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SHADOWING, EXPANSIVENESS AND STABILITY OF

DIVERGENCE-FREE VECTOR FIELDS

Célia Ferreira

Abstract. Let X be a divergence-free vector field defined on a closed,
connected Riemannian manifold. In this paper, we show the equivalence
between the following conditions:

• X is a divergence-free vector field satisfying the shadowing property.
• X is a divergence-free vector field satisfying the Lipschitz shadowing

property.
• X is an expansive divergence-free vector field.
• X has no singularities and is Anosov.

1. Introduction and results’ statement

Let M denote a d-dimensional (d ≥ 3), compact, boundary-less, connected
and smooth Riemannian manifold, endowed with a volume form, which has
associated a measure µ, called the Lebesgue measure. Also, denote by dist
the Riemannian distance and consider, for ǫ > 0 and p ∈ M , the open balls
Bǫ(p) = {x ∈M : dist(x, p) < ǫ}.

Denote by X
r(M) the set of vector fields defined on M and endowed with

the Cr Whitney topology (r ≥ 1). If the divergence of a Cr-vector field X
is zero, then we call X a Cr-divergence-free vector field. Let X

r
µ(M) denote

the set of divergence-free vector fields defined on M endowed with the induced
Cr Whitney topology. A Cr-vector field X : M → TM generates the Cr-flow
Xt :M →M for t ∈ R. If X is a divergence-free vector field, then Xt is called
a conservative flow, that is, the measure µ is Xt-invariant. From now on, we
set r = 1.

In this paper, we want to relate expansiveness, shadowing and Lipschitz
shadowing properties with the uniform hyperbolicity in the divergence-free set-
ting. So, we start by stating these concepts.

The set of singularities of a vector field X is denoted by

Sing(X) = {p ∈M : X(p) = ~0}.
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If p /∈ Sing(X), then p is called a regular point and a subset of M is said
regular if it has no singularities.

Given X in X
1(M) and a regular point x in M , let Nx = X(x)⊥ ⊂ TxM

denote the (dim(M) − 1)–dimensional normal bundle of X at x and define
Nx,ǫ = Nx ∩ {u ∈ TxM : ‖u‖ < ǫ} for ǫ > 0. Since, in general, Nx is not
DXt

x-invariant, we define the linear Poincaré flow

P t
X(x) = ΠXt(x) ◦DX

t
x,

where ΠXt(x) : TXt(x)M → NXt(x) is the canonical orthogonal projection.

Definition 1.1. Fix X ∈ X
1(M). An Xt-invariant, compact and regular set

Λ ⊂M is uniformly hyperbolic if NΛ admits a P t
X -invariant splitting Ns

Λ ⊕Nu
Λ

such that there is ℓ > 0 satisfying

‖P ℓ
X(x)|Ns

x
‖ ≤

1

2
and ‖P−ℓ

X (Xℓ(x))|Nu

Xℓ(x)
‖ ≤

1

2
for any x ∈ Λ.

A vector field X is called Anosov if the manifold M is uniformly hyperbolic.
Let A1

µ(M) denote the set of Anosov C1-divergence-free vector fields.

Since Λ is assumed to be compact, these definitions are equivalent to the
usual definitions of hyperbolic set of a flow and of Anosov vector field (see [7,
Proposition 1.1]).

Now, we want to state the definition of shadowing for continuous-time sys-
tems. First, define Rep as the set of the increasing homeomorphisms α : R → R,
called reparametrizations, satisfying α(0) = 0. Fixing ǫ > 0, define the set

Rep(ǫ) =
{

α ∈ Rep :
∣

∣

∣

α(t)

t
− 1

∣

∣

∣
< ǫ, t ∈ R

}

.

When we choose a reparametrization α in the previous set, we want α(t) to be
taken arbitrarily close to the identity.

Definition 1.2. Fix T > 0 and δ > 0. A map ψ : R → M is a (δ, T )-
pseudo-orbit of a flow Xt if dist(Xt(ψ(τ)), ψ(τ + t)) < δ for any τ ∈ R and
any |t| ≤ T . A pseudo-orbit ψ of a flow Xt is said to be ǫ-shadowed by some
orbit of Xt if there is x ∈ M and a reparametrization α ∈ Rep(ǫ) such that
dist(Xα(t)(x), ψ(t)) < ǫ for every t ∈ R.

Note that ψ is not assumed to be continuous.

Definition 1.3. A C1-vector field X satisfies the shadowing property if for
any ǫ > 0 and any T > 0, there is δ > 0 such that any (δ, T )-pseudo-orbit
ψ is ǫ-shadowed by some orbit of X . Let S1(M) and S1

µ(M) denote the sets

of vector fields in X
1(M) and X

1
µ(M), respectively, satisfying the shadowing

property.

In [16], Smale proved that a diffeomorphism in the C1-interior of the set of
diffeomorphisms with the shadowing property is C1-structurally stable. More
recently, Lee and Sakai proved, in [9], that if X belongs to the interior of the set
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S1(M) and has no singularities, then X satisfies the Axiom A and the strong
transversality conditions.

The Lipschitz shadowing property is a stronger definition of shadowing.

Definition 1.4. A C1-vector field X satisfies the Lipschitz shadowing property

if there are positive constants ℓ and δ0 such that any (δ, T )-pseudo-orbit ψ, with
T > 0 and δ ≤ δ0, is ℓδ-shadowed by an orbit of X . Let LS1(M) and LS1

µ(M)

denote the sets of vector fields in X
1(M) and X

1
µ(M), respectively, satisfying

the Lipschitz shadowing property.

By definition, it is immediate that the set LS1(M) is a subset of S1(M) and
that the set LS1

µ(M) is a subset of S1
µ(M).

In [17], Tikhomirov proved that a vector field in the C1-interior of the set
of vector fields with the Lipschitz shadowing property is structurally stable.
Recently, Pilyugin and Tikhomirov proved that a C1-diffeomorphism having
the Lipschitz shadowing property is structurally stable (see [15]).

The following definition is the notion of expansive vector field, introduced
by Bowen and Walters, in [6].

Definition 1.5. A C1-vector field X is expansive if, for any ǫ > 0, there is
δ > 0 such that if x, y ∈ M satisfy dist(Xt(x), Xα(t)(y)) ≤ δ for any t ∈ R

and for some continuous map α : R → R with α(0) = 0, then y = Xs(x),
where |s| ≤ ǫ. Denote by E1(M) ⊂ X

1(M) the set of expansive vector fields

and by E1
µ(M) ⊂ X

1
µ(M) the set of expansive divergence-free vector fields, both

endowed with the C1 Whitney topology.

Observe that the reparametrization α, in the previous definition, is not as-
sumed to be close to identity and that the expansiveness property does not
depend on the choice of the metric on M . This definition asserts that any
two points whose orbits remain indistinguishable, up to any continuous time
displacement, must be in the same orbit.

In 1970’s, Mañé proved that a diffeomorphism f in the C1-interior of the set
of expansive diffeomorphisms is Axiom A and satisfies the quasi-transversality
condition (see [10]). Later, Moriyasu, Sakai and Sun proved the same result for
vector fields, in [11]. Moreover, the authors proved that if X belongs to the C1-
interior of the set E1(M) and has the shadowing property, then X is Anosov.
Recently, Pilyugin and Tikhomirov proved that an expansive diffeomorphism
having the Lipschitz shadowing property is Anosov (see [15]).

The expansiveness and the shadowing properties play an essential role in
the investigation of the stability theory and the ergodic theory of Axiom A
diffeomorphisms (see [5]). It is well-known that Anosov systems are expansive
and satisfy the shadowing and the Lipschitz shadowing properties (see [1, 14]).
In this paper, we prove the following result.

Theorem 1. S1
µ(M) = LS1

µ(M) = E1
µ(M) = A1

µ(M).
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2. Definitions and auxiliary results

In this section, we state some extra definitions on divergence-free dynamics,
as well as some auxiliary results.

A closed orbit γ of X is a non-constant integral curve γ : [a, b] → M of
X such that γ(a) = γ(b). We define b as the smallest number greater than a
satisfying γ(a) = γ(b). Observe that the period of γ is b − a. For simplicity,
sometimes we call p ∈ γ a closed orbit. So, the set of closed orbits associated
to the vector field X is denoted by

Per(X) = {p ∈M : ∃ t > 0 , Xt(p) = p}.

Fix a closed orbit γ and p ∈ γ. If π > 0 is the least number such thatXπ(p) = p,
then γ is a closed orbit with period π. Denote by Σ a (dim(M)− 1)-transversal

section to X at p. Poincaré defined a map f from Σ̃ ⊂ Σ to Σ, called the

Poincaré first return map of the trajectories on Σ, such that, for any point
x ∈ Σ in a small neighborhood of p, the ω-trajectory of x will intersect Σ again
at some point y at some time t close to b. A closed orbit γ of X is hyperbolic
if p ∈ γ is a hyperbolic fixed point of the Poincaré first return map.

Singularities and closed orbits of X are called critical points and are denoted
by

Crit(X) = Sing(X) ∪ Per(X).

A singularity p is called hyperbolic if the eigenvalues of DXp are not purely
imaginary. We say that any element of Crit(X) is hyperbolic, if any singularity
and any closed orbit of X is hyperbolic.

Definition 2.1. A C1-vector field X is a star vector field if there exists a C1-
neighborhood U of X in X

1(M) such that, for any Y ∈ U , any element of the
set Crit(Y ) is hyperbolic. Moreover, a vector field X ∈ X

1
µ(M) is a divergence-

free star vector field if there exists a C1-neighborhood U of X in X
1
µ(M) such

that, for any Y ∈ U , any element of the set Crit(Y ) is hyperbolic. Note that if
X ∈ X

1
µ(M) is a star vector field, then X is a divergence-free star vector field.

The set of star vector fields is denoted by G1(M) and the set of divergence-free
star vector fields is denoted by G1

µ(M).

By definition, G1(M) and G1
µ(M) are C1-open subsets of X1(M) and X

1
µ(M),

respectively. Observe that, in the previous definition, the hyperbolicity imposed
at the critical points is not uniform. So, the hyperbolicity constants depend on
the critical point.

In [8], it is proved that divergence-free star vector fields are Anosov.

Theorem 2.1 ([8, Theorem 1]). If X ∈ G1
µ(M), then Sing(X) = ∅ and X is

Anosov.

A 3-dimensional proof of this result is presented in [4] and a version for
4-dimensional symplectic Hamiltonian vector fields can be found in [2].

In [8], it is also proved that a C1-structurally stable divergence-free vector
fields is Anosov.
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Theorem 2.2 ([8, Theorem 2]). If X ∈ X
1
µ(M) is C1-structurally stable, then

X is Anosov.

Now, we state a more relaxed definition of hyperbolicity.

Definition 2.2. Let X ∈ X
1(M) and let Λ ⊂ M be a compact, Xt-invariant

and regular set. Assume that there exists a P t
X -invariant splitting N = N1 ⊕

· · · ⊕ Nk over Λ, for 1 ≤ k ≤ dim(M) − 1, such that all the subbundles have
constant dimension. This splitting is dominated if there exists ℓ > 0 such that,
for any 0 ≤ i < j ≤ k,

‖P ℓ
X(x)|Ni

x
‖ · ‖P−ℓ

X (Xℓ(x))|Nj

Xℓ(x)

‖ ≤
1

2
for any x ∈ Λ.

Note that a vector field with a dominated splitting structure is not neces-
sarily uniformly hyperbolic.

The next result corresponds to a dichotomy for C1-divergence-free vector
fields.

Theorem 2.3. Let X ∈ X
1
µ(M) and let U be a small C1-neighborhood of X.

Then, for any ǫ > 0, there exist l > 0 and τ > 0 such that, for any Y ∈ U and

any x ∈ Per(Y ), with period greater than τ ,

• either P t
Y admits an l-dominated splitting over the Y t-orbit of x, or

else

• for any neighborhood U of x, there exists an ǫ-C1-perturbation Ỹ of

Y , coinciding with Y outside U and along the orbit of x, such that

P
π(x)

Ỹ
(x) has only eigenvalues equal to 1 or −1, where π(x) stands for

the period of x.

The proof of this result follows the ideas stated in the proof of [3, Proposition
2.4].

Recall that a singularity p is linear if there exist smooth local coordinates
around p such that X is linear and equal to DXp in these coordinates (see
[18, Definition 4.1]). The following result says that if the vector field has
a linear hyperbolic singularity of saddle-type, then the linear Poincaré flow
cannot admit a dominated splitting over the set of regular points of M .

Proposition 2.4 ([18, Proposition 4.1]). If X ∈ X
1(M) has a linear hyperbolic

singularity of saddle-type, then P t
X does not admit any dominated splitting over

M\Sing(X).

We remark that the proof of this proposition can be easily adapted to
the divergence-free context. Hence, Proposition 2.4 remains valid for C1-
divergence-free vector fields.

The following lemma states that a singularity can be turned into a linear
one, by performing a small perturbation on the vector field.

Lemma 2.5 ([3, Lemma 3.3]). Let p be a singularity of X ∈ X
1
µ(M). For any

ǫ > 0, there exists Y ∈ X
∞
µ (M) such that Y is ǫ-C1-close to X and p is a linear

hyperbolic singularity of Y .
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We end this section with a perturbation result due to Zuppa (see [19]). It
allows us to C1-approximate any divergence-free vector field by a smooth one,
keeping the divergence-free property.

Theorem 2.6. The set of C∞-divergence-free vector fields is C1-dense in

X
1
µ(M).

3. Proof of Theorem 1

In this section, we split the proof of Theorem 1 in some lemmas. We already
know that A1

µ(M) ⊂ S1
µ(M), that A1

µ(M) ⊂ E1
µ(M) and that LS1

µ(M) ⊂

S1
µ(M). So, by Theorem 2.1, it is enough to show that int(S1

µ(M)) ⊂ G1
µ(M)

and int(E1
µ(M)) ⊂ G1

µ(M). Hence, given that a flow satisfying the Lipschitz
shadowing property is structurally stable (see [13]), Theorem 2.2 concludes the
proof of Theorem 1.

Let us firstly prove that any divergence-free vector field in the C1-interior
of the set S1

µ(M) has all the closed orbits hyperbolic. For this, we adapt the
strategy described in [9], by Lee and Sakai. After this, we prove that a vector
field with the described properties does not have singularities. Therefore, by
Theorem 2.1, int(S1

µ(M)) = A1
µ(M).

Lemma 3.1. If X ∈ int(S1
µ(M)), then any closed orbit of X is hyperbolic.

Proof. Fix X ∈ int(S1
µ(M)) and a C1-neighborhood U of X in S1

µ(M). Let p
be a point in a closed orbit γ of X with period π and Up a small neighborhood
of p on M . By contradiction, assume that there is an eigenvalue σ0 of P π

X(p)
satisfying |σ0| = 1. Applying Zuppa’s Theorem (Theorem 2.6), there exists a
smooth vector field Y ∈ U such that Y π(p) = p and P π

Y (p) has an eigenvalue σ
with |σ| = 1.

Remark 3.1. In fact, P π
Y (p), in the proof, may not have an eigenvalue σ with

modulus 1. In this case, there exists W ⊂ U and Z ∈ W , chosen C1-arbitrarily
close to Y and having an eigenvalue with modulus arbitrarily close to 1. So,
by the Franks Lemma ([3, Lemma 3.2]), we can perform an ǫ-C1-perturbation

Z̃ ∈ W of Z, with arbitrarily small ǫ > 0, such that P π
Z̃
(p) has an eigenvalue σ̄

with |σ̄| = 1.

Accordingly with Moser’s Theorem (see [12]), there is a smooth conserva-

tive change of coordinates ϕp : Up → TpM such that ϕp(p) = ~0. Recall that
fY : ϕ−1

p (Np) → Σ denotes the Poincaré map associated to Y t, where Σ is

a Poincaré section through p. Let V be a C1-neighborhood of fY . By the
Franks Lemma ([3, Lemma 3.2]), taking T a small flowbox of Y [0,t0](p), with
0 < t0 < π, there are Z ∈ U , fZ ∈ V and ǫ > 0 such that:

• Zt(p) = Y t(p) for any t ∈ R;
• P t0

Z (p) = P t0
Y (p);

• Z|T c = Y |T c ;
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•

fZ(x) =

{

ϕ−1
p ◦ P π

Y (p) ◦ ϕp(x), x ∈ Bǫ0(p) ∩ ϕ
−1
p (Np)

fY (x), x /∈ B4ǫ0(p) ∩ ϕ
−1
p (Np),

where ǫ0 > 0 is small.

Notice that P π
Z (p) still has an eigenvalue σ with modulus 1. Firstly, assume

that σ = 1, fix the associated non-zero eigenvector v such that ‖v‖ = ǫ0/2 and
define Iv = {sv : 0 ≤ s ≤ 1}.

Since Z ∈ S1
µ(M), for any ǫ > 0, there is δ > 0 such that any (δ, T )-pseudo-

orbit is ǫ-shadowed by some orbit y of Zt for T > 0. Fix 0 < ǫ < ǫ0
4 . The idea

now is to construct a (δ, T )-pseudo-orbit of Zt, adapting the strategy followed
by Lee and Sakai in [9, Proposition A]. Let us present the highlights of that
proof.

Let x0 = p and t0 = 0. Since p is a parabolic closed orbit, we construct a
finite sequence {(xi, ti)}Ii=0, where I ∈ N, ti > 0 and xi ∈ ϕ−1

p (Iv) for 1 ≤ i ≤ I
such that:

• xI = ϕ−1
p (v);

• dist(Zt(fZ(xi)), Z
t(xi+1)) < δ for |t| ≤ T and 0 ≤ i ≤ I − 1;

• Zti(xi) = fZ(xi) for 1 ≤ i ≤ I.

So, taking Sn =
∑n

i=0 ti for 0 ≤ n ≤ I, the map ψ : R →M defined by

ψ(t) =







Zt(x0), t < 0
Zt−Sn(xn+1), Sn ≤ t < Sn+1, 0 ≤ n ≤ I − 2
Zt−SI−1(xI), t ≥ SI−1,

is a (δ, T )-pseudo-orbit of Zt. So, since Z ∈ U , there is a reparametrization
α ∈ Rep(ǫ) and a point y ∈ Bǫ(p) ∩ ϕ−1

p (Np,ǫ) that ǫ-shadows ψ. So,

dist(Zα(t)(y), ψ(t)) < ǫ

for any t ∈ R. Note that, since σ = 1,

dist(x0, xI) = dist
(

p, ϕ−1
p (v)

)

= dist
(

p, fZ(ϕ
−1
p (v))

)

= ‖v‖ =
ǫ0
2
> 2ǫ.

However, since Z has the shadowing property,

dist(x0, xI) ≤ dist
(

x0, Z
α(SI−1)(y)

)

+ dist
(

Zα(SI−1)(y), ψ(SI−1)
)

< 2ǫ,

which is a contradiction.
Now, if |σ| = 1 but σ 6= 1, we point out that, by the Franks Lemma ([3,

Lemma 3.2]), we can find W ∈ U such that P π
W (p) is a rational rotation.

Then, there is T 6= 0 such that PT+π
W (p) has 1 as an eigenvalue. Therefore,

reproducing the previous argument, we conclude that any closed orbit of X ∈
int(S1

µ(M)) is hyperbolic. �

Lemma 3.2. If X ∈ int(S1
µ(M)), then Sing(X) = ∅.
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Proof. Fix X ∈ int(S1
µ(M)) and let U be a C1-neighborhood of X in S1

µ(M),
small enough such that the dichotomy of Theorem 2.3 holds.

By contradiction, assume that Sing(X) 6= ∅ and fix p ∈ Sing(X). By
Lemma 2.5, there is Y ∈ U such that p ∈ Sing(Y ) is linear hyperbolic, and
so of saddle-type. Hence, by Proposition 2.4, P t

Y does not admit any dom-
inated splitting over M\Sing(Y ). However, since any closed orbit of Y is
hyperbolic (Lemma 3.1), it is straightforward to see that, reproducing the tech-
niques used in the proof of [8, Lemma 3.1], P t

Y admits a dominated splitting
over M\Sing(Y ). Therefore, Sing(X) = ∅. �

Now, we prove that any divergence-free vector field in the C1-interior of the
set E1

µ(M) has all the closed orbits hyperbolic. For this, we adapt the strategy
described in [11], by Moriyasu, Sakai and Sun, to the divergence-free setting.

Lemma 3.3. If X ∈ int(E1
µ(M)), then any closed orbit of X is hyperbolic.

Proof. Fix X ∈ int(E1
µ(M)) and a C1-neighborhood U of X in E1

µ(M). Let p
be a point in a closed orbit γ of X with period π and Up a small neighborhood
of p on M . By contradiction, assume that there is an eigenvalue σ0 of P π

X(p)
such that |σ0| = 1. Applying Zuppa’s Theorem (Theorem 2.6), there is Y ∈ U
such that Y ∈ X

∞
µ (M), Y π(p) = p and P π

Y (p) has an eigenvalue σ such that
|σ| = 1, as explained in Remark 3.1.

Let ϕ and fY be as in the proof of Lemma 3.1 and fix a C1-neighborhood
V of fY . By the Franks Lemma ([3, Lemma 3.2]), taking T a small flowbox of
Y [0,t0](p), with 0 < t0 < π, there are Z ∈ U and fZ ∈ V such that:

• Zt(p) = Y t(p) for any t ∈ R;
• P t0

Z (p) = P t0
Y (p);

• Z|T c = Y |T c ;
•

fZ(x) =

{

ϕ−1
p ◦ P π

Y (p) ◦ ϕp(x), x ∈ Bǫ/4(p) ∩ ϕ
−1
p (Np)

fY (x), x /∈ Bǫ(p) ∩ ϕ−1
p (Np).

Observe that P π
Z (p) still has an eigenvalue σ with modulus 1.

Since Z ∈ E1
µ(M), for a sufficiently small ǫ > 0, there exists 0 < δ < ǫ

such that, if x, y ∈ M satisfy dist(Zt(x), Zα(t)(y)) ≤ δ for every t ∈ R and
for some continuous map α : R → R with α(0) = 0, then y = Zs(x), where
|s| ≤ ǫ. So, take 0 < δ′ < δ such that if x, y ∈ M satisfy dist(x, y) < δ′ then
dist(Zt(x), Zt(y)) < δ for any 0 ≤ t ≤ π.

As shown in the proof of Lemma 3.1, it is enough to assume that the eigen-
value σ is equal to 1. Fix a non-zero eigenvector v associated to σ such that
‖v‖ < δ′. Now, choose ϕ−1

p (v) ∈ ϕ−1
p (Np)\{p} and observe that

fZ(ϕ
−1
p (v)) = ϕ−1

p ◦ P π
Y (p) ◦ ϕp(ϕ

−1
p (v)) = ϕ−1

p ◦ P π
Y (p)(v) = ϕ−1

p (v).

Thus, dist(p, ϕ−1
p (v)) = dist(p, fZ(ϕ

−1
p (v))) = ‖v‖ < δ′ and, by the choice of

δ′, we have that dist(Zt(p), Zt(ϕ−1
p (v))) < δ for every 0 ≤ t ≤ π. Then, there
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is a continuous function α : R → R, with α(0) = 0, such that

dist(Zt(p), Zα(t)(ϕ−1
p (v))) < δ

for every t ∈ R. Since Z ∈ E1
µ(M), we have that ϕ−1

p (v) = Zs(p) for |s| ≤ ǫ.

This is a contradiction, because ϕ−1
p (v) ∈ ϕ−1

p (Np)\{p}. Hence, any closed

orbit of X in int(E1
µ(M)) is hyperbolic. �

We remark that, in [6, Lemma 1], Bowen and Walters prove that if p ∈ M
is a singularity of an expansive vector field, then there is ǫ > 0 such that
Bǫ(p) = {p}. Therefore, since M is a connected manifold, M must be regular.
So, in particular, if X ∈ int(E1

µ(M)), then Sing(X) = ∅.

Hence, by Theorem 2.1, int(E1
µ(M)) ⊂ A1

µ(M), which concludes the proof
of Theorem 1.

Acknowledgements. I would like to thank my supervisors, Mário Bessa and
Jorge Rocha, whose encouragement, suggestions and guidance enabled me to
develop this work.

I also thank the financial support of the Fundação para a Ciência e a Tec-

nologia (scholarship SFRH/BD/33100/2007) and the partial support of the
Mathematics Center of the University of Porto (CMUP) and of the Fundação

para a Ciência e a Tecnologia project PTDC/MAT/099493/2008.

References

[1] D. V. Anosov, Geodesic flows on closed Riemannian manifolds of negative curvature,
Proc. Steklov Math. Inst. 90 (1967), 1–235.

[2] M. Bessa, C. Ferreira, and J. Rocha, On the stability of the set of hyperbolic closed orbits

of a Hamiltonian, Math. Proc. Cambridge Philos. Soc. 149 (2010), no. 2, 373–383.
[3] M. Bessa and J. Rocha, On C1-robust transitivity of volume-preserving flows, J. Differ-

ential Equations 245 (2008), no. 11, 3127–3143.
[4] , Three-dimensional conservative star flows are Anosov, Discrete Contin. Dyn.

Syst. 26 (2010), no. 3, 839–846.
[5] R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lec-

ture Notes in Mathematics, Vol. 470. Springer-Verlag, Berlin-New York, 1975.
[6] R. Bowen and P. Walters, Expansive one-parameter flows, J. Differential Equations 12

(1972), 180–193.

[7] C. Doering, Persistently transitive vector fields on three-dimensional manifolds, Dynam-
ical systems and bifurcation theory (Rio de Janeiro, 1985), 59–89, Pitman Res. Notes
Math. Ser., 160, Longman Sci. Tech., Harlow, 1987.

[8] C. Ferreira, Stability properties of divergence-free vector fields, Dyn. Syst. 27 (2012),
no. 2, 223–238.

[9] K. Lee and K. Sakai, Structural stability of vector fields with shadowing, J. Differential
Equations 232 (2007), no. 1, 303–313.
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