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POSITIVE SOLUTIONS ON
NONLINEAR BIHARMONIC EQUATION

Q-Heung Choi1 and Tacksun Jung2

Abstract. In this paper we investigate the existence of positive so-

lutions of a nonlinear biharmonic equation under Dirichlet boundary

condition in a bounded open set Ω in Rn, i.e.,

∆2u + c∆u = bu+ + s in Ω,

u = 0, ∆u = 0 on ∂Ω.

0. Introduction

Let Ω be a bounded open set in Rn with smooth boundary ∂Ω. In
this paper, we shall concern with the nonlinear biharmonic problem

(0.1)
∆2u + c∆u = bu+ + s in Ω,

u = 0,∆u = 0 on ∂Ω,

where u+ = max{u, 0}, c is not an eigenvalue of −∆, s ∈ R, and ∆2

denotes the biharmonic operator. Throughout this paper, we assume
that b is a bounded real number. Equations with nonlinearities of
this type have been extensively studied in the context of second order
elliptic operators (cf. [6]).

In section 1, we introduce the Banach space spanned by eigenfunc-
tions of ∆2 + c∆ and investigate properties of it in the Banach space.

In section 2, we study the positive solutions of (0.1) when λ1 < c <
λ2, b < λ1(λ1 − c) and s > 0.

Received October 16, 1996.
1991 Mathematics Subject Classification: 34C15, 34C25, 35Q72.

Key words and phrases: Weak solution, positive solution, Dirichlet boundary

condition, Eigenfunction.
1Research supported in part by GARC-KOSEF and Inha University Research

Foundation.
2Research supported in part by BSRI Program BSRI-96-1436.



30 Q-Heung Choi and Tacksun Jung

1. The Banach space spanned by eigenfunctions

In this section we investigate the multiplicity of solutions of the
biharmonic equation under the Dirichlet boundary condition

(1.1)
∆2u + c∆u = bu+ + s in Ω,

u = 0,∆u = 0 on ∂Ω,

where c is not an eigenvalue of −4, s ∈ R. Here we assume that the
nonlinearity bu+ crosses eigenvalues of ∆2 + c4.

Let λk(k = 1, 2, · · · ) denote the eigenvalues and φk(k = 1, 2, · · · )
the corresponding eigenfunctions, suitably normalized with respect to
L2(Ω) inner product, of the eigenvalue problem

∆u + λu = 0 in Ω,

u = 0 on ∂Ω,

where each eigenvalue λ is repeated as often as its multiplicity. We
recall that 0 < λ1 < λ2 ≤ λ3 ≤ · · · , λi → +∞, and that φ1(x) > 0 for
x ∈ Ω.

Hence the eigenvalue problem

∆2u + c∆u = µu in Ω,

u = 0,∆u = 0 on ∂Ω,

has infinitely many eigenvalues

µk = λk(λk − c) k = 1, 2, · · · ,

and the corresponding eigenfunctions φk(x).
The set of functions {φk} is an orthonormal base for L2(Ω). Let us

denote an element u, in L2(Ω), as

u = Σhkφk, Σh2
k < ∞.

Now we define a subspace H of L2(Ω), which will contain all solu-
tions of equation (1.1), as follows

H = {u ∈ L2(Ω) : Σ|λk(λk − c)|h2
k < ∞}.

Then this is a complete normed space with a norm

|‖u‖| = [Σ|λk(λk − c)|h2
k]

1
2 .

Since λk → +∞ and c is not an eigenvalue of −∆, we have the
following simple properties of the Hilbert space H.
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Proposition 1.1. Let c be not an eigenvalue of −∆. Then we
have:

(1) ∆2u + c∆u ∈ H implies u ∈ H.
(2) |‖u‖| ≥ C‖u‖L2(Ω) for some C > 0.
(3) ‖u‖L2(Ω) = 0 if and only if |‖u‖| = 0.

Proof. (1) Suppose c is not an eigenvalue of −∆. We write

∆2u + c∆u = Σλk(λk − c)hkφk.

Then

∞ > |‖∆2u + c∆u‖|2 = Σ|λk(λk − c)|(λk(λk − c))2h2
k

≥ ΣC|λk(λk − c)|h2
k = C|‖u‖|2,

where C = infk{|λk(λk − c)| : k = 1, 2, · · · }.
(2) and (3) are trivial. � �

Lemma 1.1. Let c be not an eigenvalue of −∆. Suppose d is not an
eigenvalue of ∆2 + c∆ and u ∈ L2(Ω). Then (∆2 + c∆−d)−1u belongs
to H.

Proof. Suppose that d is not an eigenvalue of ∆2 + c∆ and finite.
We know that the number of {λk(λk − c) : |λk(λk − c)| < |d|} is finite,
where λk(λk − c) is an eigenvalue of ∆2 + c∆. Let u = Σhkφk. Then

(∆2 + c∆− d)−1u = Σ
1

λk(λk − c)− d
hkφk.

Hence we have the inequality

|‖(∆2 + c∆− d)−1u‖| = Σ|λk(λk − c)| 1
(λk(λk − c)− d)2

h2
k ≤ CΣh2

k

for some C, which means that

|‖(∆2 + c∆− d)−1u‖| ≤ C1‖u‖L2(Ω), C1 =
√

C.�

�

With Lemma 1.1, we can obtain the following lemma.
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LEMMA 1.2. Let f ∈ L2(Ω). Let b be not an eigenvalue of ∆2 +
c∆. Then all solutions in L2(Ω) of

∆2u + c∆u = bu+ + f(x) in  L2(Ω)

belong to H.

With aid of Lemma 1.2, it is enough to investigate the existence of
solutions in the subspace H of L2(Ω) of (1.1).

Let λk < c < λk+1 and λk(λk − c), λk+1(λk+1 − c) be successive
eigenvalues of ∆2+c∆ such that there is no eigenvalue between λk(λk−
c) and λk+1(λk+1 − c). Then λk(λk − c) < 0 < λk+1(λk+1 − c) and we
have the uniqueness theorem.

2. Existence of positive solution

Now, we investigate the existence of the positive solution of (1.1).

LEMMA 2.1. Let λ1 < c < λ2, b < λ1(λ1 − c) and s > 0. Then
the unique solution of the linear problem

(2.1)
∆2u + c∆u = bu + s in Ω,

u = 0,∆u = 0 on ∂Ω

is positive.

Proof. Let λ1 < c < λ2 and b < λ1(λ1 − c). Then the problem

∆2u + c∆u− bu = µu in Ω,

u = 0,∆u = 0 on ∂Ω

has eigenvalues λk(λk − c)− b and they are positive. Since the inverse
(∆2 + c∆− b)−1 of the operator ∆2 + c∆− b is positive, the solution
u = (∆2 + c∆− b)−1(s) of (2.4) is positive.

This proves the lemma. � �

An easy consequence of Lemma 2.1 is

THEOREM 2.1. Let λ1 < c < λ2, b < λ1(λ1− c) and s > 0. Then
the boundary value problem (2.1) has a positive solution u1.

Proof. The solution u1 of the linear problem (2.1) is positive, hence
it is also a solution of (1.1). � �
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