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NORM AND ESSENTIAL NORM ESTIMATES OF
TOEPLITZ OPERATORS ON THE BERGMAN SPACE

Boo RiM CHOE AND YOUNG JoO LEE

ABSTRACT. On the setting of product of balls we consider Toeplitz op-
erators, with symbols satisfying a certain condition, on the Bergman
space. Norms and essential norms of such operators are estimated by
means of certain integral quantities.

1. Introduction

Throughout the paper §2 will be a fixed domain which is a product of
balls in the complex n-space C". More precisely, § is a domain of the
form

Q=[] B~
j=1

where each By, is the unit ball of C* and n; + --- + np = n. Let
L? denote the usual Lebesgue space on {2 with respect to the Lebesgue
volume measure V on {2 normalized to have total mass 1. The Bergman
space A? is the space of holomorphic functions in L2. By the mean value
property for holomorphic functions it is easy to see that the Bergman
space A? is a closed subspace of L2, so there is a unique Hilbert space
orthogonal projection P — called the Bergman projection — from L?
onto A%?. The Bergman projection P extends :o an integral operator
taking L' into the space of holomorphic functions and P is L? bounded
for 1 < p < oc (see Section 2 and Appendix). For a function u € L2, the
Toeplitz operator T, with symbol u is defined by

T.f = P(uf)
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for functions f € A% The densely-defined operator T, : A% — A? is
clearly bounded for u € L°°, but not necessarily bounded in general.

For u € L°°, compactness of T, is characterized by Zheng [Z] in
terms of certain integral vanishing property of u on the ball or polydisk.
Recently, the authors [CL] have generalized Zheng’s characterization to
product of balls and found another characterizatior. by using a different
argument from Zheng’s argument. In this paper we consider a certain
class of symbols containing bounded symbols and estimate norms and
essential norms of corresponding Toeplitz operators by modifying the
argument of [CL].

To introduce the symbol class which will be concerned in this paper,
we first present a version of [Ru, Proposition 1.4.10] (see, for example,
[BCZ, Lemma 9]): There are constants > 0 and ¢ > 1, depending only
on {2, such that

(1) sup/ |K (a,2)|90 20 K (2, 2)1 dV(z) < oo
aed JQ

where the notation K(z,w) denotes the Bergman kernel on Q. For ex-
ample, one may take 4 = (2n +2)7', 1 < ¢ < (2n-2)/(2n + 1) on the
ball and u =1/4, 1 < ¢ < 4/3 on the polydisk to insure (1).

In the present paper, we will consider symbols u for which the Berzin
transforms of |u|? are bounded for a sufficiently large p. More explic-
itly, we will consider symbols u which have the following boundedness
property:

(%) sup/ uop,|PdV < 0o
a€Q JQ

where p/2 is the conjugate exponent of ¢ appeared in (1). Here, o,
denotes a biholomorphic automorphism of  with the properties that

wala) =0, @a O pq = the identity map.
The automorphisms ¢, are explicitly described in [Ru, Chapter 2] in the

case of the ball, and hence can be defined in an obvious way for general
2. Note that every function satisfying condition () belongs to L? by
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taking @ = 0 and bounded functions clearly satisfy condition (). For
the symbols u satisfying condition (*), we have, in particular,

sup/ |uow,|dV < oo
a€ JQ

and therefore the multiplication operator f — u f is a bounded operator
from A? into L? by Theorem A of [Z3]. It follows that T, is bounded on
A2,

In Section 2 we collect some basic facts about the Bergman kernel and
some preliminary results on Toeplitz operators which will be used later.
In Sections 3, we estimate norms (Theorem 6) and essential norms (The-
orem 9) of T, with u satisfying (*). In Section 4, some remarks related
to Hankel operators are indicated. Finally in Appendix, we provide a
proof of L? boundedness of the Bergman projection P for 1 < p < oc.
This may be already known and it is included here for the sake of com-
pleteness.

2. Preliminaries

We collect in this section some notations and preliminary results which
will be used in the sequel. Most of those are well-known and necessary
verifications can be found, for example, in [BCZ], [CL], [Kr] or [Ra].

As is well known, the Bergman kernel K(z,w) has the following re-
producing property:

(2) flz) =< f,K(-,z)> for all feA?

where the notation < , > denotes the usual inner product in L? with
respect to the measure V. It is easy to show (see, for example, [CL]) that
the Bergman kernel A(z,w) on  has the following explicit formula:

: " 1
(3) K(z,w) = H 07w (z,w € Q).
j=1

Here, we use the notation z = (z!,--- ,2™) with each 27 = (z{, e ,zﬁ;j )
€ By, for a point z €  and

Jop? = wd 42w
/- w' = zywy + t 25, Wh;
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for the Hermitian inner product of 27, w/ € C%. Then the Bergman
projection P can be easily written as an integral operator by (2) and (3)
as follows:

(P)(z) =< PY.K(-,z) >

=<, K(-,z) >

/ H (1- ZW(TN T dV(v)  (zeQ)

for functions ¢ € L?. In fact, the above integral representation shows
that the operator P can be well defined for functions v € L.
It is often very convenient to use normalized kernels. So, we let

K(z,a)

ko(z) = ———==
(2) vV E(a,a)

Then the real Jacobian determinant of ¢, turns out to be the same as
|J@a|? for which we have the identity

(4) [Jgal® = Jkal?

on {2. Since g, is an involution, another straightforward calculation
shows

(5) Fa(pa(zDha(z) =1 (a,2€ Q)

By a manipulation of the above formulas, we have a useful change-of-
variable formula (see Section 2 of [CL]):

(a,z € Q)

/s;h(w)!K(z, w)|* K (w, w)? dV (w)

(6)
:I{(z,z)a'*'ﬁ_l/ h(p:(w))| K (z,w)* " K (w,w)? dV(w)
Q

for all a, § real whenever the integrals make sense.

The following two propositions are proved in [CL| with v € L and
exactly the same proof works with u satisfying the given weaker condi-
tions. The following shows how Toeplitz operators act on the Bergman
kernels.
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PROPOSITION 1. Let u € L?. Then we have
Tuko = [P(uop,)op,lk,

for every a € Q. [J

As is well-known, norm and essential norm of a bounded operator on
a Hilbert space are equal to those of its adjoint operator. We have a
convenient way to represent the adjoint operators of Toeplitz operators.

PROPOSITION 2. Let u satisfy condition (x). Then the adjoint oper-
ator T} of Ty, is given by

(Trh)(a) = / h(w)P(a 0 pa)(pal@)) K (a, w) dV(w)

for every a € Q and h € A2. O

Some of our characterizations will be in terms of certain quantities
over the balls induced by the Bergman metric. The Bergman distance
function between two points z, w € Q will be denoted by 3(z,w) and
the corresponding, Bergman metric ball with center at a €  and radius
r > 0 will be denoted by E,(a):

E(a)={z€Q:8(a,z) <}

Also, we use the notation [A] for the measure of a Borel subset 4 of
with respect to the measure V and the same letter C for various positive
constants which may change from one occurrence to the next.

The following lemma gives some information about the size of the
volume of the Bergman metric balls E,(a).

LEMMA 3. For r > 0, there are constants C(r), ¢(r) so that

(ko (w)[®
o) < Tgayr SE0)

for all a € Q and w € E.(0).
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Proor. See [CL, Lemma 6]. O

3. Norms and essential norms

In this section we estimate the norms and essential norms of the
Toeplitz operators under consideration. First we have a couple of simple
lemmas.

LEMMA 4. Let ¢ > 0 and ¢ > 1 be the constants as in (1) and
2/p+1/q = 1. Then there exists a constant C = C{) such that

/ |h(@p2(w))|2
19}

for every z €  and h € LP.

2/p
Kz, w)|K(w,w)*dV(w) < CK(z,z)* (/ |h|? dV)
Q

PROOF. Let h € L? and pick a point a € Q. Apply the change-of-
variable formula (6) and then use Holder’s inequality to obtain

/n R (w))*|K (2, w)| K (w, w)* dV (w)

:K(z,z)"/ |h(w)|}| K (2, w)|) "2 K (w, w)* dV(w)
Q

2/p
SK(z,z)"(/ |h|P dV) </ K (z,w)|1 2 K (w0, w)9# dV(w)>
Q Q

Now the lemma follows from (1). The proof is complete. [

1/q

LEMMA 5. For a givenr > 0, there is a constant C = C(r) such that

1
|Er(a) E.(a)

tga)l?av < [ [ av
Q

for every s >0, h € L* and a € Q.
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PROOF. Let s > 0, h € L*. We first note that ¢,E,(a) = E-(0) for

a € §) because the Bergman distance is invariant under automorphisms

(see, for example [Kr]). By a change of variables, together with (4) and
Lemma 3, we have

1 1

hlo )P dV = ——— :
@) Ju ") E(@)] /5. )

for some constant C' = C'(r). This completes the proof. O

[ ka2 dV < c/ |h|* dV
(9]

We are now ready to estimate norms of Toeplitz operators.

THEOREM 6. Let u satisfy condition (x). Then the following inequal-
ities hold.

(a) sup/ | P( u0,0a)l dV < ||T., ||2

(b) For each v > 0, there exists a constant C = C(r) such that

1
su Pluoyp,) JIFdV < Csu /Pu.O’a 24v.

(¢) For a given r = r(u,2) sufficiently large, there exists a constant

C = C(r) such that

ITu|* < Csup

1 / 9
P(uoya)(pa)l*dV.
e |Er(a)l E,(a)l ( '

PROOF. We first prove (a). Since the kernel k, has L?-norm 1, we
have

(1) /Q Tukal2dV < ||T]? /Q ko 2V = (|2

for every a € Q. On the other hand, using Proposition 1, we can easily
see by a change of variables that

2 _ 0. 20 1201 — 0o )2
) / ITokal dV—/ﬂaP(u o)) 2[Rl dV /Q|P<u po)?dV
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for every a € 2. Combining the above with (7), we obtain (a).
Part (b) is a consequence of Lemma 5 with s = 2.

Finally we show (¢). Let h € A? and fix a poirt a € Q. Then, by
Proposition 2, we have

T:ha) = [ bw)Plwo papal@) K (e, 0) v (w)
Q
Given r > 0, decompose
(9) Tr=U,+V,

where

Ush(a) = /; " h(w)P(u o 9o )@a(w))K(a,w)dV(w)

and

Vih(a) = / h(w)P(uo g )(pa(w))K(a,w)dV(w).
Q\E(a)

We first estimate the operator U,. Put

1

I(a,r) |E(a) | E:(a)

[P(uowa)(pal|*dV

for notational simplicity. By the Cauchy-Schwarz inequality
Uk < Tar) [ (hw)P [Eda)l[K(a w) dV
Er(a)

An application of Fubini’s theorem therefore yields

/ UL B2 dV

<(sup Ita r)/lh(w)P/ ()| K (0, w1 dV{a) dV (),
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By the proof of [CL, Theorem 8], we have

(10) sup/ |Er(a)||K(a,w)|*dVia) < oo
wel JE, (w)

and thus obtain the following estimate for the operator norm of U,

(1) UAI* < Csup —— [P(uowa)(ga)?dV  (r>0)

a€q 'Er(a)l Es(a)

for some constant C' = C(r).

Now we estimate the operator V,. Let g > 0 and ¢ > 1 be the
constants as in (1), and let 2/p+ 1/¢ = 1. We note by the boundedness
of P (see Corollary 16 of Appendix) that

(12) /lp(uo%w’dvgcf luop.PdV  (a€ )
1 Q

for some constant C' = C() independent of a € Q. By the Cauchy-
Schwarz inequality again,

[Veh(a)? < (/Q\E( IP('uO%)(%(w))lzlff(ww)lK(uuw)“dV(w))

X (/ |h(w) ] |K (a, w)|K{w,w) " dV(w))
Q\E:(a)

2/p
C (/ |P(uowg)? dV) K(a,a)*
Q

X / |h(w)|*| K (a, w)|K (w,w) ™ * dV(w)
Q\FE.(a)

where C' = C(Q) is the constant provided by Lemma 4. Thus, by (12)
and Fubini’s theorem, we have

/p
/|Vrh]2dV§C<sup/ |uow,|? dV>
Q

x/[h(w)|21\'(w,w)_“/ K(a,a)*|K(a,w)|dV(a)dV(w)
2 Q\E

Er(w)
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for some constant C = C(2). Let

J(w,r) = K(w’w)_”/ K(a,a)*|K(a,w)|dV(a)
Q\Er(w)

for simplicity. Then we have

5 2/p
/|Vrh|2 dv < C (sup/ [uop.l? dV) (sup J(w,r)) / |R|* dV.
Q a€N JQ weld Q

In other words,

2/p
(13) ]|VTH2 <C (sup/ |uopgl? dV) (sup J(uwj))
aclJQ weES)

for some constant C' = C(€2). On the other hand, by Lemma 4 we obtain
sup J(w,r) < C|Q\ EL(0)2/?
weN
for some constant C' independent of r, which implies that sup,,cq J(w, )
— 0 as r — oo. Thus we have ||V, || < ||T7]]/2 for all sufficiently large
r = r{u, ). Consequently, combining this with (9) (11) and using the
fact ||T,|| = ||Tr||, we have (¢). The proof is complete. O

Since we have the condition (*), Theorem 6 can be slightly generalized.
First we prove a simple lemma.

Lo d

LEMMA 7. (a) Given positive numbers r, s, t with 4 —t < s < 2,
there exists a constant C' = C(r, s,t) such that

! 2
L[ Phen)Pdv
B )] [P0

\ 172

|Ph(a)|” dV)

1 (4—s)/2t
<C| ——— (/ fh|’dV>
(lEr(a)I E,(a) / Q
for alla € Q, h e L.

(b) Given s, t with2 < s < 1+41/2, there exists a constant C = C(s,1t)
such that

1/2 (s—1)/t
/\Ph]“’dVgC(/ |Ph}2dV> (/ |hL’dV>
Q2 94 Q

forall h € L.
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Proor. To prove part (a), let r > 0. By the Cauchy-Schwarz in-
equality, we have

1/2
1 / 2 1 . P
T Ph(pa)|"dV < | ——+ Fhipa)|®dV
@)l Sy ) (IEr(a)l ma )

1/2
1 4—3
—_— Phip, dV
. (!Er(a)l E,‘a)‘ (p ) k )

for every a € ). Now use Lemma 5, Jensen’s inejquality and the bound-
edness of P, to get the following estimate for the second integral of the
right side of the above:

1
—_— |Ph(pa)|'™*dV < C/ |Ph* ™ dV
Q

|Er(a)| JE, (a)
(4-9)/t
<C (/ {Ph|* dV)
Q

(4—s)/t
<C (/ wdv)
Q

for some constant C' = C(r,Q). This proves (a . Part (b) is again an
easy consequence of Jensen’s inequality, the Cauchy-Schwarz inequality
and the boundedness of P. The proof is complete. [

Using Lemma 7, we have a little bit more general version of Theorem
6 as follows. For simplicity we use the notation

M =sup [ |uog,/PdV.
acfl JQ
COROLLARY 8. Assume u satisfies condition (x) and let p be the
exponent as in (x). Let s > 0,4 —p < s <1+ p/2. Then the following
inequalities hold.
(a) There exist contants C = C(p,s), 6 = 6(s) and € = ¢(p, s) such
that

sup/ |P(uop,)|"dV < CME||T,||°.
a€N JQ
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(b) For each r > 0, there exists a constant C = C(r) such that
|P(uo@y)(wa)l’ dV<Csup / [P(uo,)|”dV.
ach |Er(a)| /

(¢) For each r = r(u,Q) sufficiently large, ther> exist constants C' =
C(r,s), 6 = é(s) and € = ¢(p, s) such that

ITu|l® < CM® sup |P(uo0@a)(pa)l”dV.
ac IE ), Er(a)
PROOF. (a) and (c) are consequences of Jensen's inequality, Lemma

7 and Theorem 6. Part (b) is a consequnece of Lernma 5. [

We now turn to essential norm estimates. Recall that the essential
norm 1s the distance to compact operators. To be more precise, let Hj,
H; be Hilbert spaces and T : H; — H, be bounded. Then, the essential
norm ||T||. is defined by

ITl|e = inf ||T — S|

where infimum is taken over all compact operators S : H, — H,. In
the following, the statement a — 9Q simply mears that the euclidean
distance d(a,09) between a € Q and the topological boundary 89 of ()
has the property d(a,3Q) — 0.

THEOREM 9. Let u satisfy condition (*). Then the following inequal-
ities hold.
(@) timsup [ P(uogo)faV < |1
(b) For each r > 0, there exists a constant C' = C(r) such that
1 .
lim sup |[P(vo@a)(pa)l*dV < Climsup [ |P(uop,)|*dV.
a—og |Er(a)l E.(a) a—3890 JQ

(c) For each r = r(u,{) sufficiently large, there exists a constant

C = C(r) such that

ITu|l? < Climsup

P( @a)|?dV.
RS lEr(a)l E‘T(a)l (UOS‘Q )(Vo )I
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PRrROOF. We first prove (a). Since the normalized kernel k, converges
uniformly to 0 on compact subsets of Q as a — 91, one can easily see
that k, converges weakly to 0 in A? as a — 9. Hence for any compact
operator S,

/ |Skqe]?dV — 0 as a -+ 0N
Q

and thus, by (8), we have

1/2
T, = S| > lim sup ( / (T4 - S)kd]? dv)

a—o§
1/2 1/2
{ lTk| dV> —(/ ]Skafdv) }
17}
1/2
zlimsup( |Tukq |2dL>

> lim sup
a—3a0N

a—a30

= lim sup

1/2
]P(uogoa IZdV) :
a—0Q

It follows that

limsup/ | P(u Osoa,)lzdv < HTuHE
a— o0 Q

Therefore we obtain (a).
Part (b) is a consequence of Lemma, 5.

Finally we show (c). For each p > 0, put
2, ={z€Q:d(2,00) > p}

and let M, be the multiplication by the characteristic function of Qp,
acting on L2 Since the symbol of M, is supported on a compact subset
of Q, the operator M, is compact when restricted to A%. Thus the
operator M,Tr : A2 — L? is compact. Accordingly,

ITlle <NIUTy = M,Ty] (p>0)
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where J : 42 — L? denotes the inclusion operator. Put G, =JT; -
M,T; for simplicity and pick any h € A%, a € 2. Then, by Proposition
2, we have

G h(a) = x,(a) /Q h(w)P(u 0 pa)(pa(w)) K (a,w) dV(w)

where X, denotes the characteristic function of the set Q \ 2,. Given
r > 0, decompose G, = U, , + Vp,r where U, h == x,U h and Vorh =
XpVrh. Here we use notations U, and V, introduced in the proof of
Theorem 6. Since PJ is the identity on A2, it is not hard to see that
ITlle = [|JT]|e and thus

(14) | Tulle <Gl < NUp A+ VL (7 > 0).
By the Cauchy-Schwarz inequality

U, M@ < xtlarr) [ )P E (@ () ()

where I(a,r) is as in the proof of Theorem 6 and hence, by Fubini’s
theorem and (10),

U,-h|*dV <C( sup I(a,r R|2dV
P
Q a€Q\Q2, Q

so that
(15)

HUP,.er <C sup

— |P(uowe)(pa)|*dV (p,r >0)
sen\e, [ Era)] Jg, (o)

for some constant C' = C(r, 1) independent of p. Also, by (13), we have
Vel < | Tulle/2 for all p and for all r = r(u, Q) sufficiently large. For
such r, we see from (14) and (15) that

1
ITulle < C sup

|P(uo @, )(wa)]?dV (r>0)
acO\Qp |Er(a)[ E.(a)

for some constant C' = C(r,{) independent of p. Now, taking p — 0,
we have (c¢). The proof is complete. [J

As a corresponding result to Corollary 8, we have the following by a
similar proof.
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COROLLARY 10. Assume u satisfies condition (x) and let p be the

exponent as in (*). Let s > 0,4~ p < s <1+ p/2. Then the following
inequalities hold.

(a) There exist constants C = C(p,s), § = é(s) and ¢ = ¢(p, s) such
that

nmsup/ |P(uo g’ dV < CM|T.IE.
a—af} Q

(b) For each r > 0, there exists a constant ' = C(r) such that

1
lim sup —— |P(uop,(@a)|dV
a—d0 IET(G)’ E.(a)

< Clim sup/ |P(wogg)|”dV.
a—02 JQ

(¢) For each r = r(u, Q) sufficiently large, there exist constants C' =
C(r,s), 6 = 6(s) and € = ¢(p, s) such that

1
1T |2 SC’M‘limsup-————-—-/ |P(uocp.)(p.)|’dV. O
a—on |Er(a)l JE,(a)

As a consequence of Corollary 10, we recover characterizations ([Z],
[CL)) of compact Toeplitz operators under the weaker condition ().

COROLLARY 11. Assume u satisfles condition (*) and let p be the

exponent as in (*). If 4 —p < s < 1+ p/2, s > 0, then the following
statements are equivalent.

(a) T, is compact on A?.
(b) |P{uowy)|’dV —0 as a— 0N.
Q

(¢) ———-—1—- |[P(uowa)(wa)]dV =0 as a— 00 for all
|E-(a)| JE, (a)

r > 0.
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4. Remarks

For a function u € L?, the Hankel operator K, with symbol u is

defined by

Huf = (I~ P)(uf)

for functions f € A%. As in the case of ‘Toeplitz operators, the operator
Hy, : A* — (A%)* is densely defined and not necessarily bounded in gen-
eral. Luecking [Lu] characterized L?-symbols for corresponding Hankel
operators to be bounded and compact on the disk and later Li [L] gave
some extension of Luecking’s result to strongly pseudoconvex domains.
In a more recent paper [LL] Li and Luecking characterized bounded and
compact Hankel operators with L?-symbols on strongly pseudoconvex
domains. Also, some results computing essential norms of Hankel oper-
ators were obtained on the disk in [LR] with L2-symbols and in [A] with
antiholomorphic symbols.

It is not hard to see that the arguments of the present paper work
with H, and I — P in place of T, and P. Thus Thecrems 6, Theorem 9,
Corollary 8, and Corollary 10 remain valid with H, and I — P in place
of T, and P. Although those results are not contained in results men-
tioned above, they may be considered as results of similar BMO(VMO)
type. For example, we obtain the following VMO type characterization
of compact Hankel operators, which recover results of [S1], [S2], [Z], [CL].

COROLLARY 12. Assume u satisfies condition (+) and let p be the
exponent as in (). If s > 0,4 —p < s < 14 p/2, then the following
statements are equivalent.

(a) H, is compact on AZ.

(b) /|uoc,oa—P(uocpa)]“"dV—>0 as a--» 0.
)

1 ;
(c) / lu—P(UO‘Pa)(LPaHSdV—*O as a — 0} for
|Er(a)] JE, ()
all r>0. 0O

Having characterizations of compact Topelitz operators (Corollary 11)
and compact Hankel operators (Corollary 12), one can go a little bit fur-
ther as in [CL] by using well-known characterizations of compact Toeplitz
operators with positive symbols to obtain the following.
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COROLLARY 13. Let u satisfy condition (*). Then T|up2 is compact
if and only if T, and H, are both compact. [

Appendix.
We let define a measure dV,, (o > —1 is fixed throughout this section)
on Q by dV,(z) = H —|27%)*dV;(2?) where each dV; is the normalized
j=1

volume measure on By,;. Corresponding to a complex number s = o + it
(0 > -1, —oo <t < c0), we define a kernel

m i
H 1,'“' (:€Q, we)

23l )5 1

E4

and an integral operator

Puf(z) = A, /Q Ky (z,0)f(w)dV(w)  (z€9)

m

s=1 T(nj+14s)/T(n;+
1)I'(s +1)™ and the complex powers that occur in the kernel I, are
understood to be the usual principal branches. In particular, dVj, = dV
and Py = P, the Bergman projection. Then we have

whenever the integral makes sense. Here A, =[]

THEOREM 14. (a) For 1 < p < oc, P, is & bounded operator on
LP(Q,dV,) if and only if p(1+0) > 1+ a.

(b) If (1 +0) > 1+ «, then Psf = f and P,f = f(0) for every
holomorphic f in LP(Q,dV,).

The above theorem can be found in several cases, such as [C], [FR],
[Ko] and [Z2]. To obtain the above we first define

N

_ w'Z o
./Hll-l' ) fwydviw) (s e,

z) . u)]'"j+1+c’

We first prove a preliminary version of Theorem 14.
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PROPOSITION 15. For 1 < p < o0, Q, is a bounded operator on
L?(Q,dVy) if and only if p(1+0) > 1 + a.

PROOF. We first consider the case p = 1. Assume that @, 1s a
bounded operator on L(Q,dV,). Note that the adjoint operator Qz of
the operator @, is given by

/H D™y avaw) (e o)

ll = Z] w]In,+l+a

The boundedness of @, on L!'(§,dV,) implies the boundedness of Qr
on L>(Q). It follows from Fubini’s theorem that

m . 12y ]
swp [T =y [ LDl ) < oo

i1 11— zJ d | tlte

where the supremum is taken over all z € Q. By Proposition 1.4.10 of
[Ru], this happens if and only if o > . Now assume that ¢ > « and show
that @, is bounded on L'({2,dV,). To do so, pick any f € LYQ,dV,).
Then, by Fubini’s theorem and Proposition 1.4.10 of [Ru] again, we have

[ 1@.1av.
)
. - el ol o A

< — ap? 2\o ( 1dl ) y

< [ 1) [0 - ) [ S T W

<c [ Ifw) Ia - e avw)

=c [ \rav,

Q

for some constant C' independent of f. This completes the proof for the
case p = 1.

Assume that 1 < p < co and put

_w'2a—a
Qlzw) = H Lo koD

S - 23 wi [t
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so that
Quf(z) = /Q Qu(2,0)f(w) dVa(w).

Let g be the conjugate exponent of p. If p(1+ ¢) < 1+ «, then g(o —
o)+ a < —1 and thus

/ IQ,(z,w)|q dVa(w) =0
Q

for every z € §, and thus @, f fails to exist for some f € LP(§,dV,). If
p(l+ o) >1+a,thene=a—(1+a)/p>—1 5=(1+a)/p-—1 > -1

and 0 —a > 0. Define p(z) = H(l — 2% . Then, by Fubini’s

Theorem and Proposition 1.4.10 of [Ru] we have
/ Qo(z,w)p(w)? dVy(w)
(1 — |w?|?) ; ~
H/ v dVi(uw?) < [ap(z)]?

ll _ Z] w]ln,+]+a

and
/ﬂ Qu(z, w)p(2)? dVal2)
B O R O e o € B e L NS
IJ/B — V(=) < bp(w)

11— 2 - wi|mt1+e

for some constants a and b depending only on m,a, 0 and p. It follows
from Schur’s theorem (see, for example [Z2, Theorem 3.3.2]) that

/ Qo f1P dVa < (ab)? / I v
Q Q

for f € LP(2,dVy). This completes the proof. O
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PROOF OF THEOREM 14. Part (a) of the theorem follows from Propo-
sition 15 because

6—m1'rlt|/2 < IKa(z,w)HKU(z,w)]‘l < 6m7r|t[/2

on § x Q. The second part can be easily seen from the special case [C,
Theorem 1] when Q is the unit ball. [

As mentioned before dV; = dV and Py = P. Hence Theorem 14 yields

COROLLARY 16. The Bergman projection P is bounded on L? if and
only if 1 < p<oo. O

One immediate consequence of Theorem 14 is that the LP-norm of
any holomorphic function on  is controlled by the corresponding norm
of its real part. In the setting of the unit ball the following can be found
in Theorem 7.1.5 of [Ru] and Lemma 10 of [Z1] for the case a = 0 and
a > —1, respectively. The proof of the following corollary is similar to
that of the special case [Z1, Lemma 10] when Q is the unit ball. We omit
the details.

COROLLARY 17. For each p > 1 and o > —1 there exists a constant
C, depending only on p, o and §, such that

/foJ”dVa < C/Q [Re fI? 4V,

for all holomorphic functions f on ) such that f(0):=0. O
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