• Title/Summary/Keyword: essential norm

Search Result 53, Processing Time 0.03 seconds

NORM AND ESSENTIAL NORM ESTIMATES OF TOEPLITZ OPERATORS ON THE BERGMAN SPACE

  • Choe, Boo-Rim;Lee, Young-Joo
    • Communications of the Korean Mathematical Society
    • /
    • v.11 no.4
    • /
    • pp.937-958
    • /
    • 1996
  • On the setting of product of balls we consider Toeplitz operators, with symbols satisfying a certain condition, on the Bergman space. Norms and essential norms of such operators are estimated by means of certain integral quantities.

  • PDF

ESSENTIAL NORM OF THE COMPOSITION OPERATORS BETWEEN BERGMAN SPACES OF LOGARITHMIC WEIGHTS

  • Kwon, Ern Gun;Lee, Jinkee
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.1
    • /
    • pp.187-198
    • /
    • 2017
  • We obtain some necessary and sufficient conditions for the boundedness of the composition operators between weighted Bergman spaces of logarithmic weights. In terms of the conditions for the boundedness, we compute the essential norm of the composition operators.

SLICE REGULAR BESOV SPACES OF HYPERHOLOMORPHIC FUNCTIONS AND COMPOSITION OPERATORS

  • Kumar, Sanjay;Manzoor, Khalid
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.4
    • /
    • pp.651-669
    • /
    • 2021
  • In this paper, we investigate some basic results on the slice regular Besov spaces of hyperholomorphic functions on the unit ball 𝔹. We also characterize the boundedness, compactness and find the essential norm estimates for composition operators between these spaces.

A NOTE OF WEIGHTED COMPOSITION OPERATORS ON BLOCH-TYPE SPACES

  • LI, SONGXIAO;ZHOU, JIZHEN
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.5
    • /
    • pp.1711-1719
    • /
    • 2015
  • We obtain a new criterion for the boundedness and compactness of the weighted composition operators ${\psi}C_{\varphi}$ from ${\ss}^{{\alpha}}$(0 < ${\alpha}$ < 1) to ${\ss}^{{\beta}}$ in terms of the sequence $\{{\psi}{\varphi}^n\}$. An estimate for the essential norm of ${\psi}C_{\varphi}$ is also given.

Some properties of equivalent fuzzy norms

  • Rhie, Gil-Seob;Hwang, In-Ah
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.2
    • /
    • pp.175-178
    • /
    • 2005
  • In the present paper, we observe a relation between fuzzy norms and induced crisp norms on a linear space. We first prove that if $\rho_1,\;\rho_2$ are equivalent fuzzy norms on a linear space, then for every $\varepsilon\in(0.1)$, the induced crisp norms $P_\varepsilon^1,\;and\;P_\varepsilon^2$, respectively are equivalent. Since the converse does not hold, we prove it under some strict conditions. And consider the following theorem proved in [8]: Let $\rho$ be a lower semicontinuous fuzzy norm on a normed linear space X, and have the bounded support. Then $\rho$ is equivalent to the fuzzy norm $\chi_B$ where B is the closed unit ball of X. The lower semi-continuity of $\rho$ is an essential condition which guarantees the continuity of $P_\varepsilon$, where 0 < e < 1. As the last result, we prove that : if $\rho$ is a fuzzy norm on a finite dimensional vector space, then $\rho$ is equivalent to $\chi_B$ if and only if the support of $\rho$ is bounded.

A NOTE ON OPERATORS ON FINSLER MODULES

  • TAGHAVI, A.;JAFARZADEH, JAFARZADEH
    • Honam Mathematical Journal
    • /
    • v.28 no.4
    • /
    • pp.533-541
    • /
    • 2006
  • let E be a Finsler modules over $C^*$-algebras. A with norm-map $\rho$ and L(E) set of all A-linear bonded operators on E. We show that the canonical homomorphism ${\phi}:L(E){\rightarrow}L(E_I)$ sending each operator T to its restriction $T|E_I$ is injective if and only if I is an essential ideal in the underlying $C^*$-algebra A. We also show that $T{\in}L(E)$ is a bounded below if and only if ${\mid}{\mid}x{\mid}{\mid}={\mid}{\mid}{\rho}{\prime}(x){\mid}{\mid}$ is complete, where ${\rho}{\prime}(x)={\rho}(Tx)$ for all $x{\in}E$. Also, we give a necessary and sufficient condition for the equivalence of the norms generated by the norm map.

  • PDF