JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume 28, No. 4, November 2015 http://dx.doi.org/10.14403/jcms.2015.28.4.647

ENTROPY, POSITIVELY CONTINUUM-WISE EXPANSIVENESS AND SHADOWING

MANSEOB LEE* AND JUNMI PARK**

ABSTRACT. Let (X, d) be a compact metric space, and let $f : X \to X$ be a continuous map. We consider that if a positively continuumwise expansiveness continuous map f has the positively shadowing property in the nonwandering set, then the topological entropy is positive.

1. Introduction

Let $f: X \to X$ be a continuous map of a compact metric space (X, d). For the dynamic properties (shadowing, positively measure expansive) and entropy, Morales [3] proved that if a homeomorphism $f: X \to X$ has the shadowing property in the nonwandering set and it is positively measure expansive then the topological entropy is positive. In the paper, we consider that if a continuous map $f: X \to X$ has the positively shadowing property in the nonwandering set and it is another type of expansiveness then the topological entropy is positive.

We say that a point $x \in X$ is nonwandering if for any neighborhood U of x, there is n > 0 such that $f^n(U) \cap U \neq \emptyset$. Denote by $\Omega(f)$ the set of all nonwandering points of f. For given $x, y \in M$, we write $x \rightsquigarrow y$ if for any $\delta > 0$, there is a finite δ -pseudo orbit $\{x_i\}_{i=a}^b (a < b)$ of f such that $x_a = x$ and $x_b = y$. The set of points $\{x \in M : x \rightsquigarrow x\}$ is called the *chain recurrent set* of f and is denoted by $\mathcal{CR}(f)$. Then it is known that $\Omega(f) \subset \mathcal{CR}(f)$. For any $\delta > 0$, a sequence $\{x_i\}_{i \in \mathbb{Z}_+}$ is a δ -pseudo orbit of f if

Received October 15, 2015; Accepted November 05, 2015.

²⁰¹⁰ Mathematics Subject Classification: Primary 37B40; Secondary 37B05.

Key words and phrases: positively continuum-wise expansive, positively measure expansive, entropy, shadowing.

Correspondence should be addressed to Junmi Park, pjmds@cnu.ac.kr.

^{*}This work is supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT & Future Planning (No. 2014R1A1A1A05002124).

 $d(f(x_i), x_{i+1}) < \delta$ for $i \ge 0$. Let $\Lambda \subset X$ be a closed *f*-invariant set. We say that *f* has the *positively shadowing property* on Λ if for any $\epsilon > 0$, there is $\delta > 0$ such that for any δ -pseudo orbit $\{x_i\}_{i\ge 0} \subset \Lambda$ there is $y \in X$ such that

$$d(f^i(y), x_i) < \epsilon \text{ for } i \ge 0.$$

Then the shadowing points can be in Λ or is in X. On the other hand, we say that f has the *positively shadowing property* in Λ if for any $\epsilon > 0$ there is $\delta > 0$ such that for any δ -pseudo orbit $\{x_i\}_{i\geq 0} \subset \Lambda$ there is $y \in \Lambda$ such that

$$d(f^{i}(y), x_{i}) < \epsilon \text{ for } i \geq 0.$$

If $\Lambda = X$ then we say that f has the positively shadowing property. Recall Bowen's definition of topological entropy on a closed set A. For $n \in \mathbb{N}$ and $\epsilon > 0$, a set $B \subset A$ is said to be (B, n, ϵ) -separated for f if for any distinct two points $a, b \in A$ there is $k \in \{0, 1, \ldots, n-1\}$ such that $d(f^k(a), f^k(b)) > \epsilon$. Let $\Phi_f(A, n, \epsilon)$ denote the maximal cardinality of a (A, n, ϵ) -separated set for f contained in A. Since X is compact, $\Phi_f(A, n, \epsilon)$ is finite. The topological entropy of f on A is defined by

$$h(f,A) = \lim_{\epsilon \to 0} \limsup_{n \to \infty} \frac{\log \Phi_f(A, n, \epsilon)}{n}.$$

We can denote h(f) = h(f, A) if there is no confusion.

Given $x \in X$ and $\delta > 0$, we define the dynamical δ -ball as follows, $\Gamma_{\delta}(x) = \{y \in X : d(f^i(x), f^i(y)) \leq \delta \text{ for all } i \geq 0\}$. Let $\mathcal{M}(X)$ be the set of all Borel probability measures on X and let $\mathcal{M}^*(X)$ be the set of nonatomic measures $\mu \in \mathcal{M}(X)$. We say that f is positively measure expansive (or, positively μ -expansive) if there is $\delta > 0$ (called an expansive constant) such that $\mu(\Gamma_{\delta}(x)) = 0$ for any $\mu \in \mathcal{M}^*(X)$. Note that in [3, Lemma 8], Morales proved that a homeomorphism $f : X \to X$ is positively measure expansive if and only if it is positively invariant measure expansive.

Kato [2] introduced positively continuum-wise expansiveness which is a more general notation of positively measure expansiveness (see [1, Lemma 2.3]). A continuous map f on X is said to be *positively continuum-wise expansive* if there is a constant e > 0 such that for any nondegenerate (is not singleton) continuum A there is an integer $n \ge 0$ such that diam $f^n(A) \ge e$, where diam $A = \sup\{d(x, y) : x, y \in A\}$ for any subset A of X. Here the constant e is called a *positively continuumwise expansive constant* for f. In this paper, we prove that if f has the positively shadowing property in $\Omega(f)$ and f is positively continuumwise expansive, then the topological entropy is positive.

648

We say that f is equicontinuous if for any $\epsilon > 0$ there is $\delta > 0$ such that for any $x, y \in X$ if $d(x, y) < \delta$ then $d(f^i(x), f^i(y)) < \epsilon$ for all $i \in \mathbb{Z}_+$. It is known that an equicontinuous map $f: X \to X$ has h(f) = 0.

LEMMA 1.1. [4, Corollary 6] If f has the positively shadowing property and h(f) = 0 then $f|_{\Omega(f)} : \Omega(f) \to \Omega(f)$ is an equicontinuous homeomorphism.

The following was proved in [3, Lemma 10] for a homeomorphism $f: X \to X$. However, in the paper, we consider for a continuous map $f: X \to X$.

LEMMA 1.2. If a continuous map $f : X \to X$ is equicontinuous then f is not positively measure expansive.

Proof. Suppose, by contradiction that an equicontinuous map f is positively measure μ -expansive for some $\mu \in \mathcal{M}^*(X)$. Let e > 0 be the number of the positively measure expansive constant of μ . Since f is equicontinuous, there is $\delta > 0$ such that $B[x, \delta] \subset \Gamma_e(x)$ for all $x \in X$, where $B[x, \delta] = \{y \in X : d(x, y) \leq \delta\}$ is a closed δ -ball centered at x. Note that f is positively measure expansive if and only if $f|_{\Omega(f)}$ is positively measure expansive. Thus we know $\mu(B[x, \delta]) = 0$ for $x \in$ $\Omega(f)$. Since X is compact, we can take finite points x_1, x_2, \ldots, x_n such that $X = \bigcup_{i=1}^n B[x_i, \delta]$. Then we know

$$\mu(X) \le \sum_{i=1}^{n} \mu(B[x_i, \delta]).$$

Since f is positively measure expansive, $\mu(\Gamma_e(x)) = 0$ and so, $\mu(B[x, \delta]) = 0$. Thus $\sum_{i=1}^{n} \mu(B[x_i, \delta]) = 0$, which is a contradiction $\mu(X) \neq 0$. \Box

LEMMA 1.3. A continuous map $f: X \to X$ is positively continuumwise expansive if and only if there is $\delta > 0$ such that for $x \in X$, if a continuum $C \subset \Gamma_{\delta}(x)$ then C is a singleton.

Proof. The proof is similar to [1, Lemma 2.2].

For a closed invariant set Λ , it is known that a continuous map $f : X \to X$ is continuum-wise expansive if and only if $f|_{\Lambda}$ is continuum-wise expansive.

LEMMA 1.4. Let $\Lambda \subset X$ be a closed *f*-invariant set. If $f|_{\Lambda}$ is equicontinuous then *f* is not positively continuum-wise expansive.

Manseob Lee and Junmi Park

Proof. Let $f|_{\Lambda}$ be equicontinuous. To derive a contradiction, we may assume that f is positively continuum-wise expansive. Let e > 0 be a positively continuum-wise expansive constant of f. Since f is an equicontinuous, there is $\delta \in (0, e)$ such that if for any $x, y \in \Lambda$ with $d(x, y) < \delta$ then $d(f^i(x), f^i(y)) < e$ for all $i \in \mathbb{Z}_+$. We set $C_{\delta}(x) =$ $\{y \in \Lambda \setminus \{x\} : d(x, y) \leq \delta\}$. Then it is clear $C_{\delta}(x) \subset \Gamma_e(x) = \{y \in$ $\Lambda : d(f^i(x), f^i(y)) \leq e$ for all $i \geq 0\}$. Since f is positively continuumwise expansive, $f|_{\Lambda}$ is positively continuum-wise expansive. By Lemma 1.3, $C_{\delta}(x)$ must be a singleton which is a contradiction since $C_{\delta}(x)$ is not singleton. Thus if $f|_{\Lambda}$ is equicontinuous, then f is not positively continuum-wise expansive. \Box

THEOREM 1.5. Let $f : X \to X$ be a continuous map and f have the positively shadowing property in $\Omega(f)$. If f is positively continuum-wise expansive then the topological entropy h(f) is positive.

Proof. Let f have the shadowing property in $\Omega(f)$ and f be positively continuum-wise expansive. Suppose, by contradiction, that h(f) = 0. Since f has the positively shadowing property in $\Omega(f)$ and h(f) = 0, by Lemma 1.1 $f|_{\Omega(f)}$ is equicontinuous. Since $\Omega(f)$ is closed and invariant, by Lemma 1.4, f is not positively continuum-wise expansive which is a contradiction.

References

- A. Artigue and D. Carrasco-Olivera, A note on measure-expansive diffeomorphisms, J. Math. Anal. Appl. 428 (2015), 713-716.
- [2] H. Kato, Continuum-wise expansive homeomorphisms, Canad. J. Math. 45 (1993), 576-598.
- [3] C. A. Morales, *Entropy, pseudo-orbit tracing property and positively expansive measure*, preprint, arxiV:1409.3470v1.
- [4] T. K. S. Moothathu, Implications of pseudo-orbit tracing property for continuous maps on compacta, Topol. Appl, 158 (2011), 2232-2239.

650

*

Department of Mathematics Mokwon University Daejeon 302-729, Republic of Korea *E-mail*: lmsds@mokwon.ac.kr

**

Department of Mathematics Chungnam National University Daejeon 305-764, Republic of Korea *E-mail*: pjmds@cnu.ac.kr