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SLICE REGULAR BESOV SPACES OF

HYPERHOLOMORPHIC FUNCTIONS AND

COMPOSITION OPERATORS

Sanjay Kumar and Khalid Manzoor

Abstract. In this paper, we investigate some basic results on the slice
regular Besov spaces of hyperholomorphic functions on the unit ball B.
We also characterize the boundedness, compactness and find the essential

norm estimates for composition operators between these spaces.

1. Introduction

The theory of slice hyperholomorphic functions has been developed systemi-
cally and have found wide range of applications, for example, in operator theroy,
mathematical physics, in Schur analysis and to define some functional calculus.
It is well known that there are several different types of definitions of regularity
for functions in quaternions. For details on slice regular holomorphic functions
one can refer to the books [6, 7].

Now, we recall some preliminaries about slice regular holomorphic functions.
Let H denote the noncommutative, associative, real algebra of quaternions

with standard basis {1, i, j, k}, subject to the multiplication rules

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j,

i.e., H is the set of the quaternions

q = x0 + x1i+ x2j + x3k = Re(q) + Im(q)

with Re(q) = x0 and Im(q) = x1i+x2j+x3k, where xl ∈ R for l = 1, 2, 3. The
conjugate of q ∈ H is then q̄ = Re(q)− Im(q) = x0 − (x1i+ x2j + x3k) and its

modulus is defined by |q| =
√
qq̄ =

√
x2

0 + x2
1 + x2

2 + x2
3.
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By the symbol S, we denote the two dimensional unit sphere of purely imag-
inary quaternions, i.e.,

S = {q = x1i+ x2j + x3k : x2
1 + x2

2 + x2
3 = 1},

where q2 = −1 for q ∈ S and for any I ∈ S, we define

CI = {x+ Iy : x, y ∈ R}
which can be identified with a complex plane. Moreover

H = ∪I∈SCI .

We can therefore calculate the multipicative inverse of each q 6= 0 as q−1 = q̄
|q|2 .

However, any q ∈ H can be expressed as q = x + Iqy, where x, y ∈ R and

Iq = Im(q)
|Im(q)| if Im(q) 6= 0, otherwise we take Iq arbitrarily such that I2

q = −1.

Then Iq is an element of the unit 2-sphere of purly imaginary quaternions,

S = {q ∈ H : q2 = −1}.
By BI , we denote the intersection B∩CI , where B(0, 1) = B = {q ∈ H : |q| < 1}.
The study of slice holomorphic functions is now an active area of research and
lot of work is being done in this direction.

Definition 1.1 ([7, Definition 2.1.1]). Let Ω be an open set in H. A real differ-
entiable function f : Ω→ H is said to be slice regular or slice hyperholomorphic
if for every I ∈ S, its restriction fI(x+ Iy) = f(x+ Iy) is holomorphic, i.e., it
has continuous partial derivatives and satisfies

∂

∂x
fI(x+ yI) + I

∂

∂y
fI(x+ yI) = 0

for all x+ yI ∈ ΩI , where fI denotes the restriction of f to ΩI = Ω ∩CI . The
set of slice regular functions on Ω denoted by SR(Ω) and the collection of all
entire functions on H denoted by R(H) is the right linear space on H.

Splitting Lemma gives the relation between classical holomorphy and slice
regularity.

Lemma 1.2 ([7, Lemma 2.1.4 ], Splitting Lemma). If f ∈ SR(Ω), then for any
I, J ∈ S, with I⊥J there exist two holomorphic functions F,G : ΩI = Ω∩CI →
CI such that

(1) fI(z) = F (z) +G(z)J for any z = x+ yI ∈ ΩI .

Definition 1.3 ([7, Definition 2.2.1]). Let Ω be an open set in H. We say Ω
is axially symmetric if for evey x + yI ∈ Ω with x, y ∈ R and I ∈ S, all the
elements x + yS = {x + yJ : J ∈ S} are contained in Ω and Ω is said to be
slice domain (s-domain) if Ω∩R is non empty and ΩI is a domain in CI for all
I ∈ S.

One of the most important properties of the slice regular functions is their
Representation Formula which stated below.
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Theorem 1.4 ([7, Theorem 2.2.4], Representation Formula). Let f be a slice
regular function on an axially symmetric s-domain Ω ∈ H. Let J ∈ S and let
x± yJ ∈ Ω ∩ CJ . Then

f(x+yI) =
1

2
[(1−IJ)f(x+yJ)]+

1

2
[(1+IJ)f(x−yJ)] for any q = x+yI ∈ Ω.

As we know pointwise product of functions does not preserve slice regularity,
a new multiplication operation for regular functions is defined. In the special
case of power series, the regular product (or ?-product) of f(q) =

∑∞
n=0 q

nan

with an = f(n)(0)
n! ∈ H and g(q) =

∑∞
n=0 q

nbn, where bn ∈ H is given by

f ? g(q) =
∑
n≥0

qn
n∑

k=0

akbn−k.

The notation ?-product coincides with the classical notation of product of series
with coefficients in a ring. It is easy to check that the function f ? g is slice
hyperholomorphic. Let Ω ⊂ H be an axially symmetric s-domain and let
f, g : Ω → H be slice regular functions. Let any I, J ∈ S with I ⊥ J. Then by
Splitting Lemma there exit four holomorphic functions F,G,H,K : Ω ∩ CI →
CI such that

fI(z) = F (z) +G(z)J, gI(z) = H(z) +K(z)J for all z = x+ yI ∈ ΩI .

Therefore fI ? gI : Ω ∩ CI → CI is defined by

(2) fI ? gI(z) = [F (z)K(z) +G(z)(H(z̄))] + [F (z)H(z)−G(z)(K(z̄))]J.

Thus fI ? gI is a holomorphic map and hence it admits an unique slice regular
extension to Ω defined by ext(fI ? gI)(q).

Definition 1.5 ([7]). Let Ω ∈ H be an axially symmetric s-domain and let
f, g : Ω→ H be slice regular. Then the function defined by

f ? g(q) = ext(fI ? gI)(q)

as the extension of (2) is called the slice regular product of f and g.

2. Besov spaces

Let D be a unit disk in the complex plane C and dA denote the normalized
area measure on D. For 1 < p <∞, a holomorphic function f : D→ C is said
to be in a Besov space Bp,C(D) if∫

D

∣∣(1− |z|2)f ′(z)
∣∣p dλ(z) <∞,

where dλ(z) = dA(z)
(1−|z|2)2 is the normalized area measure and Möbius invariant

measure on D. The space Bp,C is a Banach space under the norm

‖f‖Bp,C = |f(0)|+
(∫

D

∣∣(1− |z|2)f ′(z)
∣∣p dλ(z)

) 1
p

.



654 S. KUMAR AND K. MANZOOR

For definitions on C-valued Besov spaces, see [17]. Next we define Besov spaces
of quaternions holomorphic functions.

Definition 2.1 ([5]). Let p > 1 and let I ∈ S. The quaternionic right linear
space of slice regular functions f is said to be the quaternionic slice regular
Besov space on the unit ball B, if

sup
I∈S

∫
BI

∣∣∣∣(1− |q|2)
∂f

∂x0
(q)

∣∣∣∣p dλI(q) <∞, q ∈ B.

That is,

Bp = {f ∈ SR(B) : sup
I∈S

∫
BI

∣∣∣∣(1− |q|2)
∂f

∂x0
(q)

∣∣∣∣p dλI(q) <∞},

where dλI(q) = dAI(q)
(1−|q|2)2 is again the normalized differentiable of area in the

plane and is Möbius invariant measure on B. The space Bp is a Banach space
under the norm

‖f‖Bp
= |f(0)|+

(
sup
I∈S

∫
BI

∣∣∣∣(1− |q|2)
∂f

∂x0
(q)

∣∣∣∣p dλI(q)

) 1
p

.

By space Bp,I , p > 1, we mean the quaternionic right linear space of slice
regular functions on the unit ball B such that∫

BI

∣∣(1− |z|2)QI [f ]′(z)
∣∣p dλI(z) <∞,

and the norm of this space is given by

‖f‖Bp,I
= |f(0)|+

(∫
BI

∣∣(1− |z|2)QI [f ]′(z)
∣∣p dλI(z)

) 1
p

,

where QI [f ]′(z) = ∂QI [f ]
∂x0

(z) is a holomorphic map of complex plane and I ∈ S.

Remark 2.2 ([5]). Let J ∈ S be such that J⊥I. Then there exist holomorphic

functions f1, f2 : BI → CI such that QI [f ] = f1 + f2J and so ∂f
∂x0

(z) =

f ′1(z) + f ′2(z)J for z ∈ BI . Then

|f ′l (z)|
p ≤

∣∣∣∣ ∂f∂x0
(z)

∣∣∣∣p ≤ 2max{0,p−1} (|f ′1(z)|p + |f ′2(z))|p) , l = 1, 2.

Also, f ∈ Bp,I if and only if f1, f2 ∈ Bp,C.

The proof of the following proposition is analogus to [5, Proposition 2.6].

Proposition 2.3. Let I ∈ S. Then f ∈ Bp,I , p > 1 if and only if f ∈ Bp.
Moreover, the spaces (Bp,I , ‖.‖Bp,I

) and (Bp, ‖.‖Bp) have equivalent norms.
More precisely, one has

‖f‖pBp,I
≤ ‖f‖pBp

≤ 2p‖f‖pBp,I
.
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For all z, w ∈ D, Bergman metric on the unit disc D in the complex plane C is
given by

β(z, w) =
1

2
log

1 + ρ(z, w)

1− ρ(z, w)
,

where ρ(z, w) = | z−w1−z̄w |.

Definition 2.4 ([5]). For I ∈ S and all z, w ∈ BI , we define

βI(z, w) =
1

2
log

1 + |z−w|
|1−z̄w|

1− |z−w|
|1−z̄w|

 .

Proposition 2.5. For 1 < p, t <∞, with 1
p + 1

t = 1, let f ∈ Bp and I ∈ S be

fixed. Then for all q, w ∈ BI , there exists a constant Mp > 0 such that

|f(q)− f(w)| ≤ 2Mp‖f‖Bp
βI(q, w)

1
t ,

where

βI(q, w) =
1

2
log

1 + |q−w|
|1−q̄w|

1− |q−w|
|1−q̄w|

 .

Proof. By Lemma 1.2, there exist two holomorphic functions f1, f2 : BI → CI

such that QI [f ] = f1 +f2J, where J⊥I. Moreover, the functions fl ∈ Bp,C; l =
1, 2. Furthermore, ‖fl‖pBp,C

≤ ‖f‖pBp,I
; l = 1, 2 and p > 1. Therefore, from

[17, Theorem 9], it follows that for all q, w ∈ BI in the plane CI , one has

|f(q)− f(w)|p ≤ 2p−1 (|f1(q)− f1(w)|p + |f2(q)− f2(w)|p)

≤ 2p−1Mp

(
‖f1‖pBp,C

β(q, w)
p
t + ‖f2‖pBp,C

β(q, w)
p
t

)
≤ 2p−12Mp‖f‖pBp,I

βI(q, w)
p
t

≤ 2pMp‖f‖pBp
βI(q, w)

p
t . �

The following proposition on Besov spaces over the unit disk was proved in
[17, Theorem 8] and for its proof on Bloch spaces of slice hyperholomorphic
functions one can refer to [5, Theorem 2.19], so we omitted the proof.

Proposition 2.6. Let f ∈ Bp, p > 1 and {an}n∈N ⊂ H be a sequence of
quaternions such that

f(q) =

∞∑
n=0

qnan for q ∈ B.

Then there exists a constant Kp > 0 such that

|an|p ≤ 2p
Kp

n!
‖f‖pBp

for any n ∈ N ∪ {0}.
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Remark 2.7. Let Lp(BI , dλI ,H), 1 ≤ p < ∞ denote the space of quaternionic
valued equivalence classes of measurable functions g : BI → H such that∫

BI

|g(w)|pdλI(w) <∞.

Furthermore, for any J ∈ S with J⊥I and g = g1 + g2J, where g1, g2 are
holomorphic functions in plane CI . Then, g ∈ Lp(BI , dλI ,H) if and only if
gl ∈ Lp(BI , dλI ,CI), l = 1, 2, the usual Lp-space of complex valued measurable
functions on BI .

Now we define the bounded mean oscillation of the slice regular functions,
see [9].

Definition 2.8. For any z ∈ BI , let ∆I(z, r) = {w ∈ BI : βI(z, w) < r} ⊂ BI ,
for some r > 0, be the Euclidean disk. Let

f∗r,I(z) =
1

2π

∫
∆I(z,r)

f(w)dAI(w) for I ∈ S.

A slice regular function f is said to be in BMO(BI) if

sup
z∈BI

1

2π

∫
∆I(z,r)

|f(w)− f∗r,I(z)|pdAI(w) <∞,

with norm defined by

‖f‖BMO(BI) = sup
z∈BI

(
1

2π

∫
∆I(z,r)

|f(w)− f∗r,I(z)|pdAI(w)

) 1
p

.

We say function f ∈ BMO(B) if

‖f‖BMO(B) := sup
I∈S
‖f‖BMO(BI) = sup

I∈S
Λr,I(f) <∞,

where

Λr,I(f)(z) = sup
I∈S
{|f(z)− f(w)| : w ∈ ∆I(z, r)}.

The following propositions are essentially proved in [4].

Proposition 2.9. Let I, J ∈ S. Then f ∈ BMO(BI) if and only if f ∈
BMO(BJ).

Proof. Let f ∈ SR(B) and choose w = x+yJ ∈ BJ and z = x+yI ∈ BI . Then
by Representation Formula, we have

|f(w)| = 1

2
|(1− JI)f(z) + (1 + JI)f(z̄)| ≤ |f(z)|+ |f(z̄)| .
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Therefore
1

2π

∫
∆J (z,r)

|f(w)− f∗r,J(z)|pdAJ(w)

≤ 2max{p−1,0} 1

2π

∫
∆I(w,r)

|f(z)− f∗r,I(w)|pdAI(z)

+ 2max{p−1,0} 1

2π

∫
∆I(w,r)

|f(z̄)− f∗r,I(w̄)|pdAI(z̄).

On changing z̄ → z and w̄ → w, we have

1

2π

∫
∆J (z,r)

∣∣f(w)− f∗r,J(z)
∣∣p dAJ(w)

≤ 2max{p,1} 1

2π

∫
∆I(w,r)

∣∣f(z)− f∗r,I(w)
∣∣p dAI(z).

Thus, we conclude that for any f ∈ BMO(BI) implies f ∈ BMO(BJ). On
interchanging the role of I and J , we get the remaining one. �

Proposition 2.10. For I ∈ S. Then f ∈ BMO(B) if and only if f ∈
BMO(BI).

Proof. Since the direct part is obivious, so we only remains to prove the con-
verse part. Suppose f ∈ BMO(BI) for some arbitrary imaginary unit I in S.
Therefore by Representation Formula, we have

1

2π

∫
∆J (z,r)

∣∣f(w)− f∗r,J(z)
∣∣p dAJ(w)

≤ 2p−1 1

2π

(∫
∆I(w,r)

∣∣f(z)− f∗r,I(w)
∣∣p dAI(z)

)

+ 2p−1 1

2π

(∫
∆I(w,r)

∣∣f(z̄)− f∗r,I(w̄)
∣∣p dAI(z̄)

)
.

On taking supremum over all z ∈ BI , we have

‖f‖BMO(BJ ) ≤ sup
z∈∆I(w,r)

2p−1 1

2π

(∫
∆I(w,r)

∣∣f(z)− f∗r,I(w)
∣∣p dAI(z)

)

+ sup
z∈∆I(w,r)

2p−1 1

2π

(∫
∆I(w,r)

∣∣f(z̄)− f∗r,I(w̄)
∣∣p dAI(z̄)

)
≤ 2p−12‖f‖BMO(BI)

< ∞.
Since J is arbitrary, so we get the desired result. �

Corollary 2.11. By previous proposition we have the following inequality

‖f‖pBMO(BI) ≤ ‖f‖
p
BMO(B) ≤ 2p‖f‖pBMO(BI).
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Proposition 2.12. Let f ∈ SR(B). Then for 1 < p <∞, f ∈ Bp if and only
if Λr,I(f) ∈ Lp(BI , dλI ,H) for I ∈ S.

Proof. Suppose f ∈ Bp implies f ∈ Bp,I . Let J ∈ S be such that J⊥I.
By Splitting Lemma 1.2, we can restrict f on BI with respect to J , as
QI [f ](z) = f1(z) + f2(z)J for some holomorphic functions f1, f2 ∈ CI . If we
decompose Λr,I(f) on BI as Λr,I(f) = Λr,1(f1) + Λr,2(f2)J for some complex
oscillation functions Λr,1(f1) and Λr,2(f2). Then one can see directly from the
complex valued result (see [17, Theorem 6]) and Remark 2.7 that the func-
tions Λr,l(fl); l = 1, 2 lie in the usual Lp-space of complex valued measurable
functions on BI if and only if Λr,I(f) ∈ Lp(BI , dλI ,H).

Conversely, assume Λr,I(f) ∈ Lp(BI , dλI ,H). So we can write

Λr,1(f1) + Λr,2(f2)J = Λr,I(f)

= sup
I∈S

sup{|f1(z)− f1(w)| : w ∈ ∆I(z, r) ⊂ BI}

+ sup
I∈S

sup{|f2(z)− f2(w)| : w ∈ ∆I(z, r) ⊂ BI}.

This implies that

Λr,l(fl) = sup
I∈S

sup{|fl(z)− fl(w)| : w ∈ ∆I(z, r) ⊂ BI}

∈ Lp(BI , dλI ,CI) for l = 1, 2.

Again by Splitting Lemma, we conclude that both f1 and f2 belong to complex
Besov space Bp,C on BI which is equivalent to f ∈ Bp,I(BI) and so f ∈
Bp(B). �

Proposition 2.13. For p > 1, let f ∈ SR(B). Then f ∈ Bp if and only if

(3) BMO(f) ∈ Lp(BI , dλI ,H) for I ∈ S.

Proof. Let f ∈ Bp. Then f ∈ Bp,I . Let J ∈ S with J⊥I. According to Lemma
1.2, any f ∈ SR(B) restricted to BI decomposes as QI [f ](z) = f1(z) + f2(z)J
for z ∈ BI and holomorphic functions f1, f2 ∈ BI . Thus, the condition (3)
holds if and only if

BMO(fl) ∈ Lp(BI , dλI ,CI) for I ∈ S, l = 1, 2.

Now, by [17, Theorem 7], it follows that the above condition holds if and only
if f1, f2 lie in the complex Besov space Bp,C on BI which is same as f ∈ Bp,I

and so f ∈ Bp. �

3. Composition operators on Besov spaces

3.1. Boundedness and compactness

In this section, we characterize boundedness and compactness of composition
operators on Besov spaces of the slice hyperholomorphic functions. Composi-
tion operators are extensively studied on various holomorphic function spaces
of different domains in C and Cn. For a study of composition operators on
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spaces of holomorphic functions, one can refer to [8] and [14]. For composi-
ion operators on Besov spaces, see [3]. A study of composition operators on
Hardy spaces of slice holomorphic functions is initated in [12]. Recently, Car-
leson measures for Hardy and Bergman spaces in the quaternionic unit ball
are characterized in [13]. For composition operator and weighted composition
operator on spaces of slice holomorphic functions, see [11, 12]. In [4], Hankel
operators are studied on Hardy spaces via Carleson measures in a quaternionic
variables. In the theory of slice regularity, the composition of two slice regular
functions is not a slice regular function, in general. Now we define slice regular
composition operators CΦ on Bp for 1 < p <∞.

Definition 3.1. Let Φ : B → B be a slice hyperholomorphic map such that
Φ(BI) ⊂ BI for some I ∈ S. The composition operator CΦ on Bp, 1 < p < ∞
induced by Φ is defined by

(CΦf)I(z) = (fI ◦ ΦI)(z) = F ◦ ΦI(z) +G ◦ ΦI(z)J

for all f ∈ Bp with fI(z) = F (z) +G(z)J.

Definition 3.2 ([1,10]). The slice regular Möbius transformation σa for every
a ∈ B is define as

σa(q) = (1− qa)−∗ ∗ (a− q) for q ∈ B,
where ∗ is slice regular product.

The slice regular Möbius transformation σa satisfies the following conditions:

(i) σa : B→ B is a bijective mapping;
(ii) for all z ∈ BI , σa(z) = a−z

1−āz ;

(iii) for all q ∈ B, σa(a) = 0, σa(0) = a and σa ◦ σa(q) = q.

The following theorem characterizes bounded composition operators on the
slice regular Besov spaces Bp.

Theorem 3.3. Let Φ be a slice hyperholomorphic map on B such that Φ(BI) ⊂
BI for some I ∈ S. For all q ∈ B and a ∈ BI , let σa(q) = (1 − qa)∗(a − q)
be a slice regular Möbius transformation. Then the composition operator CΦ is
bounded on Besov space Bp, 1 < p <∞ if and only if

(4) ‖CΦσa‖Bp
<∞.

Proof. Since the slice regular Möbius transformation on BI coincides with the
usual one dimensional complex Möbius transformation, so assume σa ∈ Bp,I .
Let J ∈ S with J⊥I. So we can write σa = σa,1+σa,2J for each one dimensional
complex Möbius transformation σa,l ∈ Bp,C, l = 1, 2.

Therefore

sup
I∈S

∫
BI

∣∣∣∣(1− |z|2)
∂CΦσa
∂x0

(z)

∣∣∣∣p dλI(z)

≤ 2p−1 sup
I∈S

∫
BI

∣∣∣∣(1− |z|2)
∂CΦσa,1
∂x0

(z)

∣∣∣∣p dλI(z)
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+2p−1 sup
I∈S

∫
BI

∣∣∣∣(1− |z|2)
∂CΦσa,2
∂x0

(z)

∣∣∣∣p dλI(z)

= 2p−1(‖CΦσa,1‖pBp,C
+ ‖CΦσa,2‖pBp,C

)

≤ 2p‖CΦσa‖pBp,I
.(5)

Now, let q = x0 + Iy ∈ B for I ∈ S. Then by Theorem 1.4, it follows that∣∣∣∣∂CΦσa
∂x0

(q)

∣∣∣∣ =

∣∣∣∣12(1− IqI)
∂CΦσa
∂x0

(z) +
1

2
(1 + IqI)

∂CΦσa
∂x0

(z̄)

∣∣∣∣ .
As |q| = |z| = |z̄|, on applying triangle inequality, we have∣∣∣∣(1− |q|2)

∂CΦσa
∂x0

(q)

∣∣∣∣ ≤ ∣∣∣∣(1− |z|2)
∂CΦσa
∂x0

(z)

∣∣∣∣+

∣∣∣∣(1− |z̄|2)
∂CΦσa
∂x0

(z̄)

∣∣∣∣ .
On taking integral over BI on both sides of the above inequality and for p > 1,
we have

sup
q∈B

sup
I∈S

∫
BI

∣∣∣∣(1− |q|2)
∂CΦσa
∂x0

(q)

∣∣∣∣p dλI(q)

≤ sup
z∈BI

sup
I∈S

∫
BI

∣∣∣∣(1− |z|2)
∂CΦσa
∂x0

(z)

∣∣∣∣p dλI(z)

+ sup
z̄∈BI

sup
I∈S

∫
BI

∣∣∣∣(1− |z̄|2)
∂CΦσa
∂x0

(z̄)

∣∣∣∣p dλI(z̄)

≤ 2 sup
z∈BI

sup
I∈S

∫
BI

∣∣∣∣(1− |z|2)
∂CΦσa
∂x0

(z)

∣∣∣∣p dλI(z).(6)

Thus, by using (5) in (6), we have

sup
q∈BI

‖CΦσa‖pBp
= sup

q∈B
sup
I∈S

∫
BI

∣∣∣∣(1− |q|2)
∂CΦσa
∂x0

(q)

∣∣∣∣p dλI(q)

≤ 2 sup
z∈BI

sup
I∈S

∫
BI

∣∣∣∣(1− |z|2)
∂CΦσa
∂x0

(z)

∣∣∣∣p dλI(z)

≤ 2p+1 sup
z∈BI

‖CΦσa‖pBp,I
.

Since CΦ is a bounded operator on the complex Besov space, we have
‖CΦσa‖pBp

< ∞. Now suppose condition (4) holds. Then by [2, Theorem 13],

it holds if and only if CΦ is a bounded operator on the complex Besov space
which is equivalent to the boundedness of CΦ on Bp,I and so CΦ is bounded
on Bp. �

By using Splitting Lemma, Remark 2.2 and [16, Lemma 3.6], the proof of
the following lemma follows easily.

Lemma 3.4. For p ≥ 1, let Bp be a slice regular Besov space on the unit ball
B. Then the following condition holds:
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(1) every slice regular bounded sequence {fn}n∈N in Bp on compact sets is
uniformly bounded;

(2) for any slice regular sequence {fn}n∈N in Bp such that ‖fn‖Bp →
0, fn − fn(0)→ 0 uniformly on the compact sets.

The next result is essential for the proof of Theorem 3.6.

Lemma 3.5 ([16, Lemma 3.7]). Let X,Y be two Banach spaces of analytic
functions on the unit disk D. Suppose

(1) the point evaluation functionals on X are continuous;
(2) the closed unit ball in X is a compact subset of X in the topology of

uniform convergence on compact sets;
(3) T : X → Y is continuous, where X and Y are equipped with the topology

of uniform convergence on compact sets.

Then T is a compact operator if and only if given a bounded sequence {fn}
in X such that fn → 0 uniformly on compact sets, then the sequence {Tfn}
converges to zero in the norm of Y .

The following theorem gives the characterization for compact composition
operators.

Theorem 3.6. For p > 1, let Bp be a slice regular Besov space on the unit ball
B. Let Φ be a slice hyperholomorphic map on B such that Φ(BI) ⊂ BI for some
I ∈ S. Then CΦ : Bp → Bp is compact if and only if for any bounded sequence
{fm}m∈N in Bp with fm → 0 as m→∞ on compact sets, ‖CΦfm‖Bp → 0 as
m→∞.

Proof. The proof of the theorem is established if we prove the condition of
Lemma 3.5. As a consequence of Lemma 3.4, we see that conditions (1) and
(3) hold. Now, it remains to prove the condition (2). For this, let {fm} be a
slice regular bounded sequence in Bp. Then by Lemma 3.4, {fm} is uniformly
bounded on the compact sets. Consider {fmk

} a subsequence of {fm} in Bp

such that {fmk
} converges uniformly to h on the compact sets, for some h ∈

SR(B). Let J ∈ S with J⊥I. Then by Lemma 1.2, there exist holomorphic
functions f1,mk

, f2,mk
: BI → CI such that QI [fmk

](z) = f1,mk
(z) + f2,mk

(z)J
for some z ∈ BI . Furthermore, f1,mk

→ h1 and f2,mk
→ h2 uniformly on the

compact sets, where hl ∈ CI , l = 1, 2 with QI [h] = h1 + h2J. From Remark
2.2, we conclude that f1,mk

and f1,mk
belong to the complex Besov space

Bp,C(BI). Thus, from [16, Lemma 3.8] and by applying Minkowski’s inequality
and Fatou’s Theorem, for p > 1, we have(

sup
I∈S

∫
BI

∣∣∣∣∣
(
∂h

∂x0
(z)

)
(1− |z|2)

∣∣∣∣∣
p

dλI(z)

) 1
p

≤
(

2p−1 sup
I∈S

∫
BI

∣∣(h′1(z))(1− |z|2)
∣∣p dλI(z)

) 1
p
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+

(
2p−1 sup

I∈S

∫
BI

∣∣(h′2(z))(1− |z|2)
∣∣p dλI(z)

) 1
p

= 2
p−1
p

(
sup
I∈S

∫
BI

lim
k→∞

∣∣f ′1,mk
(z)(1− |z|2)

∣∣p dλI(z)

) 1
p

+2
p−1
p

(
sup
I∈S

∫
BI

lim
k→∞

∣∣f ′2,mk
(z)(1− |z|2)

∣∣p dλI(z)

) 1
p

≤ 2
p−1
p lim

k→∞
inf

(
sup
I∈S

∫
BI

∣∣f ′1,mk
(z)(1− |z|2)

∣∣p dλI(z)

) 1
p

+2
p−1
p lim

k→∞
inf

(
sup
I∈S

∫
BI

∣∣f ′2,mk
(z)(1− |z|2)

∣∣p dλI(z)

) 1
p

= 2
p−1
p

(
lim
k→∞

inf ‖f1,mk
‖Bp,C + lim

k→∞
inf ‖f2,mk

‖Bp,C

)
≤ 2

2p−1
p lim

k→∞
inf
(
‖fmk

‖Bp,I

)
< ∞.

Therefore, Lemma 3.5 yields that CΦ : Bp → Bp is compact if and only if for
any bounded sequence {fm}m∈N in Bp such that fm → 0 uniformly on compact
sets as m→∞ and so |fm(Φ(0))|+ ‖CΦfm‖Bp

→ 0 as m→∞. �

The next result is the immediate consequence of Theorem 3.6.

Corollary 3.7. For 1 < p < ∞, let Φ be a slice hyperholomorphic map such
that Φ(BI) ⊂ BI for some I ∈ S. If ‖Φ‖∞ < 1, then CΦ : Bp → Bp is compact.

Proof. Let {fn} be a bounded sequence in Bp. Then fn ∈ Bp,I such that
fn → 0 uniformly on the compact subsets of BI for I ∈ S. Let J ∈ S be
such that J⊥I. Let f1,n, f2,n : BI → CI be holomorphic functions such that
QI [f ](z) = f1,n(z) + f2,n(z)J for z = x0 + Iy ∈ BI . By Remark 2.2, we have
f1,n, f2,n lie in the complex Besov space Bp,C on BI , where BI is identified
with BI ⊂ CI . Therefore,

sup
I∈S

∫
BI

∣∣∣∣(1− |z|2)
∂CΦfn
∂x0

(z)

∣∣∣∣p dλI(z)

≤ 2p−1 sup
I∈S

∫
BI

∣∣∣∣(1− |z|2)
∂CΦf1,n

∂x0
(z)

∣∣∣∣p dλI(z)

+2p−1 sup
I∈S

∫
BI

∣∣∣∣(1− |z|2)
∂CΦf2,n

∂x0
(z)

∣∣∣∣p dλI(z)

= 2p−1(‖CΦf1,n‖pBp,C
+ ‖CΦf2,n‖pBp,C

)

≤ 2p‖CΦfn‖pBp,I
.(7)
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Therefore by Theorem 1.4 and the fact that |q| = |z̄| = |z|, equation (7) and
[15, Corollary 2.12], it follows that

sup
q∈B

sup
I∈S

∫
BI

∣∣∣∣(1− |q|2)
∂CΦfn
∂x0

(q)

∣∣∣∣p dλI(q)

≤ sup
z∈BI

sup
I∈S

∫
BI

∣∣∣∣(1− |z|2)
∂CΦfn
∂x0

(z)

∣∣∣∣p dλI(z)

+ sup
z̄∈BI

sup
I∈S

∫
BI

∣∣∣∣(1− |z̄|2)
∂CΦfn
∂x0

(z̄)

∣∣∣∣p dλI(z̄)

≤ 2p sup
z∈BI

sup
I∈S

∫
BI

∣∣∣∣(1− |z|2)
∂CΦfn
∂x0

(z)

∣∣∣∣p dλI(z)

≤ 2p+1 sup
z∈BI

sup
I∈S

∫
BI

∣∣∣∣∂fn∂x0
(Φ(z))

∣∣∣∣p ∣∣(1− |z|2)
∣∣p · ∣∣∣∣ ∂Φ

∂x0
(z)

∣∣∣∣p dλI(z).(8)

Suppose ε > 0 is given. Since Φ(BI) is a compact subset of BI , there exists

positive integer N > 0 such that if n ≥ N, then |∂fn∂x0
(Φ(z))|p < ε for all z ∈ BI .

Therefore from equation (8), we have

sup
I∈S

∫
BI

∣∣∣∣(1− |q|2)
∂CΦfn
∂x0

(q)

∣∣∣∣p dλI(q) ≤ 2p+1ε‖Φ‖pBp,I
< ε const.

Hence ‖CΦfn‖pBp
→ 0 as n→∞ and so Lemma 3.5 yields that CΦ : Bp → Bp

is compact. �

The following proposition gives the compactness between Besov and Bloch
spaces of slice regular functions.

Proposition 3.8. For p > 1, let Φ be a slice hyperholomorphic map on B such
that Φ(BI) ⊂ BI for some I ∈ S. Then CΦ : Bp → B is compact if and only if

(9) ‖CΦσa‖B → 0 as |a| → 1,

where σa(q) = (1 − qā)∗ ∗ (a − q), q ∈ B and B is a slice regular Bloch space
on the unit ball B. Here ? denotes the slice regular product.

Proof. Let {σa : a ∈ B} be a set in Bp such that σa − a → 0 as |a| → 1.
Suppose CΦ is a compact operator. Then by Theorem 3.6, {σa} is a bounded
set in Bp. Therefore, ‖CΦσa‖B = 0. Suppose condition (9) holds. Let fm be a
bounded sequence in Bp,I such that fm → 0 uniformly on the compact sets as
m→∞. We claim CΦ : Bp → B is compact. For this, take J ∈ S with J⊥I. Let
f1,m, f2,m be holomorphic functions such that QI [fm] = f1,m(z) + f2,m(z)J for
some z = x0 + Iy ∈ BI . By Remark 2.2, we have f1,m, f2,m lie in the complex
Besov space Bp,C(BI). Therefore, from [16, Theorem 4.1] and as ‖fl‖Bp,C ≤
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‖f‖Bp,I
, we have

sup
z∈BI

‖CΦfm‖B

= sup
z∈BI

sup
I∈S

{
(1− |z|2)

∣∣∣∣∂CΦ(f1,m + f2,mJ)

∂x0
(z)

∣∣∣∣}
= sup

z∈BI

sup
I∈S

{
(1− |z|2)

∣∣∣∣∂CΦf1,m

∂x0
(z) +

∂CΦf2,m

∂x0
(z)J

∣∣∣∣}
≤ sup

z∈BI

sup
I∈S

{
(1− |z|2)

∣∣∣∣∂CΦf1,m

∂x0
(z)

∣∣∣∣}+ sup
z∈BI

{
(1− |z|2)

∣∣∣∣∂CΦf2,m

∂x0
(z)

∣∣∣∣}
≤ 2 sup

z∈BI

sup
I∈S

{
(1− |z|2)

∣∣∣∣∂CΦfm
∂x0

(z)

∣∣∣∣}
= 2 sup

z∈BI

{
(1− |z|2)

(1− |Φ(z)|2)

∣∣∣∣ ∂Φ

∂x0
(z)

∣∣∣∣ sup
I∈S

(1− |Φ(z)|2)

∣∣∣∣∂fm∂x0
(Φ(z))

∣∣∣∣}
≤ 2 sup

z∈BI

{
(1− |z|2)

(1− |Φ(z)|2)

∣∣∣∣ ∂Φ

∂x0
(z)

∣∣∣∣} ‖fm‖BI

≤ 2 sup
z∈BI

{
(1− |z|2)

(1− |Φ(z)|2)

∣∣∣∣ ∂Φ

∂x0
(z)

∣∣∣∣} ‖fm‖Bp,I
.

Since {fm} is bounded in Bp,I , so ‖CΦfm‖Bp,I
→ 0 as m → ∞. Thus,

‖CΦfm‖B → 0 as m → ∞. Hence by Theorem 3.6, CΦ : Bp → B is com-
pact. �

4. Essential norm

In this section, we find some estimates for the essential norm of composition
operators on the slice regular Besov space. Firstly, we define Carelson measure.
For Carleson mesures for Hardy and Bergman spaces in the quaternionic unit
ball (see [13]).

Definition 4.1. For 1 < p < ∞, let Bp be a slice regular Besov space. Let
µ be an H-valued positive measure on BI . Then µ is said to be an H-valued
p-Carleson measure on B if there is a constant M > 0 such that∫

BI

|f(q)|p dµ(q) ≤M‖f‖pBp

for all f ∈ Bp(B).

Suppose Φ is a slice hyperholomorphic map on B such that Φ(BI) ⊂ BI for

some I ∈ S and Φ
′
(q)(1 − |q|2) ∈ Lp(BI , dλI(q)), where dλI(q) = dAI(q)

(1−|q|2)2 is

the normalized differentiable of area in the plane and is a Möbius invariant
measure on B. Then we define the measure µp on B by

µp(E) =

∫
Φ−1(E)

|Φ
′
(q)|p(1− |q|2)dAI(q),



COMPOSITION OPERATORS 665

where E is a measurable subset of B.

Theorem 4.2. Let f ∈ SR(B). Suppose µ = µ1 + µ2J for some I ∈ S. Then
µ is an H-valued p-carleson measure on the slice regular Besov space if and
only if µ1, µ2 are p-Carleson measures on the complex Besov space Bp,C for
1 < p <∞ in BI .

Proof. Let J ∈ S be such that I⊥J. Then for any f ∈ Bp,I there exist holo-
morphic functions f1, f2 : BI → CI such that QI [f ] = f1(z) + f2(z)J for some
z = x0 + Iy ∈ BI . Now, µ is an H-valued p-Carleson measure on Bp if and
only if µ is an H-valued p-Carleson measure on Bp,I if and only if∫

BI

|f(q)|p dµ(q) ≤M‖f‖pBp,I

if and only if ∫
BI

|fl(q)|p dµl(q) ≤ 2pM‖fl‖pBp,C

if and only if µl, for l = 1, 2, is a p-Carleson measure on Bp,C(BI). �

Now we give the definition of essential norm.

Definition 4.3. The essential norm of a continuous linear operator T between
the normed linear spaces X and Y is its distance from the compact operator
K, that is

‖T‖X→Y
e = inf{‖T −K‖X→Y : K is a compact operator},

where ‖ · ‖X→Y denotes the operator norm and ‖ · ‖X→Y
e is the essential norm.

Here, we give an essential norm estimate for composition operators on the slice
regular Besov space Bp.

Theorem 4.4. For 1 < p <∞ and α > −1, let Φ be a slice hyperholomorphic
map such that Φ(BI) ⊂ BI for some I ∈ S. Suppose CΦ : Bp → Bp is bounded.
Then there is an absolute constant C1C2 ≥ 1 such that

lim
|a|→1

sup ‖CΦσa‖pBp
≤ ‖CΦ‖e ≤ 2pC1C2 lim

|a|→1
sup sup

I∈S

∫
BI

(
(1− |a|2

|1− āq|2

)p

dµp(ω).

Proof. Let f =
∑∞

k=0 q
kak ∈ Bp,I for I ∈ S. For 0 < r < 1, denote Br = {z :

|z| < r} in the complex plane CI . Consider an operator Rnf(q) =
∑∞

k=n+1 q
kak

for some integer n. Suppose J ∈ S with J⊥I. Then there exist holomorphic
functions f1, f2 : BI → CI such that QI [f ] = f1(z) + f2(z)J for z = x0 + Iy ∈
BI . By Remark 2.2, we have fl =

∑∞
k=0 q

kal,k ∈ Bp,C(BI), and Rl,nfl(q) =∑∞
k=n+1 q

kal,k for some integer n and l = 1, 2. Therefore, we have

‖CΦ‖e ≤ lim
n→∞

inf ‖CΦRn‖pBp
≤ lim

n→∞
inf sup
‖f‖Bp≤1

‖(CΦRn)f‖pBp
.
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Now, for any fixed 0 < r < 1, we have

‖(CΦRn)f‖pBp

=

(
|R1,nf1(Φ(0))|p + sup

I∈S

∫
BI

∣∣∣∣(1− |z|2)
∂(CΦR1,nf1)

∂x0
(z)

∣∣∣∣p dλI(z)

)
+

(
|R2,nf2(Φ(0))|p + sup

I∈S

∫
BI

∣∣∣∣(1− |z|2)
∂(CΦR2,nf2)

∂x0
(z)

∣∣∣∣p dλI(z)J

)
.

Since |R1,nf1(Φ(0))| and |R2,nf2(Φ(0))| are bounded as n→∞ and so

‖(CΦRn)f‖pBp
= sup

I∈S

∫
BI

∣∣∣∣(1− |z|2)
∂(CΦR1,nf1)

∂x0
(z)

∣∣∣∣p dλI(z)

+ sup
I∈S

∫
BI

∣∣∣∣(1− |z|2)
∂(CΦR2,n)f2

∂x0
(z)

∣∣∣∣p dλI(z)J.

Let µp = µ1,p + µ2,pJ, where µ1,p and µ2,p are two p-Carleson measures on
BI with the values in CI . Therefore

sup
I∈S

∫
BI

∣∣∣∣(1− |z|2)
∂(CΦRnf)

∂x0
(z)

∣∣∣∣p dλI(z)

≤ 2p−1 sup
I∈S

∫
BI

∣∣∣∣(1− |z|2)
∂(CΦR1,nf1)

∂x0
(z)

∣∣∣∣p dλI(z)

+2p−1 sup
I∈S

∫
BI

∣∣∣∣(1− |z|2)
∂(CΦR2,nf2)

∂x0
(z)

∣∣∣∣p dλI(z)

= 2p−1 sup
I∈S

∫
BI

∣∣∣∣∂(R1,nf1)

∂x0
(q)

∣∣∣∣p dµ1,p(q)

+2p−1 sup
I∈S

∫
BI

∣∣∣∣∂(R2,nf2)

∂x0
(q)

∣∣∣∣p dµ2,p(q)

≤ 2p‖Rnf‖pBp,I

= 2p sup
I∈S

∫
BI\Br

∣∣∣∣∂(Rnf)

∂x0
(q)

∣∣∣∣p dµp(q)

+2p sup
I∈S

∫
Br

∣∣∣∣∂(Rnf)

∂x0
(q)

∣∣∣∣p dµp(q)

= I1 + I2.

Since CΦ : Bp → Bp is bounded so the measure µp is a p-Carleson measure.
From the proof of Proposition 3 in [8], we see that for given ε > 0 and n large

enough that
∣∣∣∂(Rnf)

∂x0
(q)
∣∣∣ ≤ ε|| ∂f∂x0

||Ap
p−2

. Thus

I1 = 2p sup
I∈S

∫
Br

∣∣∣∣∂(Rnf)

∂x0
(q)

∣∣∣∣p dµp(q) ≤ 2pεp||f ||pBp
.
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Therefore for a fixed r, we have

I1 = 2p sup
I∈S

sup
||f ||Bp≤1

∫
Br

∣∣∣∣∂(Rnf)

∂x0
(q)

∣∣∣∣p dµp(q)→ 0 as n→∞.

On the other hand, if µp,r is the restriction of measure µp to the set BI \ Br,
then

I2 = 2p sup
I∈S

∫
BI\Br

∣∣∣∣∂(Rnf)

∂x0
(q)

∣∣∣∣p dµp,r(q) ≤ 2pC1C2‖µp‖∗r

for some absolute constants C1, C2 and ‖µp‖∗r = sup
|a|≥r

sup
I∈S

∫
BI

∣∣∣∣∂σa(q)

∂x0

∣∣∣∣p dµp(q).

Therefore,

lim
n→∞

inf sup
‖f‖Bp≤1

‖(CΦRn)f‖Bp ≤ lim
n→∞

inf 2pC1C2‖µp‖∗r .

Hence

‖CΦ‖pe ≤ 2pC1C2‖µp‖∗r .

Taking r → 1, we have

‖CΦ‖pe ≤ lim
r→1

2pC1C2‖µp‖∗r ≤ 2pC1C2 lim
|a|→1

sup sup
I∈S

∫
BI

∣∣∣∣∂σa(q)

∂x0

∣∣∣∣p dµp(q)

= 2pC1C2 lim
|a|→1

sup sup
I∈S

∫
BI

(
(1− |a|2

|1− āq|2

)p

dµp(q)

which is the desired upper bound.
For lower estimate, let σa(z) = a−z

1−āz be the complex Möbius transformation
on BI , associated with a. Clearly σa is bounded in Bp,I . Also σa − a → 0 as

|a| → 1 uniformly on the compact subsets of BI and |σa(z) − a| = |z| 1−|a|
2

|1−āz| .

Furthermore, ‖K(σa − a)‖Bp,I
→ 0 as |a| → 1 for some compact operator K

on Bp,I . Thus ‖K(σa)‖Bp,I
→ 0 as |a| → 1. Therefore,

‖CΦ‖pe ≥ ‖CΦ −K‖pBp
≥ ‖CΦ −K‖pBp,I

≥ lim
|a|→1

sup ‖(CΦ −K)σa‖pBp,I

≥ lim
|a|→1

sup ‖CΦσa‖pBp,I
− lim
|a|→1

sup ‖Kσa‖pBp,I

= lim
|a|→1

sup ‖CΦσa‖pBp,I
.

Hence the desired result. �
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