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WELL-POSEDNESS AND ASYMPTOTIC BEHAVIOR

OF PARTLY DISSIPATIVE REACTION DIFFUSION

SYSTEMS WITH MEMORY

Vu Trong Luong and Nguyen Duong Toan

Abstract. In this paper, we consider the asymptotic behavior of solu-
tions for the partly dissipative reaction diffusion systems of the FitzHugh-

Nagumo type with hereditary memory and a very large class of nonlin-

earities, which have no restriction on the upper growth of the nonlin-
earity. We first prove the existence and uniqueness of weak solutions

to the initial boundary value problem for the above-mentioned model.
Next, we investigate the existence of a uniform attractor of this problem,

where the time-dependent forcing term h ∈ L2
b(R;H

−1(RN )) is the only

translation bounded instead of translation compact. Finally, we prove
the regularity of the uniform attractor A, i.e., A is a bounded subset of

H2(RN ) × H1(RN ) × L2
µ(R+, H2(RN )). The results in this paper will

extend and improve some previously obtained results, which have not
been studied before in the case of non-autonomous, exponential growth

nonlinearity and contain memory kernels.

1. Introduction

In this paper, we consider the following initial boundary value problem of
partly dissipative reaction diffusion system with memory:

ut −∆u+ λu−
∫∞
0
κ(s)∆u(x, t− s)ds

+f(u) + g(x, v) = h(x, t), x ∈ RN , t > τ,

vt + σ(x)v + φ(x, u) = 0, x ∈ RN , t > τ,

u(x, t) = uτ (x), v(x, t) = vτ (x), x ∈ RN , t ≤ τ,

(1.1)

where N ≥ 3, λ is positive, the nonlinearity f , g, φ and the external force h
satisfy some specified conditions later. The system (1.1) (with κ ≡ 0) arose
as model that describes the signal transmission across axons and is a model of
FitzHugh-Nagumo equations in neurobiology (see, e.g., [4, 15]).
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The long-time behavior of solutions to problem (1.1) in a bounded domain
and the autonomous case, that is, the case when h is independent of time t,
has been studied by several authors.

In 1989, Marion [14] considered an initial boundary value problem of partly
dissipative reaction diffusion system in Ω ⊂ RN . She proved that the system
there exists a unique weak solution and the existence of a global attractor
in L2(Ω) × L2(Ω). A boundedness of the Hausdorff and fractal dimensions
of the attractor are also studied by her. In this direction, there are many
results related to the dynamics of the partly reaction diffusion systems (see
[2, 12–14, 19, 20]). Recently, L. Jihoon and V. M. Toi [10] also considered the
system in exponential growth nonlinearity case and showed that there existence
of weak solutions, the regularity of the global attractor and the exponential
stability of stationary solutions of the systems.

For the case of unbounded domains, the long-time behavior of the solutions
of the partly dissipative reaction diffusion system has been studied by some
authors (see [16, 18, 24]). However, most existing papers deal with the partly
reaction diffusion systems in which κ ≡ 0, h ≡ h(x), g(x, v) ≡ αv, φ(x, u) ≡ βu
and the nonlinearity f is of Sobolev type.

It is well known that non-autonomous equations appear in many applications
in the natural sciences, so they are of great importance and interest. In this
paper, we will study the long-time behavior of solutions to the partly dissipative
reaction diffusion system by allowing the external force h to depend on time t;
exponential growth nonlinearity and contain memory kernels.

To study problem (1.1), we assume that the nonlinearities f , g, φ and the
external force h satisfy the following conditions:

(H1) The nonlinearities f , g, φ and the function σ satisfy

f ′u(u) ≥ −ℓ, f(u)u ≥ −δ1u2 for all u ∈ R, and f(0) = 0,(1.2)

|g′v(x, v)| ≤ δ2,(1.3)

|φ′
u(x, u)| ≤ δ3,(1.4)

|φ′
xj
(x, u)| ≤ δ3(|ϕ1(x)|+ |u|), 1 ≤ j ≤ N, ϕ1 ∈ L2(RN );

σ(x) is bounded on RN , |σ′(x)| ≤ m and σ(x) ≥ δ4 > 0,(1.5)

where ℓ, δi (i = 1, . . . , 4) are positive constants with δ4 >
2(δ25+δ26)
λ−δ1

> 0,
and λ > ℓ.

From the above conditions (1.3) and (1.4), we can choose positive constants
δ5 and δ6 satisfying

|g(x, v)| ≤ δ5(ϕ2(x) + |v|), ∀v ∈ R, ∀x ∈ RN ,(1.6)

|φ(x, u)| ≤ δ6(ϕ3(x) + |u|), ∀u ∈ R, ∀x ∈ RN ,(1.7)

where ϕ2, ϕ3 ∈ L2(RN ) are nonnegative functions.
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(H2) The convolution (or memory) kernel κ is a nonnegative summable func-
tion having the explicit form

κ(s) =

∫ ∞

s

µ(r)dr,

where µ ∈ L1(R+) is a decreasing (hence nonnegative) piecewise abso-
lutely continuous in each interval [τ, T ] with T > 0. In particular, µ is
allowed to exhibit (infinitely many) jumps. Moreover, we require that

(1.8) κ(s) ≤ θµ(s)

for some θ > 0 and every s > 0. As shown in Gatti et al. [5], this is
completely equivalent to the requirement that

(1.9) µ(r + s) ≤Me−δrµ(s)

for some M ≥ 1, δ > 0, every r ≥ 0 and almost every s > 0.
(H3) The function h ∈ L2

b(R;H−1(RN )), the space of translation bounded
functions in L2

loc(R;H−1(RN )), that is,

∥h∥2L2
b
= sup

t∈R

∫ t+1

t

∥h(r)∥2H−1(RN )dr < +∞.

For h ∈ L2
b

(
R;H−1(RN )

)
, we denote by Hw(h) the closure of the set {h(· +

r) |h ∈ R} in L2
b(R;H−1(RN )) with the weak topology. Noting that, as in

[3, Chapter 5, Proposition 4.2], we have: for all ς ∈ Hw(h), then

∥ς∥2L2
b
≤ ∥h∥2L2

b
.

Remark 1.1. We can replace the nonlinear function f(u) in equation (1.1) into
a function f(x, u), of the form f(x, u) = f1(u)+a(x)f2(u), where fi(u), i = 1, 2
satisfy the hypothesis as (1.2) and a ∈ L1(RN ) ∩ L∞(RN ). Then we also get
the same results as in the case of f(u).

To this aim, as in [7,8], we consider a new variable which reflects the history
of (1.1), that is

ηt(x, s) = η(x, t, s) =

∫ s

0

u(x, t− r)dr, s ≥ 0.

We can check that

∂tη
t(x, s) = u(x, t)− ∂sη

t(x, s), s ≥ 0.

Since µ(s) = −κ′(s), problem (1.1) can be transformed into the following sys-
tem 

ut −∆u+ λu−
∫∞
0
µ(s)∆ηt(s)ds

+f(u) + g(·, v) = h(t), t > τ,

vt + σ(·)v + φ(·, u) = 0, t > τ,

∂tη
t(s) = −∂sηt(s) + u(t), t > τ, s ≥ 0,

u(t) = uτ , v(t) = vτ , η
t(s) = ητ (s) = ητ (s) t ≤ τ, s ∈ R+.

(1.10)
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Note that in the above system, we use the same notations f , g, h, σ and φ as
Nemytskii operators induced from (1.1).

Now, denote

z(t) = (u(t), v(t), ηt) and zτ = (uτ , vτ , ητ ).

Let ⟨·, ·⟩, ∥ · ∥ the norm and scalar product in L2(RN ), respectively.
In view of (1.9), as in [8], let L2

µ(R+, L2(RN )) be the Hilbert space of func-

tions ξ : R+ → L2(RN ) endowed with the inner product

⟨ξ1, ξ2⟩µ =

∫ ∞

0

µ(s) ⟨ξ1(s), ξ2(s)⟩ ds,

and let ∥ξ∥µ denote the corresponding norm. In a similar manner, we introduce
the inner products ⟨·, ·⟩i,µ on L2

µ(R+, Hi(RN )), i = 1, 2 by

⟨·, ·⟩1,µ = ⟨·, ·⟩µ + ⟨∇·,∇·⟩µ , ⟨·, ·⟩2,µ = ⟨·, ·⟩µ + ⟨∇·,∇·⟩µ + ⟨∆·,∆·⟩µ ,

and the corresponding norms are denoted by ∥ · ∥1,µ, ∥ · ∥2,µ.
We now introduce the following Hilbert spaces

H = L2(RN )× L2(RN )× L2
µ(R+, H1(RN )),

H1 = H1(RN )×H1(RN )× L2
µ(R+, H2(RN )),

H2 = H2(RN )×H1(RN )× L2
µ(R+, H2(RN )),

which are, respectively, endowed with the norms induced on H, H1, H2 are

∥(u, v, ξ)∥2H = ∥u∥2 + ∥v∥2 +
∫ ∞

0

µ(s)∥ξ(s)∥2H1(RN )ds,

∥(u, v, ξ)∥2H1
= ∥u∥2 + ∥∇u∥2 + ∥v∥2 + ∥∇v∥2 +

∫ ∞

0

µ(s)∥ξ(s)∥2H2(RN )ds,

∥(u, v, ξ)∥2H2
= ∥u∥2 + ∥∇u∥2 + ∥∆u∥2 + ∥v∥2 + ∥∇v∥2

+

∫ ∞

0

µ(s)∥ξ(s)∥2H2(RN )ds.

The paper is organized as follows. In Section 2, we prove the existence and
uniqueness of weak solutions of the system (1.10) by using the Faedo-Galerkin
method and the technique involving the weak convergence in Orlicz space.
In Section 3, we prove the existence of an uniform attractor A in L2(RN ) ×
L2(RN ) × L2

µ(R+, H1(RN )). In the last section, we prove that the uniform

attractor A is bounded in H2(RN )×H1(RN )× L2
µ(R+, H2(RN )).

2. Existence of weak solutions

Firstly, we define a weak solution of problem (1.10) as follows:



PARTLY DISSIPATIVE REACTION DIFFUSION SYSTEMS WITH MEMORY 165

Definition 2.1. A function z = (u, v, ηt) is called a weak solution of problem
(1.10) on the interval [τ, T ] with the initial datum z(τ) = zτ ∈ H if

u ∈ C([τ, T ];L2(RN )) ∩ L2(τ, T ;H1(RN )),

v ∈ C([τ, T ];L2(RN )),

ηtt + ηts ∈ L∞(τ, T ;L2
µ(R+, L2(RN ))) ∩ L2(τ, T ;L2

µ(R+, H1(RN )))

for any T > τ , and the first and second equations of (1.10) hold in L1(τ, T ;
H−1(RN ) + L1(RN ) + L2

µ(R+;H1(RN ))) and L2(τ, T ;L2(RN )), respectively,
and the initial conditions in (1.10) are satisfied.

Using the Galerkin type approximations, we can prove the following exis-
tence and uniqueness result.

Theorem 2.1. Assume that hypotheses (H1)-(H3) hold. Then, for any zτ =
(uτ , vτ , ητ ) ∈ H, any ς ∈ Hw(h) and T > τ, τ ∈ R given, problem (1.10) (with
ς in place of h) has a unique weak solution z = (u, v, ηt) on the interval [τ, T ]
satisfying

z ∈ C([τ, T ];H).

Moreover, the weak solutions depend continuously on the initial data.

Proof. Step 1. Existence. For each integer n ≥ 1, we denote by Pn and Qn the
projections on the subspaces

span(ψ1, . . . , ψn) ⊂ L2(RN ) and span(ξ1, . . . , ξn) ⊂ L2
µ(R+, H1(RN )),

respectively. Consider the approximate solution zn(t) = (un(t), vn(t), η
t
n) in

the form

un(t) =

n∑
j=1

unj(t)ψj , vn(t) =

n∑
j=1

vnj(t)ψj and ηtn(s) =

n∑
j=1

ηnj(t)ξj(s)

satisfying

⟨(∂tun, ∂tηtn), (ψk, ξj)⟩L2(RN )×L2
µ(R+,H1(RN ))(2.1)

= ⟨(∆un − λun +

∫ ∞

0

µ(s)∆ηtn(s)ds)⟩L2(RN )×L2
µ(R+,H1(RN ))

− ⟨(Pnf(un)− Png(·, vn) + Pnς, un − ∂sη
t
n),

(ψk, ξj)⟩L2(RN )×L2
µ(R+,H1(RN )),

(∂tvn, ψk) = (−ς(·)vn − Pnφ(·, un), ψk),

un(τ) = Pnuτ → uτ =

∞∑
j=1

αjψj in L2(RN ) as n→ ∞,

vn(τ) = Pnvτ → vτ =

∞∑
j=1

γjψj in L2(RN ) as n→ ∞,
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ηtn(τ) = Qnητ → ητ =

∞∑
j=1

βjξj(s) in L2
µt
(R+, H1(RN )) as n→ ∞,

for a.e. t ≤ T , for every k, j = 0, . . . , n, where ψ0 and ξ0 are the zero vectors in
the respective spaces. Taking (ψk, ξ0), (ψ0, ξk) and ψk in the first equation and
the second equation in (2.1), respectively, and applying the divergence theorem
to the term 〈

−
∫ ∞

0

µ(s)∆ηtn(s)ds, ψk

〉
we get a system of ODE in the variable ak(t), ck(t) and bk(t) of the form

(2.2)



d

dt
ak = − νkak − λak −

n∑
j=1

bj ⟨ξj , ψk⟩1,µ

− ⟨f(un), ψk⟩ − ⟨g(·, vn), ψk⟩+ ⟨ς, ψk⟩,
d

dt
ck = − ςck − ⟨φ(·, un), ψk⟩,

d

dt
bk =

n∑
j=1

aj ⟨ψj , ξk⟩1,µ −
n∑

j=1

bj
〈
ξ′j , ξk

〉
1,µ

,

subject to the initial conditions

(2.3)


ak(τ) = ⟨uτ , ψk⟩ ,
ck(τ) = ⟨vτ , ψk⟩ ,
bk(τ) = ⟨ητ , ξk⟩1,µ .

According to the standard theory of ODEs, we obtain the existence and unique-
ness of local solutions of (2.2)-(2.3).

A priori estimate for (un, vn, η
t
n) in L

2(Ω)×L2(Ω)×L2
µ(R+, H1(RN )).Mul-

tiplying the first equation and the second equation of (2.2) by (ak, ck) and the
third equation by bk, then summing over k, we obtain

1

2

d

dt

(
∥un∥2 +

∫ ∞

0

µ(s)∥∇ηtn(s)∥2ds
)

(2.4)

+ ∥∇un∥2 + λ∥un∥2 +
〈
∂sη

t
n, η

t
n

〉
1,µ

+ ⟨f(un), un⟩+ ⟨g(·, vn), un⟩
= ⟨ς, un⟩,

1

2

d

dt
∥vn∥2 +

∫
RN

σ(x)|vn|2dx+ ⟨φ(·, un), vn⟩ = 0,(2.5)

where
∫∞
0
µ(s)⟨∇ηtn(s),∇un⟩ds = 1

2
d
dt

∫∞
0
µ(s)∥∇ηtn(s)∥2ds+⟨∂sηtn, ηtn⟩1,µ . In-

tegrating by parts and then using condition (H3), we have

(2.6)
〈
∂sη

t
n, η

t
n

〉
1,µ

= −
∫ ∞

0

µ′(s)∥∇ηtn(s)∥2ds ≥ 0.
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Thus, the term ⟨∂sηtn, ηtn⟩1,µ in (2.5) can be neglected. Applying (1.6), (1.7)
and using the Cauchy inequality, we obtain

⟨f(un), un⟩ ≥ −δ1∥un∥2,(2.7)

|⟨g(·, vn), un⟩| ≤
∫
RN

δ5(ϕ2 + |vn|)|un|dx(2.8)

≤ δ5(∥ϕ2∥+ ∥vn∥)∥un∥

≤ 2δ25
λ− δ1

∥ϕ2∥2 +
λ− δ1

4
∥un∥2 +

2δ25
λ− δ1

∥vn∥2,

|⟨φ(·, un), vn⟩| ≤
∫
RN

δ6(ϕ3 + |un|)|vn|dx(2.9)

≤ δ6(∥ϕ3∥+ ∥un∥)∥vn∥

≤ λ− δ1
4

∥ϕ3∥2 +
2δ26
λ− δ1

∥vn∥2 +
λ− δ1

4
∥un∥2,∫

RN

σ(x)|vn|2dx ≥ δ4∥vn∥2,(2.10)

and

⟨ς, un⟩ ≤ C(ε0)∥ς∥2H−1(RN ) + ε0∥un∥2 + ε0∥∇un∥2.(2.11)

Summing the two inequalities in (2.4) and (2.5). Then using (2.6)-(2.11), we
get

1

2

d

dt

(
∥un∥2 + ∥vn∥2 +

∫ ∞

0

µ(s)∥∇ηtn(s)∥2ds
)

(2.12)

+ (1−ε0)∥∇un∥2+
(
λ−δ1
2

−ε0
)
∥un∥2+

(
δ4−

2(δ25 + δ26)

λ−δ1

)
∥vn∥2

≤ 2δ25
λ− δ1

∥ϕ2∥2 +
λ− δ1

4
∥ϕ3∥2 + C∥ς∥2H−1(RN ).

Integrating (2.12) from τ to t, t ∈ [τ, T ], we have

∥un(t)∥2 + ∥vn(t)∥2 +
∫ ∞

0

µ(s)∥∇ηtn(s)∥2ds(2.13)

+

∫ t

τ

(
λ− δ1

4
∥un(r)∥2 + ∥∇un(r)∥2

)
dr

+ 2

(
δ4 −

2(δ25 + δ26)

λ− δ1

)∫ t

τ

∥vn(r)∥2dr

≤ ∥zn(τ)∥2H1
+

2

λ− δ1

∫ T

τ

∥ς(t)∥2H−1(RN )dt

+ 2

(
2δ25
λ− δ1

∥ϕ2∥2 +
λ− δ1

4
∥ϕ3∥2

)
(T − τ).
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This inequality implies that

(2.14)


{un} is bounded in L∞(τ, T ;L2(RN )),

{un} is bounded in L2(τ, T ;H1(RN )),

{vn} is bounded in L∞(τ, T ;L2(RN )).

On the other hand, multiplying the third equation of (1.10) by ηtn in L2
µ(R+,

L2(RN )), we get

d

dt

∫ ∞

0

µ(s)∥ηtn∥2ds− 2

∫ ∞

0

µ′(s)∥ηtn∥2ds = 2

∫ ∞

0

µ(s)⟨ηtn(s), un⟩ds.

Therefore,

d

dt

∫ ∞

0

µ(s)∥ηtn∥2ds ≤
κ(0)

λ

∫ ∞

0

µ(s)∥ηtn∥2ds+ λ∥un∥2.(2.15)

Applying Gronwall lemma and using (2.14), we deduce that∫ ∞

0

µ(s)∥ηtn∥2ds(2.16)

≤ eC(T−τ)∥ητn∥21,µ + λ

∫ t

τ

∥un(r)∥2eC(t−r)dr

≤ eC(T−τ)∥ητn∥21,µ + λ∥un∥2L∞(τ,T ;L2(RN ))

∫ t

τ

eC(t−r)dr

≤ eC(T−τ)∥ητn∥21,µ + λ∥un∥2L∞(τ,T ;L2(RN ))Ce
C(T−τ).

Combining (2.13) and (2.16), we get

(2.17) {ηtn} is bounded in L∞(τ, T ;L2
µ(R+, H1(RN ))).

Therefore, using (2.14) and (2.17), there exists a subsequence of {un} and
{ηtn} (still denoted by {un} and {ηtn}) such that{

un ⇀ u weakly in L2(τ, T ;H1(RN )),

ηtn ⇀ ηt weakly-star in L∞(τ, T ;L2
µ(R+, H1(RN ))),

(2.18)

and

∆un ⇀ ∆u weakly in L2(τ, T ;H−1(RN )),

∆ηtn ⇀ ∆ηt weakly in L2(τ, T ;L2
µ(R+, H−1(RN ))),

up to a subsequence.
Boundedness and weak convergence of f(un) in L1(τ, T ;L1(RN ) + L2(τ, T ;

L2(RN ).
From (2.4), using the assumption (1.6) and the Cauchy inequality, we get

1

2

d

dt

(
∥un∥2 +

∫ ∞

0

µ(s)∥∇ηtn∥2ds
)

(2.19)
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+ ∥∇un∥2 + λ∥un∥2 +
∫
RN

f(un)undx

≤
∫
RN

δ5(|ϕ2|+ |vn|)|un|dx+ ∥ς(t)∥H−1(RN )∥un∥H1(RN )

≤ ε0(∥un∥2 + ∥∇un∥2) +
δ25
λ
(∥ϕ2∥2 + ∥vn∥2) + C∥ς(t)∥2H−1(RN ).

Integrating (2.19) from τ to T and using the bound (2.14), we get∫ T

τ

∫
RN

f(un)undx ≤ C.(2.20)

We now prove that {f(un)} is bounded in L1(τ, T ;L1(RN ))+L2(τ, T ;L2(RN )).
Let ϑΩ1

and ϑΩ2
be the characteristic functions of the sets

Ω1 = {(x, t) ∈ RN × (τ, T ) : |u(x, t)| ≤ 1},
Ω2 = {(x, t) ∈ RN × (τ, T ) : |u(x, t)| > 1},

and χ(r) = f(r) − f(0) + γr, where γ > ℓ. Note that χ′(r) ≥ γ − ℓ > 0 and
χ(r)r = (f(r)− f(0))r + γr2 = f ′(w)r2 + γr2 ≥ (γ − ℓ)r2 ≥ 0 for all r ∈ R.
Since ∫ T

τ

∫
RN

|χ(un(x, t))ϑΩ1(x, t)|2dxdt =
∫∫

Ω1

|χ(un)|2 dxdt

=

∫∫
Ω1

|χ(un)− χ(0)|2 dxdt,

by the Mean Value theorem we have∫ T

τ

∫
RN

|χ(un(x, t))ϑΩ1
(x, t)|2dxdt ≤ C

∫∫
Ω1

|un(x, t)|2 dxdt

≤ C

∫ T

τ

∫
RN

|un(x, t)|2 dxdt.

Taking into account that un ∈ L∞(τ, T ;L2(RN )), we obtain

χ(un(x, t))ϑΩ1
∈ L2(τ, T ;L2(RN )).

Besides, since ∫ T

τ

∫
RN

|χ(un(x, t))ϑΩ2
(x, t)|dxdt

=

∫∫
Ω2

|χ(un)| dxdt

≤
∫∫

Ω2

χ(un)undxdt

≤
∫ T

τ

∫
RN

χ(un)undxdt
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≤
∫ T

τ

∫
RN

f(un)undxdt+ γ∥un∥2L2(τ,T ;L2(RN ))

≤ C,

where we have used (2.14) and (2.20), we get χ(un)ϑΩ2
∈ L1(τ, T ;L1(RN ).

Since
χ(un(x, t)) = χ(un(x, t))ϑΩ1

(x, t) + χ(un(x, t))ϑΩ2
(x, t),

we get χ(u) ∈ L1(τ, T ;L1(RN )) + L2(τ, T ;L2(RN )). Therefore {f(un)} is
bounded in L1(τ, T ;L1(RN )) + L2(τ, T ;L2(RN )).

Besides, since

unt = ∆un − λun +

∫ ∞

0

µ(s)∆Qnη
t
n(s)ds− Pnf(un)− Png(·, vn) + Pnς,

we see that {unt} is bounded in L2(τ, T ;H−1(RN ))+L1(τ, T ;L1(RN ))+L2(τ, T ;
L2
µ(R+, H1(RN ))) and then in L1(τ, T ;H−1(RN ))+L1(RN )+L2

µ(R+, H1(RN ))
by (1.6), (2.14), and (2.17).

In addition, for each m ≥ 1, we denote Bm = {x ∈ RN : |x| ≤ m}. Let
ϕ ∈ C1([0,+∞)) be a function such that 0 ≤ ϕ ≤ 1, ϕ|[0,1] = 1 and ϕ(r) = 0
for all r ≥ 2. For each n and m we define

ūn,m(x, t) = ϕ

(
|x|2

m2

)
un(x, t).

From (2.14) that, for all m ≥ 1, the sequence {ūn,m}n≥1 is bounded L2(τ, T ;
H1

0 (B2m)). Since B2m is a bounded set, then H1
0 (B2m) ↪→ L2(B2m) compactly.

Then, by Theorem 13.3 and Remark 13.1 in [22] we can deduce that

{ūn,m} is precompact in L2(τ, T ;L2(B2m)),

and thus
{un|Bm} is precompact in L2

(
τ, T ;L2(Bm)

)
.

By a diagonal procedure, using (2.18), we deduce that there exists a subse-
quence of {un} (still denoted by {un}) such that

un → u a.e. in Bm × (τ, T ) as n→ +∞, ∀m ≥ 1,

and thus, taking into account that
⋃∞

m=1Bm = RN , we obtain

un → u a.e. in RN × (τ, T ).

Besides, using the definition of χ(s) and (2.14), (2.20), we have∫ T

τ

∫
RN

χ(un)undxdt ≤ C.

Thus, arguing as in the proof of Theorem 3.1 in [6], we obtain that χ(u) ∈
L1(τ, T ;L1(RN ))+L2(τ, T ;L2(RN )) and for all test functions β ∈ L∞((τ, T )×
RN ), ∫ T

τ

∫
RN

χ(un(x, t))β(x, t)dxdt→
∫ T

0

∫
RN

χ(u(x, t))β(x, t)dxdt.
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Then, f(u) ∈ L1(τ, T ;L1(RN )) + L2(τ, T ;L2(RN )) and∫ T

τ

∫
RN

f(un(x, t))β(x, t)dxdt→
∫ T

τ

∫
RN

f(u(x, t))β(x, t)dxdt

for all β ∈ L∞((τ, T )× RN ).
Next, from the second equation of (1.10), we get that vnt = −σ(·)vn −

φ(·, un) is uniformly bounded in L2(τ, T ;L2(RN )). Therefore, we can extract
a subsequence of vn (still label vn) such that

vn ⇀ v weakly in L2(τ, T ;L2(RN )),

vnt ⇀ vt weakly in L2(τ, T ;L2(RN )).

Furthermore, using assumption (1.4), we conclude that

φ(·, un) → φ(·, u) in L2(τ, T ;L2(RN )).

Hence if we pass the limit in the second equation of (1.10), then we obtain

vt + σ(·)v + φ(·, u) = 0 in L2(τ, T ;L2(RN )).

By the formula of variation of parameters, for each n ∈ N, we have the solution
vn of

(2.21) vnt + σ(·)vn + φ(·, un) = 0

given by

vn(·, t) = e−σ(·)tv0 +

∫ t

0

e−σ(·)(t−s)φ(·, un)ds.

Since v also satisfies the equation (2.21), we have

v(·, t) = e−σ(·)tv0 +

∫ t

0

e−σ(·)(t−s)φ(·, u)ds.

Hence we deduce that vn → v in L2(τ, T ;L2(RN )). By using (1.3), we derive
that g(·, vn) → g(·, v) in L2(τ, T ;L2(RN )). Thus, as n → ∞, we see that
z(t) = (u, v, ηt) satisfies the system (1.10) for a.e. t ∈ [τ, T ].

As in [6], since u ∈ L∞(τ, T ;L2(RN )) ∩ L2(τ, T ;H1(RN )) and ut ∈ L2(τ, T ;
H−1(RN )) + L1(τ, T ;L1(RN )), we conclude that u ∈ C([τ, T ];L2(RN )) (see
also [11, Lemma 8.1], [21]). Obviously, we know v ∈ C([τ, T ];L2(RN )) since
v ∈ L∞(τ, T ;L2(RN )) and vt ∈ L2(τ, T ;L2(RN )) (see [17, Proposition 7.1]).

Finally, by standard arguments, we can check that z satisfies the initial
condition z(τ) = zτ and this implies that z is a weak solution of problem
(1.10).

Step 2. Uniqueness and continuous dependence. We assume that z1 =
(u1, v1, η

t
1) and z2 = (u2, v2, η

t
2) are two solutions subject to initial data z1(τ)
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and z2(τ), respectively. Denote z̃ = (ũ, ṽ, η̄t) = (u1 − u2, v1 − v2, η
t
1 − ηt2), we

have 

ũt −∆ũ−
∫∞
0
µ(s)∆η̃t(s)ds+ χ(u1)− χ(u2)− ℓũ

+g(·, v1)− g(·, v2) = 0,

ṽt + σ(·)ṽ + φ(·, u1)− φ(·, u2) = 0,

∂tη̃
t + ∂sη̃

t = ũ,

ũ(τ) = u1τ − u2τ , ṽ(τ) = v1τ − v2τ , η̃
τ = η1τ − η2τ ,

(2.22)

where χ(ui) = f(ui) + ℓui, i = 1, 2.
Here because ũ(t) does not belong to W = H1(RN ) ∩ L∞(RN ), we cannot

choose ũ(t) as a test function and cannot take the scalar product the first
equation of (2.22) by ũ(t). Consequently, we use an idea in [6] to overcome
this difficulty as follows. For k > 0, we define

Bk(r) =


k if r > k,

r if |r| ≤ k,

−k if r < −k.

Consider the corresponding Nemytskii mapping B̂k : W → W defined as fol-
lows:

B̂k(ũ)(x) = Bk(ũ(x)) for all x ∈ RN .

By Theorem 4.7 in [9] (see also Lemma 2.3 in [6]), we have that ∥Bk(ũ)−ũ∥W →
0 as k → ∞. Now multiplying (2.22) by Bk(ũ), then integrating over RN , we
get

d

dt

(∫
RN

ũBk(ũ))dx− 1

2
∥Bk(ũ)∥2

)
+

∫
RN

∇ũ∇B̂k(ũ)dx

+

∫ ∞

0

µ(s)

∫
RN

∇η̃t∇B̂k(ũ)dxds+

∫
RN

(χ(u1)− χ(u2))Bk(ũ)dx

+ (λ− ℓ)

∫
RN

ũBk(ũ)dx+

∫
RN

(g(x, v1)− g(x, v2))Bk(ũ)dx

= 0,

where ũ d
dtBk(ũ) =

1
2

d
dt (Bk(ũ))

2.
Thus,

d

dt

(∫
RN

ũBk(ũ))dx−
1

2
∥Bk(ũ)∥2+

1

2

∫ ∞

0

µ(s)

∫
{x∈RN :|ũ(x,t)|≤k}

|∇η̃t|2dxds

)

+
1

2

∫
{Ω:|ũ|≤k}

(λ|ũ|2 + |∇ũ|2)dxdt+
∫
RN

χ′(ξ)ũBk(ũ)dx

≤ ℓ

∫
RN

ũBk(ũ)dx−
∫
RN

g′(x, ζ)ṽBk(ũ)dx,
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where ∫ ∞

0

µ(s)

∫
RN

∇η̃t∇B̂k(ũ)dxds

≥
∫ ∞

0

µ(s)

∫
{x∈RN :|ũ(x,t)|≤k}

∇η̃t∇ũdxds

=

∫ ∞

0

µ(s)

∫
{x∈RN :|ũ(x,t)|≤k}

∇η̃t∇∂tη̃tdxds

+

∫ ∞

0

µ(s)

∫
{x∈RN :|ũ(x,t)|≤k}

∇η̃t∇∂sη̃tdxds

=

∫ ∞

0

µ(s)

∫
{x∈RN :|ũ(x,t)|≤k}

∇η̃t∇∂tη̃tdxds

− 1

2

∫ ∞

0

µ′(s)

∫
{x∈RN :|ũ(x,t)|≤k}

|∇η̃t|2dxds

≥ 1

2

∫ ∞

0

µ(s)

∫
{x∈RN :|ũ(x,t)|≤k}

d

dt
|∇η̃t|2dxds.

Noting that χ′(s) ≥ 0 and sBk(s) ≥ 0 for all s ∈ R, from the above inequality
we deduce that

d

dt

(∫
RN

ũBk(ũ))dx−
1

2
∥Bk(ũ)∥2+

1

2

∫ ∞

0

µ(s)

∫
{x∈RN :|ũ(x,t)|≤k}

|∇η̃t|2dxds

)
(2.23)

≤ ℓ

∫
RN

ũBk(ũ)dx+
δ2
2
∥ṽ(s)∥2 + δ2

2
∥Bk(ũ)∥2,

where
∫
RN |g′(x, ζ)||ṽ||Bk(ũ)|dx ≤ δ2

2 ∥ṽ(s)∥
2 + δ2

2 ∥Bk(ũ)∥2.
On the other hand, similar to the proof of (2.15), we obtain

d

dt

∫ ∞

0

µ(s)∥η̃t∥2ds ≤ λ

2
∥ũ∥2 + κ(0)

2λ

∫ ∞

0

µ(s)∥η̃t∥2ds.(2.24)

Summation of (2.23) and (2.24), we get

d

dt

(∫
RN

ũBk(ũ))dx−
1

2
∥Bk(ũ)∥2+

1

2

∫ ∞

0

µ(s)

∫
{x∈RN :|ũ(x,t)|≤k}

(|η̃t|2+|∇η̃t|2)dxds

)

≤ ℓ

∫
RN

ũBk(ũ)dx+
δ2
2
∥ṽ(s)∥2+ δ2

2
∥Bk(ũ)∥2+

λ

2
∥ũ∥2+ κ(0)

2λ

∫ ∞

0

µ(s)∥η̃t∥2ds.

Integrating from τ to t, where t ∈ (τ, T ), then letting k → ∞ in the above
inequality, we get

∥ũ(t)∥2 + ∥η̃t∥21,µ(2.25)

≤ ∥ũ(τ)∥2 + ∥η̃τ∥21,µ + (2ℓ+ δ2 + λ)

∫ t

τ

∥ũ(r)∥2dr
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+ δ2

∫ t

τ

∥ṽ(r)∥2dr + κ(0)

λ

∫ t

τ

∫ ∞

0

µ(s)∥η̃r∥2dsdr.

Next, we take the inner product of the second equation in (2.22) with ṽ and
integrate it from τ to t, t ∈ [τ, T ]. Then we have

1

2
∥ṽ(t)∥2 +

∫
RN

σ(x)|ṽ|2dxdt = 1

2
∥ṽ(τ)∥2 −

∫
RN

(φ(x, u1)− φ(x, u2))ṽdxdt

=
1

2
∥ṽ(τ)∥2 −

∫
RN

φ′
u(x, ξ)ũ ṽdxds.

Using (1.4) and (1.5), we obtain

∥ṽ(t)∥2 + 2δ4

∫ t

τ

∥ṽ(s)∥2ds ≤ ∥ṽ(τ)∥2 + 2δ3

∫ t

τ

∫
RN

|ũ||ṽ|dxdr.

Using the Cauchy inequality, we get

∥ṽ(t)∥2 ≤ ∥ṽ(τ)∥2 + δ3

∫ t

τ

(
∥ũ(s)∥2 + ∥ṽ(s)∥2

)
ds.(2.26)

Adding (2.25) and (2.26), we can deduce that

z̃(t) ≤ z̃(τ) + (2ℓ+ δ2 + δ3 + λ)

∫ t

τ

∥ũ(r)∥2dr + (δ2 + δ3)

∫ t

τ

∥ṽ(r)∥2dr

+
κ(0)

λ

∫ t

τ

∫ ∞

0

µ(s)∥η̃r∥2dsdr.

Thus

z̃(t) ≤ z̃(τ) +

(
ℓ+ δ2 + δ3 + λ+

κ(0)

λ

)∫ t

τ

z̃(r)dr.

Applying the Gronwall inequality of integral form, we have

z̃(t) ≤ z̃(τ)

ℓ+ δ2 + δ3 + λ+ κ(0)
λ

e(ℓ+δ2+δ3+λ+
κ(0)
λ )(t−τ), ∀t ∈ [τ, T ].

This proves the uniqueness (when z̃(τ) = 0) and the continuous dependence on
the initial data of the weak solutions. This completes the proof. □

3. Existence of a uniform attractor

Theorem 2.1 allows us to define a family of processes {Uς(t, τ)}ς∈Hw(h) as
follows:

Uς(t, τ) : H → H,
where Uς(t, τ)zτ is the unique weak solution of (1.10) (with ς in place of h) at
the time t with the initial datum zτ at τ .

We are going to prove the family of processes {Uς(t, τ)}ς∈Hw(h) generated
by (1.10) possesses a uniform attractor Aς∈Hw(h).
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3.1. Existence of a uniform absorbing set

Firstly, we will provide an auxiliary lemma to serve later sections.

Lemma 3.1. Assume that hypothesis (H2) hold. Then, for any u ∈ H1(RN )
and ηt ∈ L2

µ(R+, H1(RN )), the following inequality hold∫ ∞

0

κ(s)
(
j∥ηt(s)∥2 + ∥∇ηt(s)∥2

)
ds(3.1)

≤ θ∥ηt∥21,µ ≤ θ(∥u∥2 + ∥v∥2 + ∥ηt∥21,µ), j = 0, 1;

d

dt

(∫ ∞

0

κ(s)
(
j∥ηt(s)∥2 + ∥∇ηt(s)∥2

)
ds

)
(3.2)

≤ − 1

2

∫ ∞

0

µ(s)
(
j∥ηt(s)∥2 + ∥∇ηt(s)∥2

)
ds+ 2θ2κ(0)

(
j∥u∥2 + ∥∇u∥2

)
.

Proof. By hypotheses (1.8), we immediately obtain (3.1). Besides, using the
third equation of (1.10) and exploiting again (1.8), we have

d

dt

(∫ ∞

0

κ(s)
(
j∥ηt(s)∥2 + ∥∇ηt(s)∥2

)
ds

)
= − 2

∫ ∞

0

κ(s)

∫
RN

(
jηtsη

t +∇ηts∇ηt
)
dxds

+ 2

∫ ∞

0

κ(s)
(
j⟨ηt(s), u⟩+ ⟨∇ηt(s),∇u⟩

)
ds

≤ −
∫ ∞

0

κ(s)
d

ds

(
j∥ηt(s)∥2 + ∥∇ηt(s)∥2

)
ds

+ 2θ

∫ ∞

0

µ(s)

∫
RN

(
jηt · u+∇ηt · ∇u

)
dxds

≤ − κ(s)
(
j∥ηt(s)∥2 + ∥∇ηt(s)∥2

) ∣∣∣s=∞

s=0
+

∫ ∞

0

κ′(s)
(
j∥ηt(s)∥2 + ∥∇ηt(s)∥2

)
ds

+ 2θj
(∫ ∞

0

µ(s)∥ηt(s)∥2ds
)1/2(∫ ∞

0

µ(s)∥u∥2ds
)1/2

+ 2θ
(∫ ∞

0

µ(s)∥∇ηt(s)∥2ds
)1/2(∫ ∞

0

µ(s)∥∇u∥2ds
)1/2

≤ − 1

2

∫ ∞

0

µ(s)
(
j∥ηt(s)∥2 + ∥∇ηt(s)∥2

)
ds+ 2θ2

(
j∥u∥2 + ∥∇u∥2

) ∫ ∞

0

κ′(s)ds

= − 1

2

∫ ∞

0

µ(s)
(
j∥ηt(s)∥2 + ∥∇ηt(s)∥2

)
ds+ 2θ2κ(0)

(
j∥u∥2 + ∥∇u∥2

)
.

□

Now, we prove the existence of an (H,H)-uniform absorbing set for the
family of processes {Uς(t, τ)}ς∈Hw(h).
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Lemma 3.2. Assume that hypotheses (H1)-(H3) hold. Then the family of
processes {Uς(t, τ)}ς∈Hw(h) associated to problem (1.10) has an (H,H)-uniform
absorbing set.

Proof. Multiplying the first equation and the second equation of (1.10) by
u(t) and v(t) in L2(RN ), respectively, then arguing as in Theorem 2.1, we get
inequality as in (2.12) as follows:

1

2

d

dt

(
∥u∥2 + ∥v∥2 +

∫ ∞

0

µ(s)∥∇ηt(s)∥2ds
)

(3.3)

+ (1− ε0)∥∇u∥2 +
(
λ− δ1

2
− ε0

)
∥u∥2

+

(
δ4 −

2(δ25 + δ26)

λ− δ1

)
∥v∥2

≤ 2δ25
λ− δ1

∥ϕ2∥2 +
λ− δ1

4
∥ϕ3∥2 + C∥ς∥2H−1(RN ).

On the other hand, multiplying the third equation of (1.10) by jηt in L2
µ(R+,

L2(RN )), we get

d

dt
j

∫ ∞

0

µ(s)∥ηt∥2ds− 2j

∫ ∞

0

µ′(s)∥ηt∥2ds = 2j

∫ ∞

0

µ(s)⟨ηt(s), u⟩ds.

Since the term −2
∫∞
0
µ′(s)j∥ηt∥2ds > 0 can be neglected and by the Young

inequality, we obtain

d

dt
j

∫ ∞

0

µ(s)∥ηt∥2ds ≤ 2jκ(0)

γ
∥u∥2 + jγ

2

∫ ∞

0

µ(s)∥ηt∥2ds.(3.4)

Summation of (3.3), (3.4), we get

d

dt
Ej + 2∥∇u∥2 + λ− δ1

2
∥u∥2 + 2

(
δ4 −

2(δ25 + δ26)

λ− δ1

)
∥v∥2

≤Φ+
2

λ− δ1
∥ς∥2 + 2jκ(0)

γ
∥u∥2 + jγ

2

∫ ∞

0

µ(s)∥ηt∥2ds,

where

Φ =
4δ25
λ− δ1

∥ϕ2∥2 +
λ− δ1

2
∥ϕ3∥2 and

Ej = ∥u∥2 + ∥v∥2 +
∫ ∞

0

µ(s)
(
j∥ηt∥2 + ∥∇ηt∥2

)
ds, j = 0, 1.

Now, for γ > 0 to be fixed, we define the functional

Λj(t) = Ej + 8γ

∫ ∞

0

κ(s)
(
j∥ηt(s)∥2 + ∥∇ηt(s)∥2

)
ds, j = 0, 1.

Then, using Lemma 3.1, we can see that Λj satisfies the differential inequality

d

dt
Λj + 2(1− 8γθ2κ(0)− ε0)∥∇u∥2 +

λ− δ1 − 32jγθ2κ(0)− ε0
2

∥u∥2
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+ 2

(
δ4 −

2(δ25 + δ26)

λ− δ1

)
∥v∥2 + 4γ

∫ ∞

0

µ(s)
(
j∥ηt(s)∥2 + ∥∇ηt(s)∥2

)
ds

≤ Φ+ C∥ς∥2H−1(RN ) +
2jκ(0)

γ
∥u∥2 + jγ

2

∫ ∞

0

µ(s)∥ηt∥2ds,

Choosing γ small enough such that 0 < γ < min{ λ−δ1
4+32θ2κ(0) ,

1
1+8θ2κ(0)}, we

have
d

dt
Λj + 2γEj + 2γ∥∇u∥2

≤ Φ+ C∥ς∥2H−1(RN ) +
2jκ(0)

γ
∥u∥2 + jγ

2

∫ ∞

0

µ(s)∥ηt∥2ds.

Up to further reducing γ, we also have

Ej ≤ Λj ≤ 2Ej .

Thus,

d

dt
Λj + γΛj + 2γ∥∇u∥2(3.5)

≤ 2jκ(0)

γ
Λ0 +Φ+ C∥ς∥2H−1(RN ) +

jγ

2

∫ ∞

0

µ(s)∥ηt∥2ds.

From (3.5), let j = 0, and then applying Gronwall inequality, we get

Λ0(t) ≤ Λ0(τ)e
−γ(t−τ) +Φ+ C

∫ t

τ

e−γ(t−r)∥ς(r)∥2H−1(RN )dr.(3.6)

Besides, we have∫ t

τ

e−γ(t−r)∥ς(r)∥2H−1(RN )dr(3.7)

≤
(∫ t

t−1

e−γ(t−r)∥ς(r)∥2H−1(RN )dr +

∫ t−1

t−2

e−γ(t−r)∥ς(r)∥2H−1(RN )dr + · · ·
)

≤
(
1 + e−γ + e−2γ + · · ·

)
∥ς∥2b ≤ 1

1− e−γ
∥h∥2b ,

where we have used the fact that ∥ς∥2b ≤ ∥h∥2b for all ς ∈ Hw(g). Combining
(3.6) and (3.7)

Λ0(t) ≤ Λ0(τ)e
−γ(t−τ) +Φ+

C

1− e−δ
∥h∥2b(3.8)

≤ ρ0.

On the other hand, we consider (3.5) for j = 1, using (3.8) and Gronwall
inequality, we obtain

Λ1(t) ≤ Λ1(τ)e
−γ(t−τ) +

(
2κ(0)

γ
+
γ

2

)
ρ0 + C

∫ t

τ

e−γ(t−r)∥ς(r)∥2H−1(RN )dr

≤ Λ1(τ)e
−γ(t−τ) +

(
2κ(0)

γ
+
γ

2

)
ρ0 +Φ+

C

1− e−δ
∥h∥2b .
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Thus,

E1(t) ≤ 2E1(τ)e
−γ(t−τ) +

(
2κ(0)

γ
+
γ

2

)
ρ0 +Φ+

C

1− e−δ
∥h∥2b .

Therefore, there exists ρ1 > 0 such that

(3.9) E1(t) ≤ ρ1 or ∥z(t)∥2H ≤ ρ1

for all zτ ∈ BH, ς ∈ Hw(h) and for all t ≥ TB , where BH is an arbitrary
bounded subset of H. Therefore, for all t ≥ TB , we get

U(t, τ)BH(R) ⊂ B0,

where B0 = BH(ρ1) is an absorbing set for processes U(t, τ) on H.
Besides, integrating (3.5) from t to t+ 1, we get

(3.10)

∫ t+1

t

∥∇u(r)∥2dr ≤ 2ρ1.

This completes the proof. □

3.2. Asymptotic compactness

The main difficulty of the problem is, of course, that the embeddings are no
longer compact and the external force h is only in L2

b(R;H−1(RN )). Further-
more, the memory term has no smoothing effect. Therefore, we do not directly
estimate the regularization for u as in [10], but must use the decomposition
method as follows.

3.2.1. Decomposition of the equation. Notice that we only assume the external
force h ∈ L2

b(R;H−1(RN )). Since L2(RN ) ↪→ H−1(RN ) is dense, for every
h(·, t) ∈ H−1(RN ) and any ε > 0, there exists an hε(·, t) ∈ L2(RN ), which
depends on h and ε, such that

(3.11) sup
t∈R

∫ t+1

t

∥h− hε∥2H−1(RN )dr <
ε

2
.

For any r > 0 introduce two smooth positive functions ϕir : RN → R+,
i = 1, 2, such that

ϕ1r(x) + ϕ2r(x) = 1 ∀x ∈ RN ,

and

ϕ1r(x) = 0 if |x| ≤ r,

ϕ2r(x) = 0 if |x| ≥ r + 1.

Putting ςi(x, t) = ς(x, t · ϕir(x)), i = 1, 2. The dependence on r of ςi is omitted
for simplicity of notation. Therefore, we can check that

(3.12)

{
lim
r→∞

∥ς1∥H−1(RN ) = 0,

ς2(x, t) = 0 as |x| ≥ r + 1.
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Now, to make the asymptotic regular estimates, we decompose the solution
Uς(t, τ)zτ = z(t) = (u(t), v(t), ηt), zτ = (uτ , vτ , η

τ ), of problem (1.10) into the
sum

Uς(t, τ)zτ = D(t, τ)zτ +Kς(t, τ)zτ ,

where D(t, τ)zτ = z1(t) and Kς(t, τ)zτ = z2(t), that is, z = (u, v, ηt) = z1+ z2,
the decomposition is as follows:

u = u1 + u2, v = v1 + v2, η
t = ζt + ξt,

z1 = (u1, v1, ζ
t), z2 = (u2, v2, ξ

t),

where z1(t) solves the following equation

(3.13)



∂tu1 −∆u1 −
∫ ∞

0

µ(s)∆ζt(s)ds+ λu1 + f(u)− f(u2)

= ς1 + ς2 − ςε2 ,

∂tv1 + σ(x)v1 = 0,

∂tζ
t = −∂sζt + u1,

u1(x, t)|t≤τ = uτ (x), v1(x, t)|t≤τ = vτ (x),

ζt(x, s)|t≤τ = ητ (x, s),

and z2(t) is the unique solution of the following problem

(3.14)



∂tu2 −∆u2 −
∫ ∞

0

µ(s)∆ξt(s)ds+ λu2 + f(u2) + g(x, v) = ςε2 ,

∂tv2 + σ(x)v2 + φ(x, u) = 0,

∂tξ
t = −∂sξt + u2,

u2(x, t)|t≤τ = 0, v2(x, t)|t≤τ = 0,

ξt(x, s)|t≤τ = ξτ (x, s) = 0.

By using similar arguments as in the proof of Theorem 2.1, one can prove the
existence and uniqueness of solutions to problems (3.13) and (3.14). Besides, for
problem (3.14), because the initial data are zero (so belong to H1 := H1(RN )×
H1(RN ) × L2

µ(R+, H2(RN ))), we can show that the solution (u2, v2, ξ
t) is in

fact a strong solution.

3.2.2. The first a priori estimate. We begin with the decay estimate for solu-
tions of (3.13).

Lemma 3.3. Assume that hypotheses (H1)-(H3) hold. Then the solutions
of equation (3.13) satisfy the following estimate: there is a constant γ1 > 0
and there exists T > τ large enough, which depends on ∥ς∥L2

b
, ∥zτ∥H, and Q(·)

independent of z, such that

∥D(t, τ)zτ∥2H ≤ Q(∥zτ∥H)e−γ1(t−τ) + ε for all t ≥ T,

where Q is an increasing function on [0,∞).
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Proof. Multiplying the first equation and the second of (3.13) by u1 and v1,
respectively, and then adding the results, we obtain

d

dt

(
∥u1∥2 + ∥v1∥2 +

∫
RN

µ(s)∥∇ζt(s)∥2ds
)

(3.15)

+ 2λ∥u1∥2 + 2∥∇u1∥2 + 2δ4∥v1∥2

− 2

∫
RN

µ′(s)∥∇ζt(s)∥2ds+ 2⟨f(u)− f(u2), u1⟩

≤ 2⟨ς3, u1⟩H−1,H1 ,

where ς3 = ς1 + ς2 − ςε2 ∈ L2
b(R;H−1(RN )). Similarly to the proof of (3.4),

(3.2), we get

d

dt
j

∫ ∞

0

µ(s)∥ζt∥2ds− 2j

∫ ∞

0

µ′(s)∥ζt∥2ds(3.16)

≤ 2jκ(0)

γ1
∥u1∥2 +

jγ1
2

∫ ∞

0

µ(s)∥ζt∥2ds;

and

d

dt

(
8γ1

∫ ∞

0

κ(s)
(
j∥ζt(s)∥2 + ∥∇ζt(s)∥2

)
ds

)
(3.17)

≤ − 4γ1

∫ ∞

0

µ(s)
(
j∥ζt(s)∥2 + ∥∇ζt(s)∥2

)
ds

+ 16γ1θ
2κ(0)

(
j∥u1∥2 + ∥∇u1∥2

)
.

Applying Young inequality and using assumption (1.2), we have

2⟨ς3, u1⟩H−1,H1 ≤ ε0∥u1∥2H1(RN ) + C(ε0)∥ς3∥2H−1(RN ),

and

2⟨f(u)− f(u2), v1⟩ ≥ −2ℓ∥u1∥2;
Summing up (3.15), (3.16) and (3.17), and plugging all the above inequalities
into (3.15), it follows that

d

dt
Φj + 2

(
λ− 8jγ1θ

2κ(0)− ℓ− ε0
)
∥u1∥2 + 2(1− 8γ1θ

2κ(0)− ε0)∥∇u1∥2

+ 2δ4∥v1∥2 + 4γ1

∫ ∞

0

µ(s)
(
j∥ζt(s)∥2 + ∥∇ζt(s)∥2

)
ds

≤ 2jκ(0)

γ
∥u1∥2 + C(ε0)∥ς3∥2H−1(RN ),

where

Φj = ∥u1∥2 + ∥v1∥2 +
∫ ∞

0

µ(s)
(
j∥ζt∥2 + ∥∇ζt∥2

)
ds

+ 8γ1

∫ ∞

0

κ(s)
(
j∥ζt(s)∥2 + ∥∇ζt(s)∥2

)
ds, j = 0, 1.
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Choosing ε0 is small enough and γ1 < min{δ4, λ
2+8θ2κ(0)+ℓ ,

1
1+8θ2κ(0)}, we ob-

tain

(3.18)
d

dt
Φj + 2γ1Φj ≤

2jκ(0)

γ1
∥u1∥2 + C(ε0)∥ς3∥2H−1(RN ),

where C(ε0)∥ς3∥2H−1(RN ) ≤ C∥ς1∥2H−1(RN ) + C∥ς2 − ςε2∥2H−1(RN ).

Using (3.11) and (3.12), putting j = 0 in (3.18) and subsequently substitut-
ing the result into (3.18) with j = 1, we obtain

(3.19) ∥u1∥2 + ∥v1∥2 + ∥ζt∥21,µ ≤ Φ1(t) ≤ Q(∥zτ∥H1
)e−γ1(t−τ) + ε.

This completes the proof. □

3.2.3. The second a priori estimate. About the solution z2(t) of (3.14), we
have:

Lemma 3.4. Let (H1)-(H3) hold. Then for any zτ ∈ H, there exist M > 0,
T > τ large enough, which depend on ∥zτ∥2H, such that

∥Kς(t, τ)zτ∥2H1
≤M0 for all t ≥ T.

Proof. Combining (3.9), (3.19) and (u, v, ηt) = (u1, v1, ζ
t)+ (u2, v2, ξ

t), we can
see that

(3.20) ∥u2∥2 + ∥v2∥2 + ∥ξt∥21,µ ≤ ρ2.

Multiplying the first equation of (3.14) by −∆u2, we obtain

1

2

d

dt

(
∥∇u2∥2 +

∫ ∞

0

µ(s)∥∆ξt∥2ds
)
+ ∥∆u2∥2 + λ∥∇u2∥2(3.21)

+ (f(u2),−∆u2) + (g(x, v),−∆u2)−
∫ ∞

0

µ′(s)∥∆ξt∥2ds

≤ ⟨ςε2 ,−∆u2⟩.

Using (3.9) and the assumptions (1.2), (1.6), (1.7), we get

(f(u2),−∆u2) =

∫
RN

f ′(u2)|∇u2|2dx

≥ −ℓ∥∇u2∥2;

(g(x, v),−∆u2) ≤ δ5

∫
RN

(ϕ2(x) + |v|)|∆u2|dx

≤ δ5(∥ϕ2∥+ ∥v∥)∥∆u2∥dx

≤ Cρ1 +
1

4
∥∆u2∥2 ∀t ≥ TB ;

⟨ςε2 ,−∆u2⟩ ≤ ∥ςε2∥∥∆u2∥

≤ ∥ςε2∥2 +
1

4
∥∆u2∥2.
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Plugging all the above inequalities into (3.21) and notice that

−2

∫ ∞

0

µ′(s)∥∆ξt∥2ds ≥ 0,

it follows that

d

dt

(
∥∇u2∥2 +

∫ ∞

0

µ(s)∥∆ξt∥2ds
)
+ 2(λ− ℓ)∥∇u2∥2 + ∥∆u2∥2(3.22)

≤ m2ρ2
δ4

+ C(ρ1 + ∥ςε2∥2).

We learn from (3.2) that

d

dt
8γ2

∫ ∞

0

κ(s)∥∆ξt(s)∥2ds(3.23)

≤ − 4γ2

∫ ∞

0

µ(s)∥∆ξt(s)∥2ds+ 16γ2θ
2κ(0)∥∆u2∥2.

Summing up (3.22) and (3.23), it follows that

d

dt
Λ + 2(λ− ℓ)∥∇u2∥2 + 4γ2

∫ ∞

0

µ(s)∥∇ξt(s)∥2ds

+ (1− 16γ2θ
2κ(0))∥∆u2∥2

≤ C(ρ1 + ∥ςε2∥2),

where Λ = ∥∇u2∥2 +
∫∞
0
µ(s)∥∆ξt∥2ds+ 8γ2

∫∞
0
κ(s)∥∇ξt(s)∥2ds.

Choosing γ2 < min{δ4, λ− ℓ, 1
16θ2κ(0)}, we obtain

d

dt
Λ + 2γ2Λ ≤ C(ρ1 + ∥ςε2∥2).

Applying the Gronwall inequality and using (3.10), we can derive

∥∇u2∥2 +
∫ ∞

0

µ(s)∥∆ξt∥2ds ≤ 2Λ ≤ 2ρ3, ∀t ≥ TB + 1.(3.24)

We now show that v2(t) is uniformly bounded in H1(RN ). Setting wj =
∂v2/∂xj (1 ≤ j ≤ N), then from the second equation of (3.14), we get

(3.25)


∂wj

∂t
+ σwj = −σ′

xj
v2 − φ′

xj
(x, u)− φ(x, u)uxj ,

wj(0) = 0.

Multiplying (3.25) by wj , then using (1.4) and (1.5), we get

1

2

d

dt
∥wj∥2 + δ4∥wj∥2

≤
∫
RN

(
|σ′

xj
||v2|+ |φ′

xj
(x, u)|+ |φ′

u(x, u)|
∣∣∣u′xj

∣∣∣) |wj |dx

≤ δ4
2
∥wj∥2 +

1

2δ4

∫
RN

(
m|v2|+ δ3(|ϕ1|+ |u|+ |u′xj

|)
)2
dx
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≤ δ4
2
∥wj∥2 +

3(m+ δ3)
2

δ4
(∥v2∥2 + ∥ϕ1∥2 + ∥u∥2) + δ23

δ4
∥uxj

∥2.

Thus we obtain

d

dt
∥wj∥2 + δ4∥wj∥2 ≤6(m+ δ3)

2

δ4
(∥v2∥2 + ∥ϕ1∥2 + ∥u∥2) + δ23

δ4
∥uxj∥2.(3.26)

By summing (3.26) from j = 1 to j = N and then using (3.9), (3.20), we obtain

d

dt
∥∇v2∥2 + δ4∥∇v2∥2 ≤ c0 +

2δ23
δ4

∥∇u∥2, ∀t ≥ TB ,

where c0 = 6(m+δ3)
2

δ4
(ρ2 + ∥ϕ1∥2 + ρ1).

Applying the Gronwall inequality, then using (3.10) and the same argument
as in (3.7), it follows that

∥∇v2(t)∥2 ≤ c0
δ5

+
2δ23
δ4

∫ t

τ

e−δ5(t−r)∥∇u(r)∥2dr(3.27)

≤ c0
δ5

+
4ρ1δ

2
3

δ4(1− e−γ)
.

Now we combine (3.20) with (3.24) and (3.27), we can see that

∥(u2, v2, ξt)∥2H1
≤ ρ4 :=

c0
δ5

+
4ρ1δ

2
3

δ4(1− e−γ)
+ ρ1 + ρ2 + 2ρ3, ∀t ≥ TB + 1.

This completes the proof. □

To overcome the non-compactness of Sobolev embeddings in RN , we de-
compose the whole space RN into a bounded ball and its complement. Then
the uniform asymptotic compactness of U(τ, t) will follow from the compact
Sobolev embeddings in the bounded ball and the estimates in its complement.
We consider the following lemma:

Lemma 3.5. Let B be a bounded subset in H. Then for any ω > 0, there exist
Tω > 0 and Kω > 0 such that∫

|x|≥Kω

(|u2|2 + |v2|2)dx+

∫ ∞

0

µ(s)

∫
|x|≥Kω

(
|ξt(s)|2 + |∇ξt(s)|2

)
dxds

< ω, ∀t ≥ Tω, ∀zτ ∈ B.

Proof. Let ϕ : R+ → R be a smooth function satisfying ϕ(s) = 0 for 0 ≤ s ≤
1; 0 ≤ ϕ(s) ≤ 1 for s ∈ R+ and ϕ(s) = 1 for s ≥ 2. It is easy to see that
ϕ′(s) ≤ C for all s ∈ R+ and ϕ′(s) = 0 for s ≥ 2.

Multiplying the first equation of (3.14) by ϕ
(

|x|2
k2

)
w and then integrating

the resulting identity, we find

1

2

d

dt

∫
RN

ϕ

(
|x|2

k2

)
|u2|2dx+ λ

∫
RN

ϕ

(
|x|2

k2

)
|u2|2dx(3.28)



184 V. T. LUONG AND N. D. TOAN

+

∫
RN

ϕ

(
|x|2

k2

)
|∇u2|2dx+

∫
RN

2x

k2
ϕ′
(
|x|2

k2

)
u2∇u2dx

+

∫ ∞

0

µ(s)

∫
RN

ϕ

(
|x|2

k2

)
∇u2∇ξt(s)dxds

+

∫ ∞

0

µ(s)

∫
RN

2x

k2
ϕ′
(
|x|2

k2

)
u2∇ξt(s)dxds

+

∫
RN

ϕ

(
|x|2

k2

)
f(u2)u2dx+

∫
RN

ϕ

(
|x|2

k2

)
g(x, v)u2dx

=

∫
RN

ϕ

(
|x|2

k2

)
u2ς

ε
2(t)dx.

Multiplying the third equation of (3.14) by jϕ
(

|x|2
k2

)
ξt in L2

µ(R+, L2(RN )), we

get

d

dt
j

∫ ∞

0

µ(s)

∫
RN

ϕ

(
|x|2

k2

)
|ξt(s)|2dxds(3.29)

− 2j

∫ ∞

0

µ′(s)

∫
RN

ϕ

(
|x|2

k2

)
|ξt(s)|2dxds

= 2j

∫ ∞

0

µ(s)⟨ϕ
(
|x|2

k2

)
ξt(s), u2⟩ds

≤ 2jκ(0)

γ3

∫
RN

ϕ

(
|x|2

k2

)
|u2|2dx+

jγ3
2

∫ ∞

0

µ(s)

∫
RN

ϕ

(
|x|2

k2

)
|ξt(s)|2dxds.

Since u2 = ξtt + ξts, we have∫ ∞

0

µ(s)

∫
RN

ϕ

(
|x|2

k2

)
∇ξt∇u2dxds(3.30)

=

∫ ∞

0

µ(s)

∫
RN

ϕ

(
|x|2

k2

)
∇ξt∇ξttdxds

+

∫ ∞

0

µ(s)

∫
RN

ϕ

(
|x|2

k2

)
∇ξt∇ξtsdxds

=
1

2

d

dt

∫ ∞

0

µ(s)

∫
RN

ϕ

(
|x|2

k2

)
|∇ξt|2dxds

−
∫ ∞

0

µ′(s)

∫
RN

ϕ

(
|x|2

k2

)
|∇ξt|2dxds.

By (1.2) and (1.7), we have∫
RN

ϕ

(
|x|2

k2

)
f(u2)u2dx ≥ −δ1

∫
RN

ϕ

(
|x|2

k2

)
|u2|2dx(3.31)

= −δ1
∫
RN

ϕ

(
|x|2

k2

)
|u2|2dx,
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and ∫
RN

ϕ

(
|x|2

k2

)
|g(x, v)u2|dx(3.32)

≤ δ5

∫
RN

ϕ

(
|x|2

k2

)
|ϕ2(x)||u2|dx+ δ5

∫
RN

ϕ

(
|x|2

k2

)
|v||u2|dx

≤ λ− δ1
2

∫
RN

ϕ

(
|x|2

k2

)
|u2|2dx+

δ25
λ− δ1

∫
RN

ϕ

(
|x|2

k2

)
(|ϕ2(x)|2+|v|2)dx

≤ λ− δ1
2

∫
RN

ϕ

(
|x|2

k2

)
|u2|2dx+

2δ25
λ− δ1

∫
RN

ϕ

(
|x|2

k2

)
|v2|2dx

+
2δ25
λ− δ1

∫
|x|≥k

(|ϕ2(x)|2 + |v1|2)dx.

Since ϕ′(s) = 0 for all s > 2, we have∣∣∣∣∫
RN

2x

k2
ϕ′
(
|x|2

k2

)
u2∇u2

∣∣∣∣ dx ≤ C

∫
|x|≤

√
2k

2|x|
k2

|u2||∇u2|dx(3.33)

≤ C

k
(∥u2∥2 + ∥∇u2∥2),

and similarly, ∫ ∞

0

µ(s)

∫
RN

2x

k2
ϕ′
(
|x|2

k2

)
u2∇ξt(s)dxds(3.34)

≤ C

k

∫ ∞

0

µ(s)∥∇ξt(s)∥2ds+ Cκ(0)

k
∥u2∥2.

By the Cauchy inequality and (3.19), we have

2

∣∣∣∣∫
RN

ϕ

(
|x|2

k2

)
u2ς

ε
2

∣∣∣∣ dx(3.35)

≤ λ− δ1
8

∫
RN

ϕ

(
|x|2

k2

)
|u2|2dx+

8

λ− δ1

∫
|x|≥

√
2k

|ςε2 |2dx.

Summation of (3.28) and (3.29), then using (3.30)-(3.35), we obtain

d

dt

(∫
RN

ϕ

(
|x|2

k2

)
|u2|2dx(3.36)

+

∫ ∞

0

µ(s)

∫
RN

ϕ

(
|x|2

k2

)(
j|ξt(s)|2 + |∇ξt(s)|2

)
dxds

)
+

3(λ− δ1)

4

∫
RN

ϕ

(
|x|2

k2

)
|u2|2dx+ 2

∫
RN

ϕ

(
|x|2

k2

)
|∇u2|2dx

− 2

∫ ∞

0

µ′(s)

∫
RN

ϕ

(
|x|2

k2

)
(j|ξt(s)|2 + |∇ξt|2)dxds

≤ 2jκ(0)

γ3

∫
RN

ϕ

(
|x|2

k2

)
|u2|2dx+

jγ3
2

∫ ∞

0

µ(s)

∫
RN

ϕ

(
|x|2

k2

)
|ξt(s)|2dxds
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+
4δ25
λ− δ1

∫
RN

ϕ

(
|x|2

k2

)
|v2|2dx+ C

∫
|x|≥

√
2k

(ϕ1(x)+|ϕ2(x)|2+|v1|2)dx

+ C

∫
|x|≥

√
2k

|ςε2(t)|2dx+
C

k

(
∥u2∥2+∥∇u2∥2+

∫ ∞

0

µ(s)∥∇ξt(s)∥2ds
)
.

Now, multiplying the second equation of (3.14) by ϕ
(

|x|2
k2

)
v2 and then using

(1.7), we find

1

2

d

dt

∫
RN

ϕ

(
|x|2

k2

)
|v2|2dx+ δ4

∫
RN

ϕ

(
|x|2

k2

)
|v2|2dx(3.37)

= −
∫
RN

ϕ

(
|x|2

k2

)
φ(x, u)v2dx

≤ δ6

∫
RN

ϕ

(
|x|2

k2

)
|ϕ3(x)||v2|dx+ δ6

∫
RN

ϕ

(
|x|2

k2

)
|u||v2|dx

≤
(

2δ26
λ− δ1

+
λ− δ1

4

)∫
RN

ϕ

(
|x|2

k2

)
(|ϕ3(x)|2 + |u1|2)dx

+
λ− δ1

4

∫
RN

ϕ

(
|x|2

k2

)
|u2|2dx+

2δ26
λ− δ1

∫
RN

ϕ

(
|x|2

k2

)
|v2|2dx.

Summing up (3.36) and (3.37), and the term

−2

∫ ∞

0

µ′(s)

∫
RN

ϕ

(
|x|2

k2

)
(j|ξt(s)|2 + |∇ξt|2)dxds ≥ 0

can be neglected, we find

d

dt
Aj +

λ− δ1
4

∫
RN

ϕ

(
|x|2

k2

)
|u2|2dx+ 2

∫
RN

ϕ

(
|x|2

k2

)
|∇u2|2dx(3.38)

+ 2

(
δ4 −

2(δ25 + δ26)

λ− δ1

)∫
RN

ϕ

(
|x|2

k2

)
|v2|2dx

≤ 2jκ(0)

γ3

∫
RN

ϕ

(
|x|2

k2

)
|w|2dx+

jγ3
2

∫ ∞

0

µ(s)

∫
RN

ϕ

(
|x|2

k2

)
|ξt(s)|2dxds

+ C

∫
|x|≥

√
2k

|ςε2(t)|2dx+ C

∫
|x|≥

√
2k

(|ϕ2(x)|2+|ϕ3(x)|2+|u1|2+|v1|2)dx

+
C

k

(
∥u2∥2 + ∥∇u2∥2 +

∫ ∞

0

µ(s)∥∇ξt(s)∥2ds
)
,

where

Aj =

(∫
RN

ϕ

(
|x|2

k2

)
(|u2|2 + |v2|2)dx

+

∫ ∞

0

µ(s)

∫
RN

ϕ

(
|x|2

k2

)(
j|ξt(s)|2 + |∇ξt(s)|2

)
dxds

)
.
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Similarly to the proof of (3.2), we have

d

dt

(
8γ3

∫ ∞

0

κ(s)

∫
RN

ϕ

(
|x|2

k2

)(
j|ξt(s)|2 + |∇ξt(s)|2

)
dxds

)
(3.39)

≤ − 4γ3

∫ ∞

0

µ(s)

∫
RN

ϕ

(
|x|2

k2

)(
j|ξt(s)|2 + |∇ξt(s)|2

)
dxds

+ 16γ3θ
2κ(0)

∫
RN

ϕ

(
|x|2

k2

)(
j|u2|2 + |∇u2|2

)
dx.

Summation of (3.36) and (3.39), then choosing γ3 > 0 small enough, we end
up with

d

dt
Wj + γ3Wj(3.40)

≤ 2jκ(0)

γ3
W0 + C

∫
|x|≥

√
2k

(|ϕ2(x)|2 + |ϕ3(x)|2 + |u1|2 + |v1|2)dx

+ C

∫
|x|≥

√
2k

|ςε2(t)|2dx+
C

k

(
∥u2∥2+∥∇u2∥2+

∫ ∞

0

µ(s)∥∇ξt(s)∥2ds
)
,

where

Wj = Aj + 8γ3

∫ ∞

0

κ(s)

∫
RN

ϕ

(
|x|2

k2

)(
j|ξt(s)|2 + |∇ξt(s)|2

)
dxds, and

Aj ≤Wj ≤ 2Aj .

Therefore, let j = 0 and multiplying (3.40) by eγ3 and integrating from T ≥
TB + 1 to t, we find that

W0(3.41)

≤ e−γ3(t−T )W0(T ) + Ce−γ3t

∫ t

T

∫
|x|≥

√
2k

eγ3r|ςε2(r)|2dxdr

+ Ce−γ3t

∫ t

T

∫
|x|≥

√
2k

eγ3r(|ϕ2(x)|2 + |ϕ3(x)|2 + |u1|2 + |v1|2)dxdr

+
Ce−γ3t

k

∫ t

T

eγ3r

(
∥u2∥2 + ∥∇u2∥2 +

∫ ∞

0

µ(s)∥∇ξt(s)∥2ds
)
dr.

Using the assumptions of ϕi(x), i = 1, 2, 3 and Lemma 3.3, we have

(3.42) lim sup
t→+∞

lim sup
k→+∞

e−γ3t

∫ t

τ

∫
|x|≥k

eγ3r(|ϕ2(x)|2 + |ϕ3(x)|2 + |u1|2 + |v1|2)dxdr = 0.

Besides, using (3.12) and (3.20), we can see that

lim sup
t→+∞

lim sup
k→+∞

e−γ3t

∫ t

τ

∫
|x|≥k

eγ3r|ςε2(r)|2dr = 0; and(3.43)

e−γ3(t−T )W0(T ) ≤ e−γ3(t−T )ρ21 → 0 as t→ +∞;
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and

Ce−γ3t

k

∫ t

T

eγ3r

(
∥u2∥2 + ∥∇u2∥2 +

∫ ∞

0

µ(s)∥∇ξt(s)∥2ds
)
dr(3.44)

≤ Ce−γ3t

k

∫ t

T

eγ3rρ2dr

≤ C(ρ2)

k
→ 0 as k → +∞.

Combining (3.41)-(3.44), we obtain

(3.45) W0 → 0 as k → +∞.

Finally, we consider (3.40) for j = 1. Reasoning exactly as in the proof of
the case j = 0 and using (3.45), we can take Tω and Kω > 0 large enough such
that ∫

|x|≥Kω

|Kς(t, τ)zτ |2dx < ω

for all t ≥ Tω, zτ ∈ B. The proof is complete. □

In addition, for any ξτ ∈ L2
µ(R+, H1(RN )), the Cauchy problem (see e.g.

[1]) {
∂tξ

t = −∂sξt + u2, t > τ,

ξτ = ξτ ,

has a unique solution ξt ∈ C((τ,+∞);L2
µ(R+, H1(RN ))), and

(3.46) ξt(s) =

{∫ s

0
u2(t− r)dr, τ < s ≤ t,

ξτ (s− t)− ξτ (τ) +
∫ t

τ
u2(t− r)dr, s > t.

So, for the equation (3.46), thanks to ξτ (x, s) = 0, we have

ξt(s) =

{∫ s

0
u2(t− r)dr, τ < s ≤ t,∫ t

0
u2(t− r)dr, s > t.

Let B0 be the bounded absorbing set obtained in Lemma 3.2. The same argu-
ment as in Lemma 3.6 of [23], we get the following lemma:

Lemma 3.6. Setting
KT = PKς(T, τ)B0

for T > 0 large enough, where {Kς(t, τ)}t≥τ is the solution process of (3.14),
P : L2(B(Kω)) × L2(B(Kω)) × L2

µ(R+, H1
0 (B(Kω))) → L2

µ(R+, H1
0 (B(Kω)))

is the projection operator. Then there is a positive constant N1 = N1(∥B0∥H)
such that

(i) KT is bounded in

L2
µ(R+, H2(B(Kω)) ∩H1

0 (B(Kω))) ∩H1
µ(R+;H1

0 (B(Kω)),

(ii) supξ∈KT
∥ξ(s)∥2

H1
0 (B(Kω)

≤ N1.
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Moreover, KT is relatively compact in L2
µ(R+, H1

0 (B(Kω)).

One of our main theorems is the following:

Theorem 3.1. The family of processes {Uς(t, τ)}ς∈Hw(h) associated to (1.10)
possesses a uniform attractor A in the space H. Moreover,

A =
⋃

ς∈Hw(h)

Kς(s), ∀s ∈ R,

where Kς(s) is the kernel section at time s of the process Uς(t, τ).

Proof. By Lemma 3.2, the family of processes Uς(t, τ) has a bounded absorbing
B0 in H. Moreover, Uς(t, τ) is uniform asymptotically compact in H due to
Lemmas 3.3 and 3.6. Therefore, the family of process Uς(t, τ) has the uniform
attractor A in H. □

4. Regularity of uniform attractor

In what follows, we show that the uniform attractor A is a bounded subset
of H2 = H2(RN ) × L2(RN ) × L2

µ(R+, H2(RN )). To prove the uniform the
boundedness of the uniform attractor, we assume that the external force h
satisfies a stronger hypothesis:

(H3Bis) The functions h ∈ L∞(R;H−1(RN )) and ∂th ∈ L2
b(R;H−1(RN )).

Theorem 4.1. Assume that (H1), (H2) and (H3Bis) hold. Then the uniform
attractor A is bounded in H2.

Proof. Recall that in this paper we only assume the external force h(·, t) ∈
H−1(RN ). Thus, to prove the boundedness of the uniform attractor, we cannot
multiply −∆u immediately into the first equation. To overcome this difficulty,
for fix τ ∈ R and each initial data zτ ∈ Aτ , using the method of the semigroup
decomposition given in Subsection 3.2.1 and according to Lemmas 3.3 and 3.4,
we get

(4.1) ∥(u1(t), v1(t), ζt)∥2H = ∥D(t, τ)z1τ∥2H ≤ Q(∥zτ∥H)e−γ1(t−τ) + ε,

and

(4.2) ∥u2∥2H1(RN ) + ∥v2∥2H1(RN ) + ∥ξt∥22,µ ≤ ρ4.

Now we will prove ∥(u2, v2, ξt)∥2H2
≤ ρ7 for some ρ7 > 0. To prove this

inequality, we need to take some steps:
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Step 1: The estimate for ∂tu2 in L2(RN ). We now differentiate the first
equation and the third equation in (3.14) with respect to t to get

(4.3)



∂tU −∆U −
∫ ∞

0

µ(s)∆Zt(s)ds+ λU + f ′(u2)U + g′v(x, v)vt = ∂tς
ε
2 ,

∂tv2 + σ(x)v2 + φ(x, u) = 0,

∂tZ
t = −∂sZt + U,

U(x, t)|t≤τ = 0, v2(x, t)|t≤τ = 0,

Zτ (x, s) = Zτ (x, s) = 0,

where U = ∂tu2, Z
t = ∂tξ

t.
Multiplying the first equation of (4.3) by U , then using the conditions (1.2)

and (1.3) and the Young inequality, we have

d

dt

(
∥U∥2 +

∫ ∞

0

µ(s)∥∇Zt(s)∥2ds
)
+ 2(λ− ℓ− ε0)∥U∥2

+ 2∥∇U∥2 − 2

∫ ∞

0

µ′(s)∥∇Zt(s)∥2ds

≤ C(ε0)δ
2
2∥vt∥2 + C(ε0)∥∂tςε2∥2,

where

(f ′(u2)U,U) ≥ −ℓ∥U∥2;
|(g′v(x, v)vt, U)| ≤ δ2∥vt∥∥U∥ ≤ C(ε0)δ

2
2∥vt∥2 + ε0∥U∥2;

(∂tς
ε
2 , U) ≤ ε0∥U∥2 + C(ε0)∥∂tςε2∥2.

Now, for γ4 > 0 to be fixed, we define the functional

Λ(t) = ∥U∥2 +
∫ ∞

0

µ(s)∥∇Zt(s)∥2ds+ 8γ4

∫ ∞

0

κ(s)∥∇Zt(s)∥2ds.

Up to further reducing γ4, we also have

∥U∥2 +
∫ ∞

0

µ(s)∥∇Zt(s)∥2ds ≤ Λ ≤ 2

(
∥U∥2 +

∫ ∞

0

µ(s)∥∇Zt(s)∥2ds
)
.

Then, using Lemma 3.1, we can see that Λ satisfies the differential inequality

d

dt
Λ(t) + 2(λ− ℓ− ε0)∥U∥2 + 2(1− 4γ4θ

2κ(0))∥∇U∥2(4.4)

+ 4γ4

∫ ∞

0

µ(s)∥∇Zt(s)∥2ds

≤ C(ε0)δ
2
2∥vt∥2 + C(ε0)∥∂tςε2∥2,

where −2
∫∞
0
µ′(s)∥∇Zt(s)∥2ds ≥ 0.
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Multiplying the second equation in (1.10) by vt and using (1.7), (3.9), we
obtain

∥vt∥2 ≤
∫
RN

|σ(x)|2|v|2dx+

∫
RN

|φ(x, u)|2dx(4.5)

≤ 2ρ4 sup
x∈RN

|σ(x)|2 + 4δ26(∥ϕ3∥2 + ρ1)

≤ ρ5, ∀t ≥ TB + 1.

Combining (4.4), (4.5) and (3.1), then choosing γ4 and ε0 are small enough, it
follows that

d

dt
Λ(t) + γ4Λ(t) ≤ C(δ22ρ5 + ∥∂tςε2∥2), ∀t ≥ TB + 1.

Applying the Gronwall lemma and using (H3Bis), we deduce

∥U∥2 +
∫ ∞

0

µ(s)∥∇Zt(s)∥2ds ≤ ρ6, ∀t ≥ TB + 1.

Thus,

∥∂tu2(t)∥2 +
∫ ∞

0

µ(s)∥∇∂tξt(s)∥2ds ≤ ρ6, ∀t ≥ TB + 1.(4.6)

Step 2: The estimate ∥u2∥2H2(RN ) ≤ ρ8. Now multiplying the first equation

in (3.14) with −∆u2, if we use the conditions (1.2), (1.3), (1.6), we have

∥∆u2∥2 = − (∂tu2,−∆u2)− (f(u2),−∆u2)− (g(·, v),−∆u2)

+

∫ ∞

0

µ(s)(∆ξt(s),−∆u2)ds+ (ςε2 ,−∆u2)

≤ 1

2
∥∆u2∥2 + 2∥∂tu2∥2 + ℓ∥∇u2∥2

+ C

∫ ∞

0

µ(s)∥∆ξt(s)∥2ds+ 2δ25(∥ϕ2∥2 + ∥v∥2) + 2∥ςε2∥2.

By applying (4.2) and (4.6) and (H2Bis), we can take a positive constant ρ7
satisfying

∥∆u2(t)∥2 ≤ ρ7, ∀t ≥ TB + 1,

and therefore

(4.7) ∥(u2, v2, ξt)∥2H2
≤ ρ8, ∀t ≥ TB + 1.

Collecting (4.1) and (4.7), and setting B1 = BH2
(ρ8), we get

distH(A,B1) = distH(U(t, τ)A,B1) ≤ Ce−γ1(t−τ) + ε.

Hence, A ⊂ B1, proving that A is bounded in H2. □
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