• Title/Summary/Keyword: expansiveness

Search Result 26, Processing Time 0.018 seconds

EXPANSIVITY ON ORBITAL INVERSE LIMIT SYSTEMS

  • Chu, Hahng-Yun;Lee, Nankyung
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.32 no.1
    • /
    • pp.157-164
    • /
    • 2019
  • In this article, we study expansiveness of the shift maps on orbital inverse limit spaces which consist of two cross bonding mappings. On orbital inverse limit systems, horizontal directions express inverse limit systems and vertical directions mean orbits based on horizontal axes. We characterize the c-expansiveness of functions on orbital spaces. We also prove that the c-expansiveness of the functions is equivalent to the expansiveness of the shift maps on orbital inverse limit spaces.

PRESERVATION OF EXPANSIVITY IN HYPERSPACE DYNAMICAL SYSTEMS

  • Koo, Namjip;Lee, Hyunhee
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.6
    • /
    • pp.1421-1431
    • /
    • 2021
  • In this paper we study the preservation of various notions of expansivity in discrete dynamical systems and the induced map for n-fold symmetric products and hyperspaces. Then we give a characterization of a compact metric space admitting hyper N-expansive homeomorphisms via the topological dimension. More precisely, we show that C0-generically, any homeomorphism on a compact manifold is not hyper N-expansive for any N ∈ ℕ. Also we give some examples to illustrate our results.

EQUIVALENT DEFINITIONS OF RESCALED EXPANSIVENESS

  • Wen, Xiao;Yu, Yining
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.3
    • /
    • pp.593-604
    • /
    • 2018
  • Recently, a new version of expansiveness which is closely attached to some certain weak version of hyperbolicity was given for $C^1$ vector fields as following: a $C^1$ vector field X will be called rescaling expansive on a compact invariant set ${\Lambda}$ of X if for any ${\epsilon}$ > 0 there is ${\delta}$ > 0 such that, for any $x,\;y{\in}{\Lambda}$ and any time reparametrization ${\theta}:{\mathbb{R}}{\rightarrow}{\mathbb{R}}$, if $d({\varphi}_t(x),\,{\varphi}_{{\theta}(t)}(y)){\leq}{\delta}{\parallel}X({\varphi}_t(x)){\parallel}$ for all $t{\in}{\mathbb{R}}$, then ${\varphi}_{{\theta}(t)}(y){\in}{\varphi}_{(-{\epsilon},{\epsilon})}({\varphi}_t(x))$ for all $t{\in}{\mathbb{R}}$. In this paper, some equivalent definitions for rescaled expansiveness are given.

ENTROPY MAPS FOR MEASURE EXPANSIVE HOMEOMORPHISM

  • JEONG, JAEHYUN;JUNG, WOOCHUL
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.28 no.3
    • /
    • pp.377-384
    • /
    • 2015
  • It is well known that the entropy map is upper semi-continuous for expansive homeomorphisms on a compact metric space. Recently, Morales [3] introduced the notion of measure expansiveness which is general than that of expansiveness. In this paper, we prove that the entropy map is upper semi-continuous for measure expansive homeomorphisms.

SHADOWING, EXPANSIVENESS AND STABILITY OF DIVERGENCE-FREE VECTOR FIELDS

  • Ferreira, Celia
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.1
    • /
    • pp.67-76
    • /
    • 2014
  • Let X be a divergence-free vector field defined on a closed, connected Riemannian manifold. In this paper, we show the equivalence between the following conditions: ${\bullet}$ X is a divergence-free vector field satisfying the shadowing property. ${\bullet}$ X is a divergence-free vector field satisfying the Lipschitz shadowing property. ${\bullet}$ X is an expansive divergence-free vector field. ${\bullet}$ X has no singularities and is Anosov.

TOPOLOGICAL STABILITY AND SHADOWING PROPERTY FOR GROUP ACTIONS ON METRIC SPACES

  • Yang, Yinong
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.2
    • /
    • pp.439-449
    • /
    • 2021
  • In this paper, we introduce the notions of expansiveness, shadowing property and topological stability for group actions on metric spaces and give a version of Walters's stability theorem for group actions on locally compact metric spaces. Moreover, we show that if G is a finitely generated virtually nilpotent group and there exists g ∈ G such that if Tg is expansive and has the shadowing property, then T is topologically stable.

TOPOLOGICAL ENTROPY OF EXPANSIVE FLOW ON TVS-CONE METRIC SPACES

  • Lee, Kyung Bok
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.34 no.3
    • /
    • pp.259-269
    • /
    • 2021
  • We shall study the following. Let 𝜙 be an expansive flow on a compact TVS-cone metric space (X, d). First, we give some equivalent ways of defining expansiveness. Second, we show that expansiveness is conjugate invariance. Finally, we prove that lim sup ${\frac{1}{t}}$ log v(t) ≤ h(𝜙), where v(t) denotes the number of closed orbits of 𝜙 with a period 𝜏 ∈ [0, t] and h(𝜙) denotes the topological entropy. Remark that in 1972, R. Bowen and P. Walters had proved this three statements for an expansive flow on a compact metric space [?].