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a b s t r a c t

The aim of this paper is the study of instability state of boiling water reactors with a

method based in largest Lyapunov exponents (LLEs). Detecting the presence of chaos in a

dynamical system is an important problem that is solved by measuring the LLE. Lyapunov

exponents quantify the exponential divergence of initially close state-space trajectories

and estimate the amount of chaos in a system. This method was applied to a set of signals

from several nuclear power plant (NPP) reactors under commercial operating conditions

that experienced instabilities events, apparently each of a different nature. Laguna Verde

and Forsmark NPPs with in-phase instabilities, and Cofrentes NPP with out-of-phases insta-

bility. This study presents the results of intrinsic instability in the boiling water reactors of

three NPPs. In the analyzed cases the limit cycle was not reached, which implies that the

point of equilibrium exerts influence and attraction on system evolution.

Copyright © 2016, Published by Elsevier Korea LLC on behalf of Korean Nuclear Society. This

is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).

1. Introduction

Historically, the oscillatory behavior of high amplitude and

frequency in the thermal power of a boiling water reactor

(BWR) is referred to as a nuclear instability [1]. Even in the

instability state, the system is subject to the attraction of the

equilibrium point, which means it is possible to assert that

the limit cycle has not been reached, and stability restora-

tion is possible. This reasoning is consistent with the

intrinsically stable condition of the reactor under commer-

cial operating conditions. In this work, the definition of the

largest Lyapunov exponent (LLE), which marks the stability

and divergence, is used to demonstrate the abovementioned

behavior.
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The limit cycles that arise in BWRs was analyzed by

Mu~noz-Cobo and Verdu [2] using the Hopf bifurcation theory

and variational methods to find the limit cycles of bifurca-

tioning dynamical system. These authors concluded that a

Hopf bifurcation takes place in BWRs when passing to the

nonlinear regime region, and the results obtained with vari-

ational methods agree with the ones obtained using the Hopf

bifurcation theory.

As is well known, all Lyapunov exponents from stable

equilibrium points are real and negative numbers; however,

for stable limit cycles, one Lyapunov exponent is zero and the

rest are real and negative numbers. Therefore, BWR stability

can be obtained from the Lyapunov exponents. In order to

estimate the asymptotic stability domains of nonlinear

reactor models, two constructive methods were described by

Yang and Cho [3]. One of these methods is based on expan-

sion of a Lyapunov function, and the other methods are

based on the expansion of any positive definite function.

These methods were established on the stability definitions

of Lyapunov itself. The method based in expansion of a

Lyapunov function provides a sequence of stability regions

that eventually approaches the exact stability domain, but

requires many expansions to obtain the entire stability

region because the starting Lyapunov function usually

corresponds to a small stability region and because most

reactor systems are stiff.

Mu~noz-Cobo et al. [4] proposed a methodology to obtain

reactor stability from Lyapunov exponents using dynamic

reconstruction techniques and the algorithm based on the

work of Eckmann et al. [5]. The methodology was applied to

computer-generated signals obtained with the model of

March-Leuba [6], where the estimations of higher Lyapunov

exponents are close to the real.

When one applies the algorithm given by Eckmann et al. [5]

to signals from systems such as BWRs with large amounts of

noise, the Eckmann et al. [5] method fails to give an accurate

value of the higher Lyapunov exponents. A methodology

based on Eckmann et al.'s [5] idea to compute the LLEs in real

systemswith large amounts of noisewas developed by Pereira

et al. [7]. This methodology was applied to Average Powerrate

Monitor (APRM) signals from Cofrentes Nuclear Power Plant

(NPP) and the different levels of noise with the Mareh-Leuba

[6] model. When this methodology applies the AR modeling,

the determination of Lyapunov exponents in linear stability

regime cannot be applied when the system enters into

nonlinear regime (e.g., limit cycle conditions).

The dynamic reconstruction techniques were applied by

Verdú et al. [8] to BWRs with a large amount of noise. These

authors adapted a technique for short and noisy data sets

based on a global fit of the signal by means of orthonormal

polynomials, which was applied to the analysis of the

neutronic power signals to characterize the stability regime of

BWR reactors. The method works well for simulated noisy

signals; however, for the experimental signals fromRinghals 1

BWR, the reconstructed phase space for the system is not

appropriatedhere, it was necessary to apply a modal

decomposition treatment for the signals, producing signals

with better behavior.

A theory of stochastic bifurcation in the vicinity of power

oscillation in BWRs was developed by Konno et al. [9].

According to these authors, the deterministic Hopf bifurcation

is destroyed by the incorporation of noise in the sense that the

Lyapunov exponent of the system is always negative in any

case near the onset of power oscillation, and the values of

decay ratio always take a value less than 1.

The slope of the correlation integral (SOCI) gives the

information dimension for a certain value of the resolution,

which as a whole forms a continuous spectrum that allows

researchers to investigate the dynamics accordingly as the

resolution changes [10]. SOCI was applied to the Forsmarks

BWR stability benchmark [11], and according to the results,

SOCI can be an alternative stability indicator and can

complement the decay ratio.

Castillo et al. [12] developed a consistent method to verify

the existence of limit cycles in a BWR, which was used for the

analysis of APRM signals with small amounts of data

containing noise. These authors concluded that the use of

both the dominant Lyapunov exponent method and the SOCI

method, with the SavitzkyeGolay filtering method, for the

analysis of BWR APRM signals should be complementary to

the linear methods.

Stability analysis in nuclear reactors using Lyapunov ex-

ponents was applied to study the fuel concentration [13]. The

results obtained by Khoda-Bakhsh et al. [13] with the increase

in fuel concentration, are as follows. (1) In the subcritical

regime, the neutron population grows when the SOCI gives

the information dimension for a certain value of the resolu-

tion, which as a whole forms a continuous spectrum that

allows handlers to investigate the dynamics accordingly as

the resolution changes increasing the fuel concentration. (2)

The Lyapunov exponent takes negative values around the

critical neutron population. (3) In the supercritical state, the

Lyapunov exponent is positive, implying that the neutron

diffusion phenomena are spatiotemporal chaos.

In their recentwork, Li et al. [14] analyzed amodel based on

the mathematical definition of stability in the differential

equation qualitative theory. These authors took into consid-

eration a single group of delayed neutrons and power reac-

tivity feedback. The difference between stability in the

mathematical sense and in the physical sense is explained in

terms of phase locus near the equilibrium point.

Unlike previous work, the definition of the greatest expo-

nent of Lyapunov (LLE) is applied in this work to establish the

intrinsically stable condition of three nuclear reactors under

commercial operating conditions. Owing to the behavior

observed in thermal power time series, attractors, and LLE

time series, it is considered that the system has a reversible

nature tending to equilibrium. In the analyzed cases, the limit

cycle was not reached, which implies that the point of equi-

librium exerts influence and attraction on system evolution.

In this work, we present the results obtained for the overall

LLE value of the complete thermal power time series, and its

evolution in time, LLE(t).

This study proposes to avoid calling the situations

analyzed as unstable state or instability, as well as to use the

expression divergent power evolution, which refers to its

evolutionary nature. It also justifies the reversibility of the

reactor and its ability to return to a stable state, favored by the

negative trend of the LLE time series, which causes the system

to have negative LLE values and stable status.
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2. Preliminaries

Let us suppose a stable system consisting of a mass m that

revolves around anothermassM, e.g., a planetary system, and

also imagine that the central point is fixed. The mass m re-

volves around the mass M with linear and tangent speed V,

which means that centrifugal acceleration compensates for

gravitational attraction acceleration. To make the case more

realistic, suppose that mass m is not constant and varies

randomly around its average value. In such a case, the real

movement will not be a line, but a band in which the position

will be random, as illustrated in Fig. 1.

Let us imagine now that a particle of massm is subjected to

a centrifugal acceleration change resulting from module

alterations in tangential speed V. This will cause an orbit and

radio change based on speed alterations. The orbit will stop

being a circular strip to become a spiral strip, in which the

center will still bemassM. This situationwould continue until

speed V module exceeds the so-called escape value, time in

which the path is a tangent line to the last position on the

spiral (Fig. 2).

The first two states are stable (Fig. 1), and the last one is

described as unstable and generator of an out-of-reach

trajectory gravitational center action (Fig. 2). If speed in-

crease ceases, there are two possibilities. First, when the

speed is frozen in the last value then, a new orbit and stable

state are established. Second, if the system is dissipative and

the tangential speed returns progressively to its initial value.

The systemwill then describe a convergent spiral orbit toward

the initial orbit, for a stable baseline to occur.

Taking an orbit-oriented approach, the case described is

easier andmore intuitive. In a steady state, an n orbit and nþ 1

orbit are identical, which implies that the distance between

them tends to be zero. In a divergent state or transition, the

n þ 1 orbit is significantly greater than the n orbit, meaning

their distance will be positive and greater than zero. In the

case of the so-called out-of-control state, the n þ 1 orbit is far

from the n orbit in a value tending to infinity.

Systems studied, in nature and industry, are normally

nonlinear, although they may be simplified or linearized in

some sections. The case study involves a BWRd, a nonlinear,

chaotic, and stationary system [15]. Nonlinear, dynamic

systems have a chaotic behavior characterized by small

variations in initial conditions that after a period of evolution

have a very different impact on the system. This divergent

system behavior in relation to neighbor states can be quan-

tified using Lyapunov coefficientsduseful to estimate if the

system tends to the point of attraction or equilibrium,

remains in a stable orbit, or evolves to a point of no return

and out of control.

Now, these concepts relative to orbits, dynamic and

chaotic systems, are applied to the BWR thermal power time

series. If orbits exist, it is necessary to generate their space by

exploring and determining the attractor that generates

entities in phase space and therefore transforms time series

into a three-dimensional figure (Section 5.5). This allows

transformation of the time series into a set providing infor-

mation on system status and evolution. The system, a BWR,

has an evolution conditioned by the described orbits.

Once orbits are obtained, Lyapunov coefficients are defined

and calculated by taking two consecutive orbits, as illustrated

in Fig. 3.

We also consider two points represented as X0 and

X0 þ DX0, and establish the distance of two orbits as DX (X0, t).

The behavior of function DX (X0, t) will be as follows: (1) in a

system with attraction points or stable orbits, the value of

DX (X0, t) decreases asymptotically in time or with the number

of orbits, which tend to converge; and (2) if the system is

divergent, the value of DX (X0, t) will increase exponentially,

with a spiral behavior.

In order to establish a comparison parameter, the Lyapu-

nov coefficient is defined as follows:Fig. 1 e Irregular orbits.

Fig. 2 e Stable orbits, divergent orbits, and limit cycle.
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l ¼ lim
t/∞

jDX0 j/0

1
t
ln

jDXðX0; tÞj
jDX0j (1)

The interpretation of l and its values is as follows. For

values of l < 0, the orbits are attracted by a fixed point or a

stable orbit. These negative values of the Lyapunov coefficient

define a dissipativednot a conservativedsystem (i.e., damped

harmonic oscillator) characterized by its asymptotic stability.

System stability will increase as coefficient negativity aug-

ments. For values of l ¼ 0, the orbit corresponds to a neutral

point, implying that the system is in a permanent steady state.

In such cases, the system is considered conservative and

orbits maintain constant separation. For values of l > 0, the

system and orbits are clearly divergent. Nearby orbital points,

regardless of their proximity, diverge to any value of

separation.

Fig. 4 shows examples of orbits of systems with negative

and null Lyapunov coefficient.

This work focuses on large Lyapunov exponent (LLE) as

they determine system instability. Several methods or algo-

rithms are used to calculate LLE in a time series (e.g., [5,16,17]).

In this work, the ideas from the work Rosenstein et al. [17]

were applied.

3. Dynamics power generation BWR

The thermal power time series selected correspond to three

instabilities of different primary source in three NPPs in

operation: Cofrentes NPP (Spain); Laguna Verde NPP (Mexico);

and Forsmark NPP stability benchmark (Sweden).

Fig. 5 corresponds to the Cofrentes nuclear power station

instability, which occurred on January 29, 1991 during the

startup sequence after an emergency trip. At the time of the

incident, the plant had a thermal power of 41% with a flow

rate of 38%, conditions in which the thermal power oscilla-

tions occurred. They were controlled by the operators through

control rod insertion. The instability, considered out-of-phase,

was caused by feedwater temperature reduction.

Fig. 6 corresponds to the Laguna Verde (Veracruz, Mexico)

nuclear power station instability event that occurred on

February 24, 1995 (Table 1). Reactor 1 of Laguna Verde NPP

experienced power oscillations during startup. When insta-

bility occurred, the unit had a thermal power of 35% and a core

flow rate of 38%, with recirculation in low-speed and flow

control valves (FCVs) partially open. When the anomaly was

detected, the operator opened the FCVs causing an increase in

core flow rate and an oscillation decrease until stability was

reached again. In any case, the operator decided to manually

shut down the reactor. This instability was considered as in

phase.

Fig. 7 represents the case of Fosmark NPP, which is

different because it is not a power instability caused by plant

operation, but a premeditated situation. Thus, the data range

used correspond to the “Nuclear Science Committee of the

OECD Nuclear Energy Agency (NEA)” project intended to

compare different signal analysis methods for BWR stability

studies [11]. The instability, categorized as in phase, was

caused by operation within the power-flow map instability

area.

The sampling frequency and the duration of each event

described are reflected in Table 1.

4. Methodology

This section describes the general LLE calculation process and

the construction of its time series, which is used to analyze

thermal power evolution and instabilities. Once calculations

are finished, the analysis phase begins with the aim of

comparing the LLE time series to the thermal power evolution,

and the LLE sign to the instability starting moment of each

reactor.

The LLE calculation (for a short time series), described by

Rosenstein et al. [17], is performed on the short and stationary

time series. LLE is defined as:

dðtÞ ¼ Cel1t; (2)

where d(t) is the average divergence at time t and C is a con-

stant that normalizes the initial separation. From the defini-

tion of l 1, one can assume that the jth pair of nearest

neighbors diverge approximately at a rate given by the LLE.

Then,

djðiÞzCje
l1ðiDtÞ (3)

The approach for calculating l 1 is given by Sato et al. [18]:

l1ðiÞ ¼ 1
iDt

1
ðM� iÞ

XM�i

j¼1

[n
djðiÞ
djð0Þ; (4)

i.e., a method that tracks the exponential divergence of

nearest neighbors. In this expression, Dt is the sampling

period, dj(i) is the distance between the jth pair of nearest

neighbors after i discrete time steps (iDt), and M is related to

reconstruction delay, embedding dimension, and point of

time series.

Fig. 3 e Graph of two orbits and their characteristic

parameters.

Nu c l e a r E n g i n e e r i n g a n d T e c h n o l o g y 4 8 ( 2 0 1 6 ) 4 3 4e4 4 7 437

http://dx.doi.org/10.1016/j.net.2016.01.002
http://dx.doi.org/10.1016/j.net.2016.01.002


The initial distance from the jth point to its nearest

neighbor, dj(0), is calculated as [17]:

djð0Þ ¼ min
Xj

���Xj � Xbj
���; for

���j� bj���>mean period; (5)

where Xĵ is the nearest neighbor and Xj is the reference point.

The mean period is given in Table 2.

In this work, two cases were analyzed for each dynamics

power generation series: Case A, LLE is obtained for the

complete thermal power time series of each reactor; and Case

B, LLE is obtained for every moment. The rolling window

methodology is applied in order to establish an LLE time

series.

Themethodology to determine LLE considers the following

main steps. Step 1. Reconstructing of the attractor dynamics

from single time series, in order to identify the main param-

eters. Step 2. Determination of main period (Dt). The main

period was applied with fast Fourier transform to the signals.

Step 3. Determination of reconstruction delay (J), which was

calculated using the average mutual information method.

Step 4. Selecting of embedding dimension (m). We applied the

False Nearest Neighbors (e.g., [19,20]). Step 5. Description of

attractor characteristics. With the parameters Dt, J, and m

described in Steps 2e5, we obtain the attractors. Step 6. LLE is

calculated using Eqs. (3)e(5) for Cases A and B, where

M ¼ N � (m � 1)J.

The methodology used to determine rolling window and

subset sizes will be developed in Section 6.2.

5. Developed

5.1. Reconstructing the attractor dynamics

The first step of the approach involves reconstructing the

attractor dynamics from single time series. In this work, the

method of delays was applied. The reconstructed trajectory,

X, can be expressed as a matrix: X ¼ (X1, X2, …, XM)
T, where

each row is a phase-space vector, and Xi is the state of the

system at discrete time i. For an N-point time series, {x1, x2,…,

xN}; each Xi is given by:

Xi ¼
�
xi xiþj… xiþðm�1ÞJ

�
; (6)

Fig. 4 e Example of orbits and characteristic: Lyapunov exponents.
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Fig. 5 e Cofrentes instability event.
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where J is the reconstruction delay and m is the embedding

dimension. Then, X is an M � m matrix, and m, M, J, and N are

related as: M ¼ N � (m � 1)J.

5.2. Main period (Dt)

The main period was applied using fast Fourier transform to

the signals shown in Figs. 5e7. The main period values are

shown in Table 2.

Period and frequency information shown in Table 2 cor-

responds to the main value and is present in the entire ther-

mal power time series. Values are consistent with the

instability state (e.g., [21e24]).

5.3. Reconstruction delay

Reconstruction delay (J) is calculated using the average mutual

information method, and is the value of T, where the

following function is minimized:

IdðJÞ ¼
XN
n¼1

Pðxn; xnþJÞ$log2

Pðxn; xnþJÞ
PðxnÞ$PðxnþJÞ; (7)

where P(xn) is the probability of observing xn and P(xn þ xnþJ) is

the probability of observing both values. Reconstruction delay

values obtained for this analysis are shown in Table 3.

5.4. Embedded dimension (m)

Imagining a dynamic, stationary, and deterministic system

observed through a function such as:

g : M/R; gð$Þ : zn/xn ¼ gðznÞ; (8)

a scalar magnitude will be obtained at any time. This scalar

value does not offer a full system description, which can be

obtained by observing xn many successive times. According to

the Takens embedding theorem [25,26], if a number denomi-

natedm is sufficiently large, the evolution of (xn, xnþ1,…, xnþm)

will be the same as zn. Then, Takens theorem giving condi-

tions under which a discrete-time dynamical system can be

reconstructed from scalar-valued partial measurements of

internal states.

In general, the aim of selecting an embedding dimension is

to make a sufficient number of system state observations to

solve the deterministic system state unambiguously.

As for themethodology to calculatem, we applied the False

Nearest Neighbors (e.g., [19,20]). Then, the embedding

dimension is obtained as the minimum value n that satisfying

the following condition:

��xt�ðnþ1ÞJ � xt0�ðnþ1ÞJ
��

vt � vNN
t

>RT (9)

where

vt ¼ ðxt�J; xt�2J;…xt�nJÞ (10)

vNN
t ¼ ðxt0�J; xt0�2J;…; xt0�nJÞ (11)
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Fig. 6 e Laguna Verde instability event.

Table 1 e Identifying characteristics of each analyzed
signal.

NPP Time series Duration (s) Sampling period (s)a

Cofrentes 250 0.05

Laguna Verde U1. 700 0.2

Forsmark 320 0.08

NPP, nuclear power plant.
a The sampling period (Dt) is applied in Eq. (3) for complete time

series.
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that is considered the nearest neighbor. In this expression, RT

is the criterion for the nearest false neighbors. Calculation of

the embedded dimension requires knowing the reconstruc-

tion delay (J) value, which is given in Table 3. The results

calculated by the mutual information method are presented

in Table 4.

5.5. Attractor characteristics

The vectors that reconstruct the state space of the system is

given by Eq. (6), where the reconstruction delay (J) and

embedded dimension (m) are given in Tables 3 and 4, respec-

tively, for each NPPs. This work uses the fractal nature of

neutronic power signal (time series) in BWRs. This fractal

nature of the BWR thermal power signal leads to the creation

of attractors for three neutronic power time series in three

different reactors under unstable conditions. The attractor

morphology and characteristics help us to analyze the

stability, instability, and reversibility.

Typically, graphic representation is difficult with those

dimensions, so reduction should be necessary from the vector

dimension to three dimensions, to visualize the attractor. In

order to represent attractors, in a three-dimensional space, it

is necessary to generate a list of x, y, and z coordinates so that

points can determine the orbits and the attractor [27,28].

Based on the definition of attractor, the y and z coordinates are

delayed coordinates from the same series: y(t) ¼ s(t þ J) and

z(t) ¼ s(t þ 2J). Taking into account the J values, the attractors

are presented in Figs. 8e10.

An analysis of Figs. 8e10 leads to the conclusion that the

attractor, at least in 3D, is a fully developed three-dimensional

structure. A detailed analysis shows that the attractor is a

divergent hyperbolic cone. Cone divergence or diameter

increasing is related with instability progression and is

correlated to power variation increase. Similarly, it can be

determined that orbits comprising the attractor are within the

so-called limit orbit, meaning the system remains attracted by

the cone's central axis or point. This is shown in Fig. 8 as

instability is corrected and returned to a stable condition.

6. Results and discussion

In Section 4, the methodology of LLE calculation in a time

series was reviewed and explained, and in Section 5 the

development is presented. The effectiveness of LLE has been

demonstrated in previous works for different applications

(e.g., [29e36]).

In this section, LLE results will be presented for two cases:

Case A. LLE is obtained for the complete thermal power time

series of each reactor, and Case B. LLE is obtained for every

moment for each reactor, i.e., as function of time, LLE(t).

6.1. Case A. Full thermal power time series
characterization

First, the complete time series of the LLE was determined to

fully characterize reactor behavior over the analyzed period.
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Fig. 7 e Forsmark stability benchmark: APRM signal, case c5-aprm1 [11].

Table 2 e Frequency and main period (Dt).

NPP time series Frequency (Hz) Dt (s)

Cofrentes 0.4707 2.1244

Laguna Verde U1 0.5382 1.8580

Forsmark 0.5286 1.8917

NPP, nuclear power plant.
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Table 5 shows the complete time series values of LLE. In this

case, LLE was obtained using the data from Table 1.

The LLE values shown in Table 5 are positive, meaning that

the system defined in Section 2 is diverging. The behavior is

nonpersistent, an interpretation that is consistent with the

divergent form of the attractor (Figs. 8e10).

6.2. Case B. LLE obtained for every moment for each
reactor

Once the overall performance is analyzed, it is necessary to

investigate temporal LLE behavior and system evolution. The

proposed rolling window scheme is intended to determine the

following short time series:

ðxi; xiþ1;…; xiþnÞ; for i ¼ 1; 2;…; [� n; (12)

where [ is time series length. The short time subseries have to

be stationary for an LLE value to be calculated using the same

methodology of the full neutronic power time series. The

result of this process will be a pair (i, LLE(i)) and therefore an

LLE time series.

The objective is to determine the minimum number n in

Eq. (12) for a stable representative LLE and a stationary ther-

mal subseries. To calculate the value of n, the approach used

to obtain the Hurst exponent in previous studies is used [10].

This approach establishes that to calculate the value of n, it is

necessary to satisfy:

dðLLEÞ
dn

¼ 0 (13)

With this aim, we will calculate LLE with various values of

n, starting from the origin to n¼[. The selected window values

are presented in Table 6.

Using the calculated window length shown in Table 6, in a

rolling window scheme, the LLE time series is shown in Figs.

11e13 for every analyzed NPP. The parameters to be

analyzed are values, trends and sign changes, intervals of

homogeneous tendency, and correlations with maneuvers, as

well as autonomous reactor behaviors.

The analysis criteria that were applied in this study are as

follows: (1) LLE < 0 indicates a stable reactor situation, (2)

LLE > 0 indicates a situation in which orbits are slightly

divergent, is the much higher value of LLE, (3) the existence of

a positive trend implies a reactor drift and the existence of a

destabilizing event. This means the system (reactor) moves

away from its equilibrium point, and (4) if the trend is nega-

tive, the system will reverse the evolution and converge

toward the equilibrium point.

6.2.1. Cofrentes NPP
As shown in Section 3 and in Fig. 11, the plant was starting

up after a reactor trip. The first interval to be studied is

between the origin and the value of 60 seconds. In this in-

terval, the plant does not have detectable instability but the

value of LLE is not negative, meaning instability was pre-

sent but not evident. The analysis of Fig. 11 reveals that

during the interval from instant t ¼ 60 seconds to moment

t ¼ 450 seconds, thermal power causes an oscillation

amplitude increase. The LLE value and tendency are clearly

positive, with LLE coinciding the most with the moment

of maximum amplitude. Between t ¼ 450 seconds and

t ¼ 600 seconds, the operator inserted control rods, causing

an oscillation decrease, stabilization, and subsequent

power reduction. In that same interval, LLE tendency is

clearly negative and takes the series to the negative half-

space.

LLE trend and value indicate thermal power reactor status.

The interesting thing about LLE time series is what happens

between the initial state and the timing of control rod inser-

tion between t ¼ 0 and t ¼ 450 seconds, when the system

evolves autonomously without human action.

Fig. 11 (upper) shows that in the interval between 0 and 450

seconds, the LLE time series behavior has the appearance of

sawteeth, with a succession of maximums and minimums.

The LLE time series form indicates that the system reacts to

cancel the original state and mechanism of divergence

(instability). Thus, each maximum, representative of a desta-

bilizing mechanism, is followed by a minimum, indicative of

the existence of internal mechanisms tending to stabilize the

system.

6.2.2. Laguna Verde U1 NPP
The thermal power time series (Fig. 12) is apparently stable up

to t ¼ 320 seconds. Prior to that time, at about t ¼ 240 seconds,

an event of high local amplitude (a forerunner of further

instability) is registered [15]. In the LLE time series, the values

are negative but the trend rises, with episodes of positive

values in t ¼ 240 seconds and t ¼ 320 seconds.

In the interval between t ¼ 320 seconds and t ¼ 420

seconds, the signal seems to saturate, with high but con-

stant amplitude. In the same interval, the LLE time series

returns to negative values. From t ¼ 420 seconds, amplitude

is increased significantly, as well as the LLE value, with a rise

to the positive half-space and maximum values being

reached.

After t ¼ 600 seconds, following FCV opening, amplitude

decreases and thermal power tends to stabilize. During this

same period, the LLE presents a sustained negative trend

bringing value to the seminegative space.

In the analysis of the LLE time series (Fig. 12, lower), there

are peaks hovering around t ¼ 240 seconds and one very

Table 3 e Reconstruction delay (J).

Time series of NPP No. of events J(s)

Cofrentes 7 0.35

Laguna Verde U1 2 0.4

Forsmark 5 0.4

No., number; NPP, nuclear power plant.

Table 4 e Integration dimension values.

NPP time series Embedded dimension (m)

Cofrentes 6

Laguna Verde U1 6

Forsmark 4

NPP, nuclear power plant.
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distinct peak around t ¼ 320 seconds, confirming the moment

of divergence appearance (instability) in thermal power

signal.

Once the coherence between LLE time series and thermal

power time series is analyzed, system evolution in the

autonomous divergence phase needs to be examined. To do

this, the intervals between 240e320 seconds and 320e600

seconds are evaluated as that is when the system evolves

independently. In both intervals, the system (BWR) evolves in

two different ways. After t ¼ 240 seconds, the operator moves

the recirculation FCVs, resulting in a temporary tending to

system destabilization as thermal power reaction needs to be

considered. Likewise, LLE peaks around 240 seconds, although

it remains in negative values. From 240 seconds to 320

seconds, the LLE series trend is clearly positive, with a

behavior marked by a succession of peaks and valleys. The

peaks are of positive value, whereas the valleys are in the

negative semispace, meaning the system refuses to leave the

stable state and fails to initiate the process of divergence

(instability). From the interval between t ¼ 320 seconds and

t ¼ 600 seconds, the LLE time series has a constant positive

trend and goes from the negative semispace to the positive

semispace. As in the previous case of Cofrentes NPP, the

behavior continues to be characterized by a graph in the form

Fig. 8 e Attractor of Cofrentes Nuclear Power Plant.

Fig. 9 e Attractor of Laguna Verde Nuclear Power Plant.
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of sawteeth, and the system attempts to recover the equilib-

rium via its internal mechanisms up to t ¼ 550 seconds. From

that moment until t ¼ 600 seconds, the operator moves the

recirculation control valves, after which the internal hydraulic

mechanisms begin to bring the reactor to an equilibrium

point, as deduced from thermal power amplitude reduction.

6.2.3. Forsmark NPP
This case is not analogous to the one above as instability is

raised and maintained artificially. The system is divergent

(unstable), and there is no transition or evolution from an

equilibrium point or stable system. The registered series is

unstable along its entire length and has two different levels of

amplitude (Fig. 13). Analyzing the LLE value in the entire

range, it is observed that there are also two value levels: the

first value corresponds to the thermal power time series part

with high amplitude and the second corresponds to the low

amplitude part. The LLE time series also has a transition area,

similar to the power series for the interval between t ¼ 300

seconds and t ¼ 450 seconds, where a positive trend leads LLE

to a higher positive value. Amplitude increases are preceded

by a local maximum of the LLE value.

The analysis of Fig. 13 (lower) reveals that all LLE values are

in the positive semispace, a situation consistent with the

unstable state of the system. The sawtooth behavior described

above is also observed. In the case that concerns us, wherein

there is a lower thermal power signal maximum, a peak

occurs in the LLE time series. Likewise, when the amplitude is

maximum, the LLE marks a minimum and amplitude

decreases.

It can be deduced that the LLE is an indicator of system

behavior and response, valid to monitor forces tending to

system destabilization (stabilization). By contrast, a valley or a

minimum LLE value shown during a divergence causes the

system to react and attempt to reach a point of equilibrium.

Finally, note that under these autonomous conditions,

both the LLE and power series are bounded. Considering the

LLE series with values between 0.2 and 0.5, as well as the

shape of the attractor (Fig. 10), it is possible to conclude that

the system is not unstable but diverging.

6.3. Reversibility: Limit cycle

Once the LLE time series of values with the highest Lyapunov

coefficient (LLE) are calculated, it can be observed that in

instability and increased amplitude situations, the LLE has

positive values. On a strict interpretation, positive LLE values

indicate that orbits differ from one another and the system is

divergent. Taking into account both time series (Figs. 11e13)

and the attractor presented in Section 5.5, it is necessary to

clarify the previous interpretation because Perron's effect,

which is indicative of positive LLE, is not always associated

with chaos and instability. This means reversibility is

possible.

Attractor behavior and reactor response show an evidence,

controlled divergence, because under instability conditions,

the attractor has a divergent spiral that does not surpass the

cycle limit. In addition, it is clear that there are zero and

negative values in the LLE time series, even in areas tradi-

tionally considered unstable. Also, power thermal time series

attractors and orbits have a central point acting as gravita-

tional center. In none of the identified cases are these orbits

beyond equilibrium point attraction. Thus, the positive LLE

Fig. 10 e Attractor of Forsmark Nuclear Power Plant.

Table 5 e Complete time series values of LLE.

Time series (NPP) LLE

Cofrentes 0.1943

Laguna Verde U1 0.1200

Forsmark 0.2400

NPP, nuclear power plant.
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value produces a divergent drift in attractor and orbital forms,

although the reactor does not reach the limit cycle/orbit limit.

This implies that the system is divergent but reversible,

because the disappearance of the impulse leading to diver-

gence causes the system to stabilize, favored by the attraction

point (equilibrium point).

Another important feature is that the tendency of the LLE

series at intervals of instability in the three cases analyzed is

null (i.e., LLE series oscillates around the null value). It is

observed that each rise in the value of LLE is followed by a

decrease in the same magnitude (sawtooth). This behavior is

typical of the systems with negative feedback because a

variable increase augments canceling mechanisms and

returns the system to its original state. Therefore, it is possible

to confirm that the real system analyzed (Reactor BWR)

follows the behavior described in by the United States Nuclear

Regulatory Commission [21].

The reactor is a system whose nonlinearities cause oscil-

lations to be bounded by the limited orbit. Exceeding orbit

limits would result in an attraction loss at the center point of

the attractor. Once the system loses attraction from the

center, its behavior changes and thermal power fluctuations

become aperiodic, with greater amplitudes than those shown

when the system orbited in the attractor. The analyzed cases

(Cofrentes, Laguna Verde, and Forsmark NPPs) follow the

dynamics of two main behaviors. (1) When the system is

stable and a disturbance occurs, the reactor becomes unstable

linearly, power begins to grow, and a growing spiral appears in

the phase space (attractor). Initially, the perturbation is small

and the reactor response is linear. In this state, the LLE is going

to take a positive value and its temporal evolution will have a

positive average slope. (2) As oscillation grows, system non-

linearities become increasingly relevant and act as a power

sink. Thus, power uprate increases the negative feedback to

the reactivity and generates a negative reactivity trend. Under

these circumstances, the reactor tends to subcriticality and

therefore dampens oscillations, drifting to the initial equilib-

rium point. So, within a specific margin, the system is

reversible as disturbance elimination under these conditions

allows nonlinear forces to return the system to equilibrium. In

this situation, the LLE in the time evolution has a negative

slope and takes the system to a state of negative LLE value.

The behavior described is shown in Figs. 11e13, which

correlates to the earlier phases in the time-based LLE

evolution.

7. Conclusions

The LLE value on a time series is an indicator of system

instability. Also, in view of Table 5, instability severity can be

assessed in such a way that the more severe and prolonged

Table 6 e Rolling window length.

Time series
NPP

Window length
(n)

Time covered by the
window (s)

Cofrentes 300 15

Laguna Verde

U1

75 15

Forsmark 200 16

NPP, nuclear power plant.
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Fig. 11 e Cofrentes nuclear power plant. (A) Neutronic power series; and (B) LLE(t). LLE, largest Lyapunov exponent.
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instabilities have a greater LLE value, as in the case of Fors-

mark NPP.

The results from the LLE time series calculation method-

ology uses a rolling window sequence. This analysis sets out

partial conclusions that make an interesting use of this

technique. Evaluating LLE value in every moment (LLE(t)), as

well as its tendency, are essential to analyze current and

future reactor behavior.
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Fig. 12 e Laguna Verde nuclear power plant. (A) Neutronic power series; and (B) LLE(t). LLE, largest Lyapunov exponent.

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900
55

60

65

70

75

80

85

90

Time (s)

P
ow

er
 (%

)

Fosmark power

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time (s)

La
rg

es
t l

ya
pu

no
v 

ex
po

ne
nt

Fosmark LLE

(A)

(B)

Fig. 13 e Forsmark nuclear power plant. (A) Neutronic power series; and (B) LLE(t). LLE, largest Lyapunov exponent.
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Once the meaning of LLE values and their tendency is

analyzed, local LLE behavior is analyzed in the positive half-

space. This analysis reveals the reversible nature of the

system under the situations analyzed. Figs. 11e13 show that

when power series respond to a situation of divergence, LLE

time series behavior is of the sawtooth type, meaning that the

system tends to lose equilibrium. In none of the analyzed

cases was the cycle limit exceeded or attraction by the initial

equilibrium point. The previous statement justifies the reason

presented by March-Leuba et al. [6] in Section 4.4 on density

wave instabilities in BWRs.

The attractors constructed from the neutronic power

signals are basically the same (isomorphic), because they

respond to the same process of neutronic, thermohydraulics,

heat transfer, and two-phase flow. The first conclusion is

independent of instability type or mode (in-phase and out-of-

phase)dthe attractor remains similar (Figs. 8e10).

It is also concluded that the system is recoverable, because

the elimination of conditions causing instability results in the

system returning to its initial situation. This effect is seen in

the cases of Cofrentes and Laguna Verde at the end of the

series, after the operator acts to address the situation, either

by rod insertion or recirculation control valve opening

modification.
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