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ESSENTIAL NORMS OF SUMS OF TOEPLITZ

PRODUCTS ON THE PLURIHARMONIC DIRICHLET

SPACE

Young Joo Lee

Abstract. On the setting of the pluriharmonic Dirichlet space, we
describe the essential norm of an operator which is a finite sum of
products of several Toeplitz operators.

1. Introduction

Let B be the unit ball in the complex n-space Cn and V be the
Lebesgue volume measure on Cn normalized so that V (B) = 1. The
Sobolev space S is the completion of the space of all smooth functions
f on B for which

‖f‖ :=

{∣∣∣∣∫
B
f dV

∣∣∣∣2 +

∫
B

(
|Rf |2 + |R̃f |2

)
dV

}1/2

<∞

where

Rf(z) =
n∑
i=1

zi
∂f

∂zi
(z), R̃f(z) =

n∑
i=1

zi
∂f

∂zi
(z)

for z = (z1, · · · , zn) ∈ B. The Sobolev space S is a Hilbert space with
the inner product

〈f, g〉 =

∫
B
f dV

∫
B
ḡ dV +

∫
B

(
RfRg + R̃fR̃g

)
dV.

A function u ∈ C2(B) is said to be pluriharmonic if the one-variable
function λ 7→ u(a + λb), defined for λ ∈ C such that a + λb ∈ B, is
harmonic for each a ∈ B and b ∈ Cn. The pluriharmonic Dirichlet space
Dph is then a subspace of S consisting of all pluriharmonic functions
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on B. Then one can check Dph is closed in S . We let Q be the Hilbert
space orthogonal projection from S onto Dph and put

L 1,∞ =

{
ϕ ∈ S : ϕ,

∂ϕ

∂zj
,
∂ϕ

∂z̄j
∈ L∞, j = 1, · · · , n

}
.

It is known that each function in L 1,∞ can be extended to a continuous
function on B̄, the closed unit ball; see Theorem 5.4 of [1] for example.
Thus we will use the same notation between a function in L 1,∞ and its
continuous extension to B̄. For ϕ ∈ L 1,∞, we note that Rϕ, R̃ϕ ∈ L∞.
Given u ∈ L 1,∞, the Toeplitz operator Tu with symbol u is the linear
operator on Dph defined by

Tuf = Q(uf)

for functions f ∈ Dph. Then one can see that Tu is bounded on Dph.
In this paper we consider operators which are finite sums of Toeplitz

products of several Toeplitz operators. More explicitly, we consider op-
erators of the form

(1)
N∑
i=1

Mi∏
j=1

Tuij

where uij ∈ L 1,∞. We then study the characterizing problem of when
an operator of the form (1) is compact. Moreover, we will describe the
essential norm for such an operator. Recall that the essential norm ‖L‖e
of a bounded linear operator L on Dph is defined as

‖L‖e = inf
K
‖L+K‖

where the infimum is taken over all compact operators K on Dph. Thus
we note L is compact if and only if ‖L‖e = 0.

On the setting of the Bergman spaces or holomorphic Dirichlet spaces,
the corresponding problem has been well studied. Axler and Zheng [2]
considered the problem on the Bergman space of the unit disk and proved
that such an operator is compact if and only if the Berezin transform of
the operator vanishes on the boundary of the disk. Later their result has
been extended to bounded symmetric domains in [5]. Recently, on the
holomorphic Dirichlet space of the ball or polydisk, the same problem
has been studied as in [7] and [9].

We in this paper continue to study the same problem on the pluri-
harmonic Dirichlet space under consideration and describe the essential
norm of an operator of the form (1) in terms of the boundary value
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of the corresponding sum of products of symbols. The following is the
main result of our paper.

Theorem 1. Given uij ∈ L 1,∞, we have∥∥∥∥∥∥
N∑
i=1

Mi∏
j=1

Tuij

∥∥∥∥∥∥
e

= max
η∈∂B

∣∣∣∣∣∣
N∑
i=1

Mi∏
j=1

uij(η)

∣∣∣∣∣∣ .
In Section 2, we collect some basic facts. In Section 3, we will prove

Theorem 1. As a consequence, we characterize the compactness for such
an operator to be compact; see Corollary 8. Also we study the compact
product problem with pluriharmonic symbols; see Corollary 9.

2. Preliminaries

The Dirichlet space D is a closed subspace of S consisting of all
holomorphic functions in S . We let P be the Hilbert space orthogonal
projection from S onto D . Each point evaluation is easily verified to be
bounded linear functionals on both D and Dph. Hence, for each z ∈ B,
there exist functions Kz ∈ D and Rz ∈ Dph which have the following
reproducing properties:

f(z) = 〈f,Kz〉, u(z) = 〈u,Rz〉

for functions f ∈ D and u ∈ Dph. As is well known, a real-valued
function on B is pluriharmonic if and only if it is the real part of a
holomorphic function on B. Hence every pluriharmonic function on B
can be expressed, uniquely up to an additive constant, as the sum of a
holomorphic function and an antiholomorphic function; see Chapter 4
of [10]. Using this fact, we can see that Dph = D + D . Hence there is a
useful relation between Rz and Kz:

Rz = Kz +Kz − 1.

Since Pϕ = 〈ϕ,Kz〉 for z ∈ B, the formula above leads us to the follow-
ing useful connection between P and Q:

(2) Q(ϕ) = P (ϕ) + P (ϕ)− P (ϕ)(0)

for functions ϕ ∈ S . We let L2 = L2(B, V ) be the usual Lebesgue
space equipped with the usual norm || ||2 and A2 be the well known
Bergman space consisting of all holomorphic functions in L2. Let β be
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the Bergman projection which is the orthogonal projection from L2 onto
A2. It is known that there is a useful connection between P and β:

R(Pψ) = β (Rψ)− β (Rψ) (0)

for functions ψ ∈ S ; see [7] for detail. It follows from (2) that

R(Qψ) = β (Rψ)− β (Rψ) (0)

R̃(Qψ) = β
(
Rψ̄
)
− β

(
Rψ̄
)

(0)
(3)

for functions ψ ∈ S .
For a function ϕ ∈ L∞, we let Sϕ denote the Bergman space Toeplitz

operator on A2 defined by

Sϕf = β(ϕf)

for functions f ∈ A2. Clearly Sϕ is bounded on A2. Given a bounded

linear operator L on A2, the Berezin transform L̂ of L is the function
on B defined by

L̂(a) =

∫
B

(Lba)ba dV, a ∈ B

where ba denotes the well known normalized Bergman kernel of A2. It

is known that L̂ is a continuous function on B. Moreover, it turns out
that the Berezin transform of an operator which is a product of Bergman
space Toeplitz operators preserves the boundary continuity of symbols.
More explicitly, it is known that for given symbols ϕ,ψ ∈ L∞ which are

continuous on B̄, the Berezin transform ŜϕSψ is continuous up to B̄ and

(4) ŜϕSψ = ϕψ on ∂B

holds; see Proposition 2.1 of [4] for example. Also, the Berezin transform
turns out to provide a compactness criterion for operators which are
sums of products of Bergman space Toeplitz operators. Specially, for
symbols ϕ,ψ, u ∈ L∞, it is known that SϕSψ − Su is compact on A2 if
and only if

lim
|a|→1

̂[SϕSψ − Su](a) = 0;

see Theorem A of [5] for more general results. Recall that each function
in L 1,∞ can be extended to a continuous function on B̄. Now, combining
these observations with (4), we have the following characterization.

Lemma 2. Let ϕ,ψ, u ∈ L 1,∞. Then SϕSψ − Su is compact on A2

and only if ϕψ = u on ∂B.
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3. The proof of Theorem 1

We let D0 be the space of all f ∈ D such that f(0) = 0. Note that
Dph = D0 ⊕D . The following is taken from Proposition 2 of [8].

Proposition 3. If a sequence uj = fj + gj ∈ D0 + D converges to
0 weakly in Dph, then fj and gj converge to 0 weakly in D . Also, if hj
converges to 0 weakly in D , then hj converges to 0 weakly in Dph.

It is easy to see that the identity operator from Dph into b2 is bounded.
Moreover, it turns out that it is in fact compact; see Proposition 3 of
[8]. In particular, for a sequence ϕk converging weakly to 0 in Dph, we
have ||ϕk||2 → 0 as k →∞.

The following lemma will be useful in our proofs. Recall that β is the
Bergman projection and put

〈f, g〉2 =

∫
B
fg dV, f, g ∈ L2.

Lemma 4. Let u ∈ L 1,∞. If ϕj converges to 0 weakly in Dph, then
we have

lim
j→∞

β[R(uϕj)](0) = 0.

Proof. For each j, we write ϕj = fj + gj ∈ D0 + D . By Proposition
3, fj converges to 0 weakly in D . We first claim that Rϕj converges to
0 weakly in A2. To prove this, let ε ∈ A2 be an arbitrary function and
choose ψ ∈ D such that Rψ = ε− ε(0). Since Rfj(0) = 0 for each j, we
see

〈Rϕj , ε〉2 = 〈Rfj ,Rψ + ε(0)〉2
= 〈Rfj ,Rψ〉2 + ε(0)Rfj(0)

= 〈Rfj ,Rψ〉2
= 〈fj , ψ〉 − fj(0)ψ(0)

= 〈fj , ψ〉

for each j, which implies 〈Rϕj , ε〉2 → 0 as j → ∞ and Rϕj converges
to 0 weakly in A2. Now, to complete the proof, we note that∣∣∣∣∫

B
(Ru)ϕj dV

∣∣∣∣ ≤ ||Ru||∞(∫
B
|ϕj |2 dV

) 1
2

→ 0
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as j →∞ by the remark just after Proposition 3 again. It follows that

lim
j→∞

β[R(uϕj)](0) = lim
j→∞

∫
B

[(Ru)ϕj + u(Rϕj)] dV

= lim
j→∞
〈Rϕj , ū〉2

= lim
j→∞
〈Rϕj , β(ū)〉2

= 0

because Rfj converges weakly to 0 in A2. The proof is complete.

For each a ∈ B, we let

Ea(z) =
∑
|α|>0

(n+ |α|)!
n!|α|α!

aαzα, z ∈ B

and put ea := Ea||Ea||−1 for notational simplicity. Then, it is known
that ea converges weakly to 0 in D as a → ∂B and lima→ζ〈uea, ea〉 =
u(ζ) for every ζ ∈ ∂B; see Lemma 6 of [7]. It follows that

lim
a→ζ
〈Tuea, ea〉 = lim

a→ζ
〈uea, ea〉 = u(ζ)(5)

holds for every u ∈ L 1,∞ and ζ ∈ ∂B.
The following shows that a semi-commutator of two Toeplitz opera-

tors is always compact on Dph.

Proposition 5. For any u, v ∈ L 1,∞, TuTv−Tuv is compact on Dph.

Proof. Put T = TuTv − Tuv for notational simplicity and let fk be a
sequence converging weakly to 0 in Dph. To prove the compactness of
T on Dph, we need to show ||Tfk|| → 0 as k →∞. First note that each
Tvfk converges weakly to 0 in Dph and then

lim
k→∞

‖fk‖2 = 0 and lim
k→∞

‖Tvfk‖2 = 0(6)

by the remark just after Proposition 3. Since Qϕ(0) =
∫
B ϕdV for every

ϕ ∈ S , we have

|Tfk(0)| ≤
∫
B
|uTvfk + uvfk| dV ≤ ‖u‖∞‖Tvfk‖2 + ‖uv‖∞‖fk‖2

for each k. It follows from (6) that

lim
k→∞

|Tfk(0)| = 0.(7)
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Since Tfk = Q[uQ(vfk)− uvfk], we have by (3)

R(Tfk) = β[R(uQ(vfk))−R(uvfk)]− β[R(uQ(vfk))−R(uvfk)](0)

= β[(Ru)Tvfk] + β[uR(Q(vfk))]− β[R(uTvfk)](0)

− β[(R(uv)fk]− β[uvRfk] + β[R(uvfk)](0)

= β[(Ru)Tvfk] + β[u{β(R(vfk))− β(R(vfk))(0)}]
− β[R(uTvfk)](0)− SR(uv)fk − SuvRfk + β[R(uvfk)](0)

= β[(Ru)Tvfk] + β[u{β((Rv)fk + vRfk)− β(R(vfk))(0)}]
− β[R(uTvfk)](0)− SR(uv)fk − SuvRfk + β(R(uvfk))(0)

= SRuTvfk + SuSRvfk + SuSvRfk − β(u)β[R(vfk)](0)

− β[R(uTvfk)](0)− SR(uv)fk − SuvRfk + β[R(uvfk)](0)

= SRuTvfk + SuSRvfk + [SuSv − Suv]Rfk − β(u)β[R(vfk)](0)

− β[R(uTvfk)](0)− SR(uv)fk + β[R(uvfk)](0)

(8)

for all k. Since fk and Tvfk converge weakly to 0, we have by Lemma 4

lim
k→∞

β[R(vfk)](0) = lim
k→∞

β[R(uTvfk)](0) = lim
k→∞

β[R(uvfk)](0) = 0.

Also, since Rfk converges weakly to 0 in A2 and SuSv −Suv is compact
by Lemma 2, we see ‖[SuSv − Suv](Rfk)‖2 → 0 as k → ∞. Combining
these with (8) and (6), we have

‖R(Tfk)‖2 ≤ ||SRu|| ||Tvfk||2 + ||SuSRv|| ||fk||2 + ||[SuSv − Suv]Rfk||2
+ ||βu||2|β[R(vfk)](0)|+ |β[R(uTvfk)](0)|
+ ||SR(uv)|| ||fk||2 + |β[R(uvfk)](0)|
→ 0

as k →∞. Also, one can see by (3) again

R̃(Tfk) = SRūTvfk + SūSRv̄fk + [SūSv̄ − Suv]Rfk − β(ū)β[R(vfk)](0)

− β[R(uTvfk)](0)− SR(uv)fk + β[R(uvfk)](0)

for all k. Note that the complex conjugate of a sequence converging
weakly to 0 in Dph also converges weakly to 0. Now, by the similar

argument above, one can see that ‖R̃(Tfk)‖2 → 0 as k →∞. Combining
the above together with (7), we see

lim
k→∞

‖Tfk‖2 = lim
k→∞

[
|Tfk(0)|2 + ‖R(Tfk)‖22 + ‖R̃(Tfk)‖2

]
= 0,
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which implies the compactness of T as desired. The proof is complete.

Given u, v ∈ L 1,∞, observing

TuTv = Tuv + [TuTv − Tuv],
we see that TuTv is a compact perturbation of Tuv by Proposition 5.
By using the exactly same argument as in Proposition 9 of [9] together
with Proposition 5, we can see that the same is true for operators which
are finite sums of products of several Toeplitz operators as shown in the
following.

Proposition 6. Given uij ∈ L 1,∞, there exists a compact operator
K on Dph such that

N∑
i=1

Mi∏
j=1

Tuij = T∑N
i=1

∏Mi
j=1 uij

+K.

Before we prove the main result, we describe the essential norm of a
single Toeplitz operator as a preliminary result.

Lemma 7. For u ∈ L 1,∞, we have ||Tu||e = max
η∈∂B

|u(η)|.

Proof. Put ρ = maxη∈∂B |u(η)| for simplicity. Choose a point ζ ∈ ∂B
such that |u(ζ)| = ρ. For any compact operator K on Dph, since ea
converges weakly to 0 in Dph as a→ ∂B by Proposition 3, we note that

||Tu +K|| ≥ lim
a→ζ
|〈(Tu +K)ea, ea〉| = lim

a→ζ
|〈Tuea, ea〉| = |u(ζ)|

by (5), thus ρ ≤ ||Tu||e holds.
Now, we prove the reverse inequality. By Lemma 1.2 of [6], there

is an orthonormal sequence ψj in Dph for which ||Tuψj || → ||Tu||e as
j → ∞. Write ψj = fj + gj ∈ D0 ⊕ D̄ for each j. Since ψj converges
weakly to 0 in Dph, fj and gj converge weakly to 0 in D by Proposition
3. In particular, we note fj and gj converge uniformly to 0 on every
compact subsets of B. Thus, by the remark after Proposition 3, we see

lim
j→∞

∫
B
|ξψj |2 dV ≤ ||ξ||2∞ lim

j→∞

∫
B
|ψj |2 dV = 0(9)

where ξ = u,Ru, or R̃u. On the other hand, since u is continuous on
B̄, for any ε > 0, there exists r ∈ (0, 1) such that |u(z)| ≤ ρ+ ε for every
r < |z| < 1. Fix t ∈ (r, 1). Then note

lim
j→∞

∫
|z|≤t
|fj(z)|2 dV (z) = 0.
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Writing

fj(z) =
∑
α

ajαz
α, z ∈ B

for the Taylor series expansions of fj , we note∫
|z|≤t
|fj |2 dV =

∑
|α|≥0

|ajα|2
∫
|z|≤t
|zα|2 dV=

∑
|α|≥0

|ajα|2
t2|α|+2n

|α|+ n

∫
∂B
|ζα|2 dσ

and ∫
|z|≤r

|Rfj |2 dV =
∑
|α|>0

|ajα|2|α|2
r2|α|+2n

|α|+ n

∫
∂B
|ζα|2 dσ

=
∑
|α|>0

|ajα|2
t2|α|+2n

|α|+ n
|α|2

(r
t

)2|α|+2n
∫
∂B
|ζα|2 dσ

for each j. Since |α|2
(
r
t

)2|α|+2n → 0 as |α| → ∞, we see

lim
j→∞

∫
|z|≤r

|uRfj |2 dV ≤ ||u||2∞ lim
j→∞

∫
|z|≤r

|Rfj |2 dV = 0

and hence

lim
j→∞

∫
B
|uRfj |2 dV = lim

j→∞

∫
|z|>r

|uRfj |2 dV

≤ (ρ+ ε)2 lim
j→∞

∫
B
|Rψj |2 dV.

(10)

Also, using the similar argument above for g, we can see

lim
j→∞

∫
B
|uRgj |2 dV ≤ (ρ+ ε)2 lim

j→∞

∫
B
|R̃ψj |2 dV.(11)

Note that by the boundedness of Q,

||Tuψj ||2 ≤
∣∣∣∣∫
B
uψj dV

∣∣∣∣2+∫
B

(
|(Ru)ψj+uRfj |2+|(R̃u)ψj+uRgj |2

)
dV

for each j. It follows from (9), (10) and (11) that

lim
j→∞

||Tuψj ||2 ≤ (ρ+ ε)2 lim
j→∞

∫
B

(
|Rψj |2 + R̃ψj |2

)
dV

≤ (ρ+ ε)2 lim
j→∞

||ψj ||2

for any ε > 0. Since ||ψj || = 1 for each j, the above shows

lim
j→∞

||Tuψj || ≤ ρ.
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Now, recalling limj→∞ ||Tuψj || = ||Tu||e, we have ||Tu||e ≤ ρ, as desired.
The proof is complete.

Now we are ready to prove our main theorem.

Proof of Theorem 1. By Proposition 6 and Lemma 7, we see∥∥∥∥∥∥
N∑
i=1

Mi∏
j=1

Tuij

∥∥∥∥∥∥
e

=

∥∥∥∥T∑N
i=1

∏Mi
j=1 uij

∥∥∥∥
e

= max
η∈∂B

∣∣∣∣∣∣
N∑
i=1

Mi∏
j=1

uij(η)

∣∣∣∣∣∣ ,
as desired. The proof is complete.

As an immediate consequence of Theorem 1, we obtain the following
characterization.

Corollary 8. For uij ∈ L 1,∞, the following statements are equiva-
lent.

(a)

N∑
i=1

Mi∏
j=1

Tuij is compact on Dph.

(b)
N∑
i=1

Mi∏
j=1

uij = 0 on ∂B.

As an application of Corollary 8, we consider the compact product
problem of when the compactness of a product of several Toeplitz opera-
tors with pluriharmonic symbols implies the triviality of one of symbols.
For n ≥ 2 and pluriharmonic functions u1, · · · , uN which are continuous
on ∂B, it is known that u1 · · ·uN = 0 on ∂B if and only if uj = 0 on B
for some j; see Corollary 3.5 of [3] for details. Thus, the following is a
simple consequence of Corollary 8.

Corollary 9 (n ≥ 2). Let u1, · · · , uN ∈ L 1,∞ be pluriharmonic
functions. Then Tu1 · · ·TuN is compact on Dph if and only if uj = 0 for
some j.

Consider two harmonic symbols u, v which are nonzero on the unit
disk and uv = 0 on the unit circle. Then TuTv is compact by Corollary
8, but neither u nor v is identically zero. This observation tells us that
Corollary 9 can not be extended to the one dimensional case in general.
But, for a single Toeplitz operator with pluriharmonic symbol, we have
the following characterization for full range of dimensions.

Corollary 10. Let u ∈ L 1,∞ be a pluriharmonic function. Then the
following are equivalent.



Essential norms of sums of Toeplitz products 629

(a) Tu is compact on Dph.
(b) u = 0 on B.
(c) Tu = 0 on Dph.

Proof. Since a pluriharmonic symbol which vanishes on ∂B vanishes
on B, implication (a)⇒ (b) follows from Corollary 8. Also, since (b)⇒
(c) ⇒ (a) is clear, we complete the proof.

In view of Corollary 10, one might ask whether the same is true
for general symbols. But the answer is no. For example, the Toeplitz
operator T1−|z|2 is compact on Dph by Corollary 8, but T1−|z|2 is not
equal to 0. Indeed,

T1−|z|21(0) =

∫
B

(1− |w|2) dV (w) 6= 0.
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