Sato, M. Sano, Y. Sawada, Practical methods of measuring the generalized dimension and the largest Lyapunov exponent in high dimensional chaotic systems, Prog. Theor. Phys. 77 (1987) 1-5.   DOI
19 H.D. Abarbanel, R. Brown, J.J. Sidorowich, L.S. Tsimring, The analysis of observed chaotic data in physical systems, Rev. Mod. Phys. 65 (1993) 1331.   DOI
20 H.D. Abarbanel, M.B. Kennel, Local false nearest neighbors and dynamical dimensions from observed chaotic data, Phys. Rev. E 47 (1993) 3057.   DOI
21 United States Nuclear Regulatory Commission (U.S. NRC), Density-wave Instabilities in Boiling Water Reactors, Oak Ridge National Laboratory, Oak Ridge (TN), 1992. NUREG/CR-6003 ORNL/TM-12130.
22 L. Noakes, The Takens embedding theorem, Int. J. Bifurcation Chaos 1 (1991) 867-872.   DOI
23 R. Castillo, G. Alonso, J.R. Ramirez, Validation of SIMULATE-3K for stability analysis of Laguna Verde nuclear plant, Nucl. Eng. Des. 265 (2013) 19-24.   DOI
24 R. Castillo, J.R. Ramirez, G. Alonso, J. Ortiz-Villafuerte, Prony's method application for BWR instabilities characterization, Nucl. Eng. Des. 284 (2015) 67-73.   DOI
25 C.J. Gavilan Moreno, A. Prieto-Guerrero, G. Espinosa-Paredes, Nuclear power plant instabilities analysis, Ann. Nucl. Energ 85 (2015) 279-289.   DOI
26 F. Takens, Detecting Strange Attractors in Turbulence, Springer, Berlin, 1981, pp. 366-381.
27 H.L. Swinney, Independent coordinates for strange attractors from mutual information, Phys. Rev. A 33 (1986) 1134-1140.   DOI
28 M. Small, Applied Nonlinear Time Series Analysis: Applications in Physics, Physiology and Finance, Vol. 52, Nonlinear Science Series A, World Scientific, Singapore, 2005.
29 L.D. Iasemidis, J.C. Sackellares, The evolution with time of the spatial distribution of the largest Lyapunov exponent on the human epileptic cortex, in: D.W. Duke, W.S. Pritchard (Eds.), Measuring Chaos in the Human Brain, World Scientific, Singapore, 1991, pp. 49-82.
30 A. Komori, T. Baba, T. Morisaki, M. Kono, H. Iguchi, K. Nishimura, K. Matsuok, Correlation dimension and largest Lyapunov exponent for broadband edge turbulence in the compact helical system, Phys. Rev. Lett. 73 (1994) 660.   DOI
31 A.D. Krystal, C. Zaidman, H.S. Greenside, R.D. Weiner, C.E. Coffey, The largest Lyapunov exponent of the EEG during ECT seizures as a measure of ECT seizure adequacy, Electroencephalogr. Clin. Neurophysiol. 103 (1997) 599-606.   DOI
32 A. Stefanski, Estimation of the largest Lyapunov exponent in systems with impacts, Chaos Solitons Fract. 11 (2000) 2443-2451.   DOI
33 A. Torcini, R. Livi, A. Politi, S. Ruffo, Comment on universal scaling law for the largest Lyapunov exponent in coupled map lattices, Phys. Rev. Lett. 78 (1997) 1391.   DOI
34 R. Van Zon, H. Van Beijeren, C. Dellago, Largest Lyapunov exponent for many particle systems at low densities, Phys. Rev. Lett. 80 (1998) 2035.   DOI
35 A. Giovanni, M. Ouaknine, J.M. Triglia, Determination of largest Lyapunov exponents of vocal signal: application to unilateral laryngeal paralysis, J. Voice 13 (1999) 341-354.   DOI
36 K.E. Chlouverakis, M.J. Adams, Stability maps of injectionlocked laser diodes using the largest Lyapunov exponent, Opt. Commun. 216 (2003) 405-412.   DOI