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ENTROPY MAPS FOR MEASURE EXPANSIVE
HOMEOMORPHISMS

Jaehyun Jeong* and Woochul Jung**

Abstract. It is well known that the entropy map is upper semi-
continuous for expansive homeomorphisms on a compact metric
space. Recently, Morales [3] introduced the notion of measure ex-
pansiveness which is general than that of expansiveness. In this
paper, we prove that the entropy map is upper semi-continuous for
measure expansive homeomorphisms.

1. Introduction

Let X be a compact metric space with a metric d, and let f be a
homeomorphism from X to X.

Definition 1.1. A homeomorphism f is called expansive if there is
δ > 0 such that for any distinct point x, y ∈ X there exists n ∈ Z such
that

d(fn(x), fn(y)) > δ

Equivalently, a homeomorphism f is expansive if there is δ > 0 such
that if d(fn(x), fn(y)) ≤ δ, n ∈ Z, then x = y. Given x ∈ X and δ > 0,

we define Γf
δ (x) by

Γf
δ (x) = {y ∈ X : d(f i(x), f i(y)) ≤ δ, for all i ∈ Z},

and it is called the dynamical δ-ball of f centered at x ∈ X. By def-
inition, it is clear that f is expansive if and only if there exists δ > 0
satisfying Γf

δ (x) = {x} for all x ∈ X. A Borel measure µ of X said to
be non-atomic if µ(Γf

δ (x)) = 0, for all x ∈ X.
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Denote byM(X) the set of Borel probability measures on X endowed
with weak*-topology, and let M∗(X) = {µ ∈M(X) : µ is nonatomic}.

A homeomorphism f : X → X of a metric space X is called µ-
expansive (or µ is expansive for f) if there is δ > 0 such that µ(Γf

δ (x)) = 0
for all x ∈ X.

A homeomorphism f is said to be measure expansive if f is µ-expansive
for all µ ∈M∗(X).

Let (X,B, µ) be a measure space and I a countable family of indices.

Definition 1.2. We say that ξ = {Ci : i ∈ I} ⊂ B is a measure
partition if

(1) µ(
⋃

i∈I Ci) = µ(X) and µ(Ci) > 0 for every i ∈ I.
(2) µ(Ci ∩ Cj) = 0 for every i, j ∈ I with i /∈ j.

We define also ξ ∨ η by:

ξ ∨ η = {C ∩D : C ∈ ξ,D ∈ η, µ(C ∩D) > 0}.
A strong generator of f is a countable partition ξ which the smallest
σ-algebra of B containing

∨
k∈N f−k(ξ) equals B (mod 0).

Definition 1.3. The entropy of a measure partition ξ is given by

Hµ(ξ, X) = −
∑

C∈ξ

µ(C) log µ(C).

Let f : X → X be a measurable function, and let µ ∈ M∗(X) be
f -invariant and ξ is a measure partition of X.

Definition 1.4. The entropy of f with respect to µ and ξ is given
by:

hµ(f, ξ, X) = inf
n

1
n

Hµ(
n−1∨

k=0

f−kξ) = lim
n→=∞

1
n

Hµ(
n−1∨

k=0

f−kξ),

and the entropy f with respect to µ by:

hµ(f, X) = sup{hµ(f, ξ,X) : ξ is a finite measurable partition}.
Definition 1.5. Let f : X → X be a continuous map of a compact

metric space X. For E,F ⊂ X we say that E(n, δ)-spans F with respect
to f , if for each y ∈ F , there is an x ∈ E so that d(fk(x), fk(y)) ≤ δ
for all 0 ≤ k < n. We let rn(F, δ) = rn(F, δ, f) denote the minimum
cardinality of a set which (n, δ)-spans F . If K is compact, then the
continuity of f guarantees rn(K, δ) < ∞. For compact K, we define

rf (K, δ) = lim sup
n→∞

1
n

log rn(K, δ)
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and

htop(f,K) = lim
δ→0

rf (K, δ).

Definition 1.6. A homeomorphism f : X → X said to be entropy
expansive if there exists δ > 0 such that

sup
x∈X

{htop(f, Γδ(x))} = 0,

where Γδ(x) =
⋂

n∈Z f−nBε(fn(x)).

We have two main results for entropy expansive maps with X com-
pact. First, the topological entropy satisfies h(f) = h(f, ε). Second,
assuming X is finite dimensional, hµ(f) = hµ(f,A) when µ is an f -
invariant Borel probability measure on X and A is a finite measurable
partition of X into sets of diameter at most ε. These both results are
well-known in case f is expansive(See [1] and [4], respectively).

2. Example

The following example shows that the Smale’s horseshoe map is mea-
sure expansive but it is not entropy expansive.

Example 2.1. (Smale’s horseshoe map) Let f be a diffeomorphism on
an open neighborhood of the square Q = [0, 1]2. Consider the horizontal
strips

H1 = [0, 1]× [0, a] and H2 = [0, 1]× [1− a, 1]

and the vertical strips

V1 = [0, a]× [0, 1] and V2 = [1− a, 1]× [0, 1],

for some constant a ∈ (0, 1/2).We assume that

(2.1) f(H1) = V1 and f(H2) = V2

which yields the identity

(2.2) Q ∩H(Q) = V1 ∪ V2.

We also assume that the restrictions f |H1 are f |H2 are affine, with

f(x, y) =

{
(ax, by) if (x, y) ∈ H1,

(−ax + 1,−by + b) if (x, y) ∈ H2,
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where b = 1/a. We shall see that the construction of the Smale horseshoe
only depends on the restriction f |(H1∪H2).
Now we consider the diffeomorphism f−1. By (2.2.1), we have

f−1(V1) = H1 and f−1(V2) = H2

and thus, it follows from (2.2.2) that

(2.3) f−1(Q) ∩Q = f−1(V1) ∪ f−1(V2) = H1 ∪H2.

Combining (2.2.2) and (2.2.3), we conclude that
1⋂

k=−1

fn(Q) = (H1 ∪H2) ∩ (V1 ∪ V2)

is the union of 4-square of size a.
Iterating this procedure, that is, considering successively the images

fn(Q) and the preimage f−n(Q), we find that the intersection

Λn =
n⋂

k=−n

fk(Q)

is the union of 4n squares of size an. Since Λn is a decreasing sequence
of nonempty closed sets, the compact set

Λ =
⋂

n∈N
Λn =

⋂

k∈Z
fk(Q)

is nonempty. It is called a Smale horseshoe (for f).

Clearly, the set Λ has no interior points since the diameter of the 4n

squares in Λn tend to zero when n →∞. One can also verify that Λ has
no isolated points. Hence, it is a Cantor set. Therefore, for Lebesque
measure m, m(Λ) = 0. But it is a topologically conjugate to two-sided
shift map σ : Σk → Σk and its topological entropy is log k > 0.

3. Entropy maps of measure expansive homeomorphisms

Let (X, d) be a compact metric space, and f : X → X continuous.
Let M∗

f (X) be the space of all probability measures on (X,B(X)) that
are f -invariant. We know that M∗

f (X) is a non-empty convex set which
is compact in the weak*-topology, by the Krylov-Bogolubov theorem.

Definition 3.1. The entropy map is h : M∗
f (X) → [0,∞] is given

by µ 7→ hµ(f) for any µ ∈M∗
f (X).
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The entropy map h is affine, i.e. if µ,m ∈ M∗
f (X) and t ∈ [0, 1] then

htµ+(1−t)m(f) = thµ(f) + (1− t)hm(f).

Note that the entropy map is not continuous. We will give a coun-
terexample in the case of the two-sided shift on {0, 1}Z. Let us consider
the measures µp, for p ∈N, concentrated on the p periodic points, giv-
ing to each such a point measure 1/2p. We have that µp ∈M∗

σ(X) and
hµp(σ) = 0, for every p, because the measure is concentrated on a finite
set of points. And let µ be the (1/2, 1/2)-bernoulli measure, which we
know, has hµ(σ) = log2. Now the collection of functions that depends
only on a finite number of coordinates form a dense subset F (X) of
C(X) by the Stone-Weierstrass theorem. If f ∈ F (X) then exists N
such that

∫
X fdµp =

∫
X fdµ if p ≥ N . Therefore µp → µ and so the

entropy map is not continuous.
Sometimes it is not even upper semi-continuous, but for a special class

of maps we will prove that the entropy map is upper semi-continuous.
For instance, it has been shown that entropy map is upper semi-continuous
for expansive homeomorphisms of compact metric spaces(for more de-
tails, [5]).

Let (X, β) be a measure space. If f : X → X is measurable and
k ∈ N, we define for every partition P the pullback partition {f−k(ξ) :
ξ ∈ P} which is countable.

Definition 3.2. A measure-sensitive partition of a measurable map
f : X → X is a countable partition P satisfying

µ({y ∈ X : fn(y) ∈ P (fn(x)), ∀n ∈ N}) = 0 for all x ∈ X

where P (x) stands for the element of P containing x ∈ X.

The result below is the central motivation of this chapter. By theorem
4.5 in [3], every strong generator of a measurable map f in a non-atomic
probability space is a measure-sensitive partition of f . This motivates
the question as to whether every measure-sensitive maps has a strong
generator.

To concern the next corollary, we give some definition about aperi-
odicity.

Definition 3.3. we say that a measurable map f is aperiodic when-
ever for all n ∈ N+ if n ∈ N+ and fn(x) = x on a measurable set A, then
µ(A) = 0 and f is eventually aperiodic whenever for all (n, k) ∈ N+ ×N
if A is a measurable set such that for every x ∈ A, there is 0 ≤ i ≤ k
such that fn+i(x) = f i(x), then µ(A) = 0.
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It follows easily from the definition that an eventually periodic maps
is aperiodic. The converse is true for invertible maps but not in general.

As the above mentioned motivation, we give a partial positive answer
for certain maps defined as follows.

We say that f is countable to one(mod 0) if f−1(x) is countable for
µ− a.e. x ∈ X and f is nonsingular if a measurable set A has measure
zero if and only if f−1(A) also does. All measure-preserving maps are
nonsingular. A Lebesgue probability space is a complete measure space
which is isomorphic to the completion of a standard probability space,
where standard probability space is Polish borel measure space.

Corollary 3.4 (Cor 2.5., [2]). Every measurable expansive map in
a non-atomic separable probability space is measure-expansive.

Corollary 3.5 (Cor 4.17., [3]). The following properties are equiv-
alent for nonsingular countable-to-one (mod 0) maps f on non-atomic
Lebesque probability spaces:

(1) f is measure-sensitive.
(2) f is eventually aperiodic.
(3) f is aperiodic.
(4) f has a strong generator.

By using Corollaries 3.4 and 3.5, we concern about continuity of
entropy map with measure expansive homeomorphisms. Walter in [5]
proved the following theorem for expansive homeomorphisms. We slightly
changed the proof provided by Walter to obtain same result for measure
expansive homeomorphisms.

Theorem 3.6. If f is a measure expansive homeomorphism then the
entropy map is upper semi-continuous, i.e., if µ ∈M∗

f (X) and ε > 0
then exists a neighborhood U of µ in M∗

f (X) such that ν ∈ U implies
that

hν(f) < hµ(f) + ε.

Proof. Let δ be an expansive constant for f, µ ∈ M∗
f (X) and ε >

0. By Cor 2.3.5., there exists a strong generator ξ such that hµ(f) =
hµ(f, ξ). Let N so that

1
N

Hµ

(
N−1∨

k=0

f−kξ

)
< hµ(f) + ε.
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Fix ε1 > 0 to be chosen later. As µ is regular we choose compact sets:

Ki0···iN−1 ⊂
N−1⋂

k=0

f−kCik

with µ(
⋂N−1

k=0 f−kCik\Ki0···iN−1 < ε1. Then

N−1⋃

k=0

⋃

ik=j

fkKi0···iN−1 ⊂ Cj .

The sets Lj :=
⋃N−1

k=0

⋃
ik=j fkKi0···iN−1 are compact and disjoint so

there is a partition η = {D1, · · · , Dk} with diam(Dj) < δ and Lj ⊂
int(Dj). We have

Ki0···iN−1 ⊂
∫ (

N−1⋂

k=0

f−kDik

)
.

By Urysohn’s lemma we can choose fi0···iN−1 ∈ C(X) such that
• 0 ≤ fi0···iN−1 ≤ 1 ;
• equals 1 on Ki0···iN−1 ;
• vanishes on X\int(

⋂N−1
k=0 f−kDik).

Let now

Ui0···iN−1 :=
{

ν ∈M∗
f (X) :

∣∣∣∣
∫

fi0···iN−1dν −
∫

fi0···iN−1dµ

∣∣∣∣ < ε1

}
.

The set Ui0···iN−1 is open is M∗
f (X) and if ν ∈ Ui0···iN−1 then

ν

(
N−1⋂

k=0

f−kDik

)
≥

∫
fi0···iN−1dν >

∫
fi0···iN−1dµ−ε1 ≥ µ(Ki0···iN−1)−ε1

and

µ

(
N−1⋂

k=0

f−kCik

)
− ν

(
N−1⋂

k=0

f−kDik

)
< 2ε1.

Now if U :=
⋂

i0···iN−1
Ui0···iN−1 and ν ∈ U then :

∣∣∣∣∣µ
(

N−1⋂

k=0

f−kCik

)
− ν

(
N−1⋂

k=0

f−kDik

)∣∣∣∣∣ < 2ε1k
N

because if
∑n

i=1 ai = 1 =
∑n

i=1 bi and also exists c > 0 with ai − bi < c
for every i then |ai − bi| < cn ∀i, as bi − ai =

∑
j 6=i(aj − bj) < cn.
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So if ν ∈ U and ε1, then small enough the continuity of x log x gives :

1
N

Hν

(
N−1∨

k=0

(
f−kη

))
<

1
N

Hµ

(
N−1∨

k=0

(
f−kξ

))
+

ε

2
. (∗)

From (∗), we obtain

hν(f) = hν(f, η) ≤ 1
N

Hν

(
N−1∨

k=0

(f−kη)

)

<
1
N

Hµ

(
N−1∨

k=0

(f−kξ)

)
+

ε

2
< hµ(f) + ε.

This completes the proof.
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