DOI QR코드

DOI QR Code

EXPANSIVITY ON ORBITAL INVERSE LIMIT SYSTEMS

  • Chu, Hahng-Yun (Department of Mathematics Chungnam National University) ;
  • Lee, Nankyung (Department of Mathematics Chungnam National University)
  • Received : 2019.02.01
  • Accepted : 2019.02.09
  • Published : 2019.02.15

Abstract

In this article, we study expansiveness of the shift maps on orbital inverse limit spaces which consist of two cross bonding mappings. On orbital inverse limit systems, horizontal directions express inverse limit systems and vertical directions mean orbits based on horizontal axes. We characterize the c-expansiveness of functions on orbital spaces. We also prove that the c-expansiveness of the functions is equivalent to the expansiveness of the shift maps on orbital inverse limit spaces.

Keywords

References

  1. N. Aoki and K. Hiraide, Topological theory of dynamical systems, North-Holland, 1994.
  2. C. E. Capel Inverse limit spaces, Duke Math. J. 21 (1954), 233-245. https://doi.org/10.1215/S0012-7094-54-02124-9
  3. J. Choy and H. -Y. Chu, On the dynamics of flows on compact metric spaces, Commun. Pure Appl. Anal. 9 (2010), 103-108. https://doi.org/10.3934/cpaa.2010.9.103
  4. H. -Y. Chu, S. -H. Ku, and J. -S. Park, A note on envelopes of homotopies, J. Difference Equ. Appl. 21 (2015), 512-527. https://doi.org/10.1080/10236198.2015.1029467
  5. Liang Chen and Shi Hai Li, Shadowing property for inverse limit spaces, Proc. Amer. Math. Soc. 115 (1992), 573-580. https://doi.org/10.1090/S0002-9939-1992-1097338-X
  6. H. -Y. Chu and N. Lee, Dynamics on double inverse limit systems, in preparation.
  7. H. -Y. Chu and N. Lee, Dynamical properties on orbital inverse limit systems, in preperation.
  8. J. P. Kelly, Monotone and weakly confluent set-valued functions and their inverse limits, Topol. Appl. 228 (2017), 486-500. https://doi.org/10.1016/j.topol.2017.07.001
  9. W. T. Ingram and W. S. Mahavier, Inverse limits of upper semi-continuous set valued functions, Houston J. Math. 32 (2006), 119-130.
  10. M. Roy, Fibrewise expansive systems, Topology Appl. 124 (2002), 373-396. https://doi.org/10.1016/S0166-8641(01)00248-6