• 제목/요약/키워드: existence of positive solutions

검색결과 184건 처리시간 0.037초

POSITIVE SOLUTIONS OF NONLINEAR ELLIPTIC SINGULAR BOUNDARY VALUE PROBLEMS IN A BALL

  • Lokenath Debnath;Xu, Xing-Ye
    • Journal of applied mathematics & informatics
    • /
    • 제15권1_2호
    • /
    • pp.237-249
    • /
    • 2004
  • This paper deals with existence of positive solutions of nonlinear elliptic singular boundary value problems in a ball. It is shown that results of Grandall et al. [1] and [2] follow as special cases of our results proved in this article.

Multiple Unbounded Positive Solutions for the Boundary Value Problems of the Singular Fractional Differential Equations

  • Liu, Yuji;Shi, Haiping;Liu, Xingyuan
    • Kyungpook Mathematical Journal
    • /
    • 제53권2호
    • /
    • pp.257-271
    • /
    • 2013
  • In this article, we establish the existence of at least three unbounded positive solutions to a boundary-value problem of the nonlinear singular fractional differential equation. Our analysis relies on the well known fixed point theorems in the cones.

POSITIVE SOLUTIONS OF BOUNDARY VALUE PROBLEMS FOR p-LAPLACIAN WITH SIGN-CHANGING NONLINEAR TERMS

  • Li, Xiangfeng;Xu, Wanyin
    • 대한수학회보
    • /
    • 제47권2호
    • /
    • pp.411-422
    • /
    • 2010
  • By using the fixed point index theory, we investigate the existence of at least two positive solutions for p-Laplace equation with sign-changing nonlinear terms $(\varphi_p(u'))'+a(t)f(t,u(t),u'(t))=0$, subject to some boundary conditions. As an application, we also give an example to illustrate our results.

EXISTENCE AND GLOBAL EXPONENTIAL STABILITY OF POSITIVE ALMOST PERIODIC SOLUTIONS FOR A DELAYED NICHOLSON'S BLOWFLIES MODEL

  • Xu, Yanli
    • 대한수학회지
    • /
    • 제51권3호
    • /
    • pp.473-493
    • /
    • 2014
  • This paper concerns with a class of delayed Nicholson's blowflies model with a nonlinear density-dependent mortality term. Under appropriate conditions, we establish some criteria to ensure that the solutions of this model converge globally exponentially to a positive almost periodic solution. Moreover, we give some examples and numerical simulations to illustrate our main results.

POSITIVE SOLUTIONS ON NONLINEAR BIHARMONIC EQUATION

  • Choi, Q-Heung;Jung, Tacksun
    • Korean Journal of Mathematics
    • /
    • 제5권1호
    • /
    • pp.29-33
    • /
    • 1997
  • In this paper we investigate the existence of positive solutions of a nonlinear biharmonic equation under Dirichlet boundary condition in a bounded open set ${\Omega}$ in $\mathbf{R}^n$, i.e., $${\Delta}^2u+c{\Delta}u=bu^{+}+s\;in\;{\Omega},\\u=0,\;{\Delta}u=0\;on\;{\partial}{\Omega}$$.

  • PDF

Stabilizing Solutions of Algebraic Matrix riccati Equations in TEX>$H_\infty$ Control Problems

  • Kano, Hiroyuki;Nishimura, Toshimitsu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1994년도 Proceedings of the Korea Automatic Control Conference, 9th (KACC) ; Taejeon, Korea; 17-20 Oct. 1994
    • /
    • pp.364-368
    • /
    • 1994
  • Algebraic matrix Riccati equations of the form, FP+PF$^{T}$ -PRP+Q=0. are analyzed with reference to the stability of closed-loop system F-PR. Here F, R and Q are n * n real matrices with R=R$^{T}$ and Q=Q$^{T}$ .geq.0 (nonnegative-definite). Such equations have been playing key roles in optimal control and filtering problems with R .geq. 0. and also in the solutions of in H$_{\infty}$ control problems with R taking the form R=H$_{1}$$^{T}$ H$_{1}$-H$_{2}$$^{T}$ H$_{2}$. In both cases an existence of stabilizing solution, i.e. the solution yielding asymptotically stable closed-loop system, is an important problem. First, we briefly review the typical results when R is of definite form, namely either R .geq. 0 as in LQG problems or R .leq. 0. They constitute two extrence cases of Riccati to the cases H$_{2}$=0 and H$_{1}$=0. Necessary and sufficient conditions are shown for the existence of nonnegative-definite or positive-definite stabilizing solution. Secondly, we focus our attention on more general case where R is only assumed to be symmetric, which obviously includes the case for H$_{\infty}$ control problems. Here, necessary conditions are established for the existence of nonnegative-definite or positive-definite stabilizing solutions. The results are established by employing consistently the so-called algebraic method based on an eigenvalue problem of a Hamiltonian matrix.x.ix.x.

  • PDF

Positive solutions for predator-prey equations with nonlinear diffusion rates

  • Ahn, In-Kyung
    • 대한수학회지
    • /
    • 제31권4호
    • /
    • pp.545-558
    • /
    • 1994
  • In this paper, we will investigate the existence of positive solutions to the predator-prey interacting system $$ {-\varphi(x, u)\Delta u = uf(x, u, \upsilon) in \Omega {-\psi(x, \upsilon)\Delta\upsilon = \upsilon g(x, u, \upsilon) {\frac{\partial n}{\partial u} + ku = 0 on \partial\Omega {\frac{\partial n}{\partial\upsilon} + \sigma\upsilon = 0. $$ in a bound region $\Omega$ in $R^n$ with smooth boundary, where $\varphi$ and $\psi$ are strictly positive functions, serving as nonlinear diffusion rates, and $k, \sigma > 0$ are constants.

  • PDF

MULTIPLE SOLUTIONS RESULT FOR THE MIXED TYPE NONLINEAR ELLIPTIC PROBLEM

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • 제19권4호
    • /
    • pp.423-436
    • /
    • 2011
  • We obtain a theorem that shows the existence of multiple solutions for the mixed type nonlinear elliptic equation with Dirichlet boundary condition. Here the nonlinear part contain the jumping nonlinearity and the subcritical growth nonlinearity. We first show the existence of a positive solution and next find the second nontrivial solution by applying the variational method and the mountain pass method in the critical point theory. By investigating that the functional I satisfies the mountain pass geometry we show the existence of at least two nontrivial solutions for the equation.

CONVERGENCE PROPERTIES OF PREDATOR-PREY SYSTEMS WITH FUNCTIONAL RESPONSE

  • Shim, Seong-A
    • 호남수학학술지
    • /
    • 제30권3호
    • /
    • pp.411-423
    • /
    • 2008
  • In the field of population dynamics and chemical reaction the possibility or the existence of spatially and temporally nonhomogeneous solutions is a very important problem. For last 50 years or so there have been many results on the pattern formation of chemical reaction systems studying reaction systems with or without diffusions to explain instabilities and nonhomogeneous states arising in biological situations. In this paper we study time-dependent properties of a predator-prey system with functional response and give sufficient conditions that guarantee the existence of stable limit cycles.