POSITIVE SOLUTIONS ON NONLINEAR BIHARMONIC EQUATION

Q-Heung $Choi^1$ and $Tacksun\ Jung^2$

ABSTRACT. In this paper we investigate the existence of positive solutions of a nonlinear biharmonic equation under Dirichlet boundary condition in a bounded open set Ω in \mathbb{R}^n , i.e.,

$$\Delta^2 u + c\Delta u = bu^+ + s$$
 in Ω ,
 $u = 0, \Delta u = 0$ on $\partial \Omega$.

0. Introduction

Let Ω be a bounded open set in \mathbb{R}^n with smooth boundary $\partial\Omega$. In this paper, we shall concern with the nonlinear biharmonic problem

(0.1)
$$\Delta^2 u + c\Delta u = bu^+ + s \quad \text{in } \Omega,$$
$$u = 0, \Delta u = 0 \quad \text{on } \partial\Omega,$$

where $u^+ = max\{u, 0\}$, c is not an eigenvalue of $-\Delta, s \in \mathbf{R}$, and Δ^2 denotes the biharmonic operator. Throughout this paper, we assume that b is a bounded real number. Equations with nonlinearities of this type have been extensively studied in the context of second order elliptic operators (cf. [6]).

In section 1, we introduce the Banach space spanned by eigenfunctions of $\Delta^2 + c\Delta$ and investigate properties of it in the Banach space.

In section 2, we study the positive solutions of (0.1) when $\lambda_1 < c < \lambda_2, b < \lambda_1(\lambda_1 - c)$ and s > 0.

Received October 16, 1996.

¹⁹⁹¹ Mathematics Subject Classification: 34C15, 34C25, 35Q72.

Key words and phrases: Weak solution, positive solution, Dirichlet boundary condition, Eigenfunction.

¹Research supported in part by GARC-KOSEF and Inha University Research Foundation

²Research supported in part by BSRI Program BSRI-96-1436.

1. The Banach space spanned by eigenfunctions

In this section we investigate the multiplicity of solutions of the biharmonic equation under the Dirichlet boundary condition

(1.1)
$$\Delta^2 u + c\Delta u = bu^+ + s \quad \text{in } \Omega,$$
$$u = 0, \Delta u = 0 \quad \text{on } \partial\Omega,$$

where c is not an eigenvalue of $-\triangle, s \in \mathbf{R}$. Here we assume that the nonlinearity bu^+ crosses eigenvalues of $\Delta^2 + c\triangle$.

Let $\lambda_k(k=1,2,\cdots)$ denote the eigenvalues and $\phi_k(k=1,2,\cdots)$ the corresponding eigenfunctions, suitably normalized with respect to $L^2(\Omega)$ inner product, of the eigenvalue problem

$$\Delta u + \lambda u = 0$$
 in Ω , $u = 0$ on $\partial \Omega$,

where each eigenvalue λ is repeated as often as its multiplicity. We recall that $0 < \lambda_1 < \lambda_2 \le \lambda_3 \le \cdots, \lambda_i \to +\infty$, and that $\phi_1(x) > 0$ for $x \in \Omega$.

Hence the eigenvalue problem

$$\Delta^2 u + c\Delta u = \mu u$$
 in Ω ,
 $u = 0, \Delta u = 0$ on $\partial \Omega$,

has infinitely many eigenvalues

$$\mu_k = \lambda_k(\lambda_k - c)$$
 $k = 1, 2, \cdots,$

and the corresponding eigenfunctions $\phi_k(x)$.

The set of functions $\{\phi_k\}$ is an orthonormal base for $L^2(\Omega)$. Let us denote an element u, in $L^2(\Omega)$, as

$$u = \sum h_k \phi_k, \qquad \sum h_k^2 < \infty.$$

Now we define a subspace H of $L^2(\Omega)$, which will contain all solutions of equation (1.1), as follows

$$H = \{ u \in L^2(\Omega) : \Sigma | \lambda_k (\lambda_k - c) | h_k^2 < \infty \}.$$

Then this is a complete normed space with a norm

$$|||u||| = [\Sigma |\lambda_k(\lambda_k - c)|h_k^2|]^{\frac{1}{2}}.$$

Since $\lambda_k \to +\infty$ and c is not an eigenvalue of $-\Delta$, we have the following simple properties of the Hilbert space H.

PROPOSITION 1.1. Let c be not an eigenvalue of $-\Delta$. Then we have:

- (1) $\Delta^2 u + c\Delta u \in H$ implies $u \in H$.
- (2) $|||u||| \ge C||u||_{L^2(\Omega)}$ for some C > 0.
- (3) $||u||_{L^2(\Omega)} = 0$ if and only if |||u||| = 0.

Proof. (1) Suppose c is not an eigenvalue of $-\Delta$. We write

$$\Delta^2 u + c\Delta u = \sum \lambda_k (\lambda_k - c) h_k \phi_k.$$

Then

$$\infty > |||\Delta^2 u + c\Delta u||^2 = \Sigma |\lambda_k (\lambda_k - c)|(\lambda_k (\lambda_k - c))^2 h_k^2$$

$$\geq \Sigma C |\lambda_k (\lambda_k - c)| h_k^2 = C |||u|||^2,$$

where
$$C = inf_k\{|\lambda_k(\lambda_k - c)| : k = 1, 2, \cdots\}.$$
 (2) and (3) are trivial.

LEMMA 1.1. Let c be not an eigenvalue of $-\Delta$. Suppose d is not an eigenvalue of $\Delta^2 + c\Delta$ and $u \in L^2(\Omega)$. Then $(\Delta^2 + c\Delta - d)^{-1}u$ belongs to H.

Proof. Suppose that d is not an eigenvalue of $\Delta^2 + c\Delta$ and finite. We know that the number of $\{\lambda_k(\lambda_k - c) : |\lambda_k(\lambda_k - c)| < |d|\}$ is finite, where $\lambda_k(\lambda_k - c)$ is an eigenvalue of $\Delta^2 + c\Delta$. Let $u = \sum h_k \phi_k$. Then

$$(\Delta^2 + c\Delta - d)^{-1}u = \sum \frac{1}{\lambda_k(\lambda_k - c) - d} h_k \phi_k.$$

Hence we have the inequality

$$|||(\Delta^2 + c\Delta - d)^{-1}u||| = \Sigma |\lambda_k(\lambda_k - c)| \frac{1}{(\lambda_k(\lambda_k - c) - d)^2} h_k^2 \le C\Sigma h_k^2$$

for some C, which means that

$$|||(\Delta^2 + c\Delta - d)^{-1}u||| \le C_1||u||_{L^2(\Omega)}, \qquad C_1 = \sqrt{C}.\Box$$

With Lemma 1.1, we can obtain the following lemma.

LEMMA 1.2. Let $f \in L^2(\Omega)$. Let b be not an eigenvalue of $\Delta^2 + c\Delta$. Then all solutions in $L^2(\Omega)$ of

$$\Delta^2 u + c\Delta u = bu^+ + f(x) \qquad \text{in } L^2(\Omega)$$

belong to H.

With aid of Lemma 1.2, it is enough to investigate the existence of solutions in the subspace H of $L^2(\Omega)$ of (1.1).

Let $\lambda_k < c < \lambda_{k+1}$ and $\lambda_k(\lambda_k - c), \lambda_{k+1}(\lambda_{k+1} - c)$ be successive eigenvalues of $\Delta^2 + c\Delta$ such that there is no eigenvalue between $\lambda_k(\lambda_k - c)$ and $\lambda_{k+1}(\lambda_{k+1} - c)$. Then $\lambda_k(\lambda_k - c) < 0 < \lambda_{k+1}(\lambda_{k+1} - c)$ and we have the uniqueness theorem.

2. Existence of positive solution

Now, we investigate the existence of the positive solution of (1.1).

LEMMA 2.1. Let $\lambda_1 < c < \lambda_2, b < \lambda_1(\lambda_1 - c)$ and s > 0. Then the unique solution of the linear problem

(2.1)
$$\Delta^2 u + c\Delta u = bu + s \quad \text{in } \Omega,$$
$$u = 0, \Delta u = 0 \quad \text{on } \partial \Omega$$

is positive.

Proof. Let $\lambda_1 < c < \lambda_2$ and $b < \lambda_1(\lambda_1 - c)$. Then the problem $\Delta^2 u + c\Delta u - bu = \mu u \quad \text{in } \Omega,$ $u = 0, \Delta u = 0 \quad \text{on } \partial \Omega$

has eigenvalues $\lambda_k(\lambda_k - c) - b$ and they are positive. Since the inverse $(\Delta^2 + c\Delta - b)^{-1}$ of the operator $\Delta^2 + c\Delta - b$ is positive, the solution $u = (\Delta^2 + c\Delta - b)^{-1}(s)$ of (2.4) is positive.

This proves the lemma. \Box

An easy consequence of Lemma 2.1 is

THEOREM 2.1. Let $\lambda_1 < c < \lambda_2, b < \lambda_1(\lambda_1 - c)$ and s > 0. Then the boundary value problem (2.1) has a positive solution u_1 .

Proof. The solution u_1 of the linear problem (2.1) is positive, hence it is also a solution of (1.1).

References

- 1. H. Amann, Saddle points and multiple solutions of differential equation, Math. Z. (1979), 127-166.
- 2. A. Ambrosetti and P.H. Rabinowitz, *Dual variational methods in critical point theory and applications*, J. Funct. Analysis **14** (1973), 349-381.
- 3. Q.H. Choi and T. Jung, An application of a variational reduction method to a nonlinear wave equation, Journal of Differential Equations 117 (1995), 390-410.
- 4. D. Gilberg and N.S. Trudinger, *Elliptic partial differential equations of second order*, Springer-Verlarg, New York/Berlin (1983).
- 5. A.C. Lazer and P.J. McKenna, Critical point theory and boundary value problems with nonlinearities crossing multiple eigenvalues II, Comm. in Partial Differential Equations 11(15) (1986), 1653-1676.
- 6. A.C. Lazer and P.J. McKenna, Large amplitude periodic oscillations in suspension bridges: Some new connections with nonlinear analysis, SIAM Review 32 (1990), 537-578.
- 7. P.J. McKenna and W.Walter, *Nonlinear oscillations in a suspension bridge*, Archive for Rational Mechanics and Analysis **98** (1987), 167-177.
- 8. M. Protter and H. Weinberger, Maximum principles in differential equations, Springer-Verlag (1984).
- 9. P.H. Rabinowitz, Minimax methods in critical points theory with applications to differential equations, CBMS Resional Conf. Ser. Math., Providence, Rhode Island 65 (1986).
- 10. J. Schröder, Operator Inequalities, Academic Press (1980).
- 11. G. Tarantello, A note on a semilinear elliptic problem, Differential and Integral Equations 5 (1992), 561-566.

Q-Heung Choi Department of Mathematics Inha University Incheon 402-751, Korea

Tacksun Jung Department of Mathematics Kunsan National University Kunsan 573-701, Korea