ESSENTIAL NORMS OF LINEAR COMBINATIONS OF COMPOSITION OPERATORS ON h^{∞}

Kei Ji Izuchi and Kou Hei Izuchi

Abstract

It is studied the linear combinations of composition operators on the Banach space of bounded harmonic functions on the open unit disk. We determine the essential norm of them.

1. Introduction

Let \mathbb{D} be the open unit disk and $\partial \mathbb{D}$ the unit circle. We denote by $h^{\infty}=$ $h^{\infty}(\mathbb{D})$ and $H^{\infty}=H^{\infty}(\mathbb{D})$ the sets of bounded harmonic and analytic functions on \mathbb{D}, respectively. Then h^{∞} and H^{∞} are the Banach spaces with the supremum norm

$$
\|f\|_{\infty}=\sup \{|f(z)|: z \in \mathbb{D}\} .
$$

We denote by $\mathcal{S}(\mathbb{D})$ the set of analytic self-maps of \mathbb{D}. For $\varphi \in \mathcal{S}(\mathbb{D})$ and a harmonic function f, the composite function $f \circ \varphi$ is also harmonic on \mathbb{D}. So each self-map φ induces the composition operator C_{φ} defined on h^{∞} by

$$
C_{\varphi} f=f \circ \varphi \quad \text { for } f \in h^{\infty} \text {. }
$$

Composition operators have been investigated on various analytic function spaces (see $[2,13]$). Recently, the norm, the essential norm and the topological structure of composition operators on H^{∞} have been studied (see [5, $6,8,9,10,12]$). But the exact value of the essential norm of the difference of composition operators $\left\|C_{\varphi}-C_{\psi}\right\|_{e}$ on H^{∞} is not yet known. In [1], Choa, Ohno and the first author studied composition operators on h^{∞} and determined the exact value of $\left\|C_{\varphi}-C_{\psi}\right\|_{e}$ on h^{∞}.

In [5], Gorkin and Mortini studied the norm and the essential norm of linear combinations of endomorphisms on uniform algebras. They gave a sufficient condition for $\sum_{j=1}^{N} \lambda_{j} C_{\varphi_{j}}$ to satisfy $\left\|\sum_{j=1}^{N} \lambda_{j} C_{\varphi_{j}}\right\|_{e}=\sum_{j=1}^{N}\left|\lambda_{j}\right|$. In [11], Ohno and the first author studied the norm and the essential norm of linear

[^0]combinations of composition operators on H^{∞}. They gave a characterization for $\sum_{j=1}^{N} \lambda_{j} C_{\varphi_{j}}$ on H^{∞} to satisfy $\left\|\sum_{j=1}^{N} \lambda_{j} C_{\varphi_{j}}\right\|=\sum_{j=1}^{N}\left|\lambda_{j}\right|$ and also gave a characterization for $\sum_{j=1}^{N} \lambda_{j} C_{\varphi_{j}}$ on H^{∞} to satisfy $\left\|\sum_{j=1}^{N} \lambda_{j} C_{\varphi_{j}}\right\|_{e}=\sum_{j=1}^{N}\left|\lambda_{j}\right|$ under the assumption that $\operatorname{Re} \lambda_{j}>0$ for every $1 \leq j \leq N$.

In Section 2, we study the norm of linear combinations of composition operators on h^{∞}, and we shall give a characterization for $\sum_{j=1}^{N} \lambda_{j} C_{\varphi_{j}}$ on h^{∞} to satisfy $\left\|\sum_{j=1}^{N} \lambda_{j} C_{\varphi_{j}}\right\|=\sum_{j=1}^{N}\left|\lambda_{j}\right|$ on h^{∞}. We also characterize the compactness of linear combinations of composition operators on h^{∞}. In Section 3 , we shall determine the essential norm of linear combinations of composition operators on h^{∞}, and give a characterization for $\sum_{j=1}^{N} \lambda_{j} C_{\varphi_{j}}$ on h^{∞} to satisfy $\left\|\sum_{j=1}^{N} \lambda_{j} C_{\varphi_{j}}\right\|_{e}=\sum_{j=1}^{N}\left|\lambda_{j}\right|$. In [11], the essential norm $\left\|\sum_{j=1}^{N} \lambda_{j} C_{\varphi_{j}}\right\|_{e}$ on H^{∞} was studied, but the exact value of $\left\|\sum_{j=1}^{N} \lambda_{j} C_{\varphi_{j}}\right\|_{e}$ on H^{∞} is not known. One reason is that it is not known the existence of enough many concrete compact operators on H^{∞}. But in the case of h^{∞}, there are a lot of concrete compact operators on h^{∞}, so we may give the exact value of $\left\|\sum_{j=1}^{N} \lambda_{j} C_{\varphi_{j}}\right\|_{e}$ on h^{∞}.

Generally it holds

$$
\left\|\sum_{j=1}^{N} \lambda_{j} C_{\varphi_{j}}\right\|_{e} \leq\left\|\sum_{j=1}^{N} \lambda_{j} C_{\varphi_{j}}\right\| \leq \sum_{j=1}^{N}\left|\lambda_{j}\right| .
$$

In Section 4, we shall give some examples concerning with the above inequalities.

2. Norms of linear combinations

For $z, w \in \mathbb{D}$, the pseudo-hyperbolic distance between z and w is given by

$$
\rho(z, w)=|z-w| /|1-\bar{z} w| .
$$

The spaces $L^{1}(\partial \mathbb{D})$ and $L^{\infty}(\partial \mathbb{D})$ stand for the standard Lebesgue spaces with the norms $\|f\|_{1}$ and $\|f\|_{\infty}$, respectively. For $f \in L^{1}(\partial \mathbb{D})$, let

$$
\hat{f}(z)=\int_{\partial \mathbb{D}} f\left(e^{i \theta}\right) P_{z}\left(e^{i \theta}\right) d \sigma\left(e^{i \theta}\right), \quad z \in \mathbb{D}
$$

where

$$
P_{z}\left(e^{i \theta}\right)=\frac{1-|z|^{2}}{\left|e^{i \theta}-z\right|^{2}}, \quad z \in \mathbb{D}
$$

is the Poisson kernel for $z \in \mathbb{D}$ and σ is the normalized Lebesgue measure on $\partial \mathbb{D}$. For each $f \in h^{\infty}$, there exists the radial limit function f^{*} on $\partial \mathbb{D}$ defined by $f^{*}\left(e^{i \theta}\right)=\lim _{r \rightarrow 1} f\left(r e^{i \theta}\right)$ a.e. on $\partial \mathbb{D}$. It is well known that $\left\{f^{*}: f \in h^{\infty}\right\}=$ $L^{\infty}(\partial \mathbb{D})$ and $f=\widehat{f^{*}}$, so identifying f with f^{*} we may consider $h^{\infty}=L^{\infty}(\partial \mathbb{D})$. Note that

$$
\left(C_{\varphi} f\right)^{*}\left(e^{i \theta}\right)=\left\{\begin{aligned}
f\left(\varphi^{*}\left(e^{i \theta}\right)\right) & \text { for }\left|\varphi^{*}\left(e^{i \theta}\right)\right|<1 \\
f^{*}\left(\varphi^{*}\left(e^{i \theta}\right)\right) & \text { for }\left|\varphi^{*}\left(e^{i \theta}\right)\right|=1
\end{aligned}\right.
$$

a.e. on $\partial \mathbb{D}$.

We denote by $B\left(h^{\infty}\right)$ the closed unit ball of h^{∞}. For a measurable subset E of $\partial \mathbb{D}$, let χ_{E} denote the characteristic function for E.
Lemma 2.1. Let $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{N}$ be functions in $\mathcal{S}(\mathbb{D})$ satisfying $\varphi_{i} \neq \varphi_{j}$ for $i \neq j$ and $\lambda_{j} \in \mathbb{C}$ with $\lambda_{j} \neq 0$ for every $1 \leq j \leq N$. Then

$$
\left\|\sum_{j=1}^{N} \lambda_{j} C_{\varphi_{j}}\right\|=\sup _{z \in \mathbb{D}}\left\|\sum_{j=1}^{N} \lambda_{j} P_{\varphi_{j}(z)}\right\|_{1} .
$$

Proof. For $g \in B\left(h^{\infty}\right)$, we have

$$
\begin{aligned}
\left\|\left(\sum_{j=1}^{N} \lambda_{j} C_{\varphi_{j}}\right) g\right\|_{\infty} & =\sup _{z \in \mathbb{D}}\left|\sum_{j=1}^{N} \lambda_{j} g\left(\varphi_{j}(z)\right)\right| \\
& =\sup _{z \in \mathbb{D}}\left|\int_{\partial \mathbb{D}}\left(\sum_{j=1}^{N} \lambda_{j} P_{\varphi_{j}(z)}\right) g^{*} d \sigma\right|
\end{aligned}
$$

Thus we get the assertion.
By the proof of Lemma 2.1, one easily sees the following.
Lemma 2.2. Let $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{N}$ be functions in $\mathcal{S}(\mathbb{D})$ satisfying $\varphi_{i} \neq \varphi_{j}$ for $i \neq j$ and $\lambda_{j} \in \mathbb{C}$ with $\lambda_{j} \neq 0$ for every $1 \leq j \leq N$. Then there exists a sequence $\left\{z_{n}\right\}_{n}$ in \mathbb{D} with $\left|z_{n}\right| \rightarrow 1$ as $n \rightarrow \infty$ satisfying

$$
\left\|\sum_{j=1}^{N} \lambda_{j} C_{\varphi_{j}}\right\|=\lim _{n \rightarrow \infty}\left\|\sum_{j=1}^{N} \lambda_{j} P_{\varphi_{j}\left(z_{n}\right)}\right\|_{1}
$$

The following is an elementary property of Poisson kernels.
Lemma 2.3. Let $\lambda_{1}, \lambda_{2} \in \mathbb{C}$ with $\lambda_{1} \lambda_{2} \neq 0$ and $\lambda_{1} /\left|\lambda_{1}\right| \neq \lambda_{2} /\left|\lambda_{2}\right|$. Let $\left\{z_{n}\right\}_{n},\left\{w_{n}\right\}_{n}$ be sequences in \mathbb{D}. If $\left\|\lambda_{1} P_{z_{n}}+\lambda_{2} P_{w_{n}}\right\|_{1} \rightarrow\left|\lambda_{1}\right|+\left|\lambda_{2}\right|$, then $\left\|P_{z_{n}}-P_{w_{n}}\right\|_{1} \rightarrow 2$ as $n \rightarrow \infty$.

By [4, p. 42], we have the following.
Lemma 2.4. For $z, w \in \mathbb{D}$,

$$
\left\|P_{z}-P_{w}\right\|_{1}=2-\frac{4 \cos ^{-1} \rho(z, w)}{\pi}
$$

Let $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{N}$ be functions in $\mathcal{S}(\mathbb{D})$ satisfying $\varphi_{i} \neq \varphi_{j}$ for $i \neq j$. We use the same notations as in [11]. We denote by $\mathcal{Z}\left(\left\{\varphi_{j}\right\}\right)$ the set of sequences $\left\{z_{n}\right\}_{n}$ in \mathbb{D} satisfying the following four conditions:
(a) $\left\{z_{n}\right\}_{n}$ is a convergent sequence.
(b) $\left\{\varphi_{j}\left(z_{n}\right)\right\}_{n}$ is a convergent sequence for every $1 \leq j \leq N$.
(c) $\lim _{n \rightarrow \infty}\left|\varphi_{j}\left(z_{n}\right)\right|=1$ for some $1 \leq j \leq N$.
(d) $\left\{\rho\left(\varphi_{i}\left(z_{n}\right), \varphi_{j}\left(z_{n}\right)\right)\right\}_{n}$ is a convergent sequence for every $1 \leq i, j \leq N$.

In this paper, the set $\mathcal{Z}\left(\left\{\varphi_{j}\right\}\right)$ acts an important role. Note that for a sequence $\left\{z_{n}\right\}_{n}$ in \mathbb{D}, if $\left|\varphi_{j}\left(z_{n}\right)\right| \rightarrow 1$ as $n \rightarrow \infty$ for some $1 \leq j \leq N$, then it is easy to see that there exists a subsequence $\left\{z_{n_{i}}\right\}_{i}$ of $\left\{z_{n}\right\}_{n}$ satisfying $\left\{z_{n_{i}}\right\}_{i} \in \mathcal{Z}\left(\left\{\varphi_{j}\right\}\right)$.

Let $\left\{z_{n}\right\}_{n} \in \mathcal{Z}\left(\left\{\varphi_{j}\right\}\right)$. We write $\alpha_{j}=\lim _{n \rightarrow \infty} \varphi_{j}\left(z_{n}\right)$ for every $1 \leq j \leq N$. Let

$$
\begin{equation*}
I\left(\left\{z_{n}\right\}\right)=\left\{j:\left|\alpha_{j}\right|=1,1 \leq j \leq N\right\} . \tag{2.1}
\end{equation*}
$$

We define the equivalence relation $i \sim j$ in $I\left(\left\{z_{n}\right\}\right)$ by

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \rho\left(\varphi_{i}\left(z_{n}\right), \varphi_{j}\left(z_{n}\right)\right)=0 \tag{2.2}
\end{equation*}
$$

By condition (c) and (2.1), $I\left(\left\{z_{n}\right\}\right) \neq \emptyset$. For each $t \in I\left(\left\{z_{n}\right\}\right)$, let

$$
\begin{equation*}
I\left(\left\{z_{n}\right\}, t\right)=\left\{j \in I\left(\left\{z_{n}\right\}\right): j \sim t, 1 \leq j \leq N\right\} \tag{2.3}
\end{equation*}
$$

For $s, t \in I\left(\left\{z_{n}\right\}\right)$, either $I\left(\left\{z_{n}\right\}, s\right)=I\left(\left\{z_{n}\right\}, t\right)$ or $I\left(\left\{z_{n}\right\}, s\right) \cap I\left(\left\{z_{n}\right\}, t\right)=\emptyset$ holds. Hence there is a subset $\left\{t_{1}, t_{2}, \ldots, t_{\ell}\right\} \subset I\left(\left\{z_{n}\right\}\right)$ such that $I\left(\left\{z_{n}\right\}\right)=$ $\bigcup_{p=1}^{\ell} I\left(\left\{z_{n}\right\}, t_{p}\right)$ and $I\left(\left\{z_{n}\right\}, t_{p}\right) \cap I\left(\left\{z_{n}\right\}, t_{q}\right)=\emptyset$ for $p \neq q$.

Generally, we have $\left\|\sum_{j=1}^{N} \lambda_{j} C_{\varphi_{j}}\right\| \leq \sum_{j=1}^{N}\left|\lambda_{j}\right|$. If $\lambda_{1} /\left|\lambda_{1}\right|=\lambda_{j} /\left|\lambda_{j}\right|$ for every $1 \leq j \leq N$, one easily sees that $\left\|\sum_{j=1}^{N} \lambda_{j} C_{\varphi_{j}}\right\|=\sum_{j=1}^{N}\left|\lambda_{j}\right|$. The other case, we have the following.

Theorem 2.5. Let $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{N}$ be functions in $\mathcal{S}(\mathbb{D})$ satisfying $\varphi_{i} \neq \varphi_{j}$ for $i \neq j$ and $\lambda_{j} \in \mathbb{C}$ with $\lambda_{j} \neq 0$ for every $1 \leq j \leq N$. Suppose that $\lambda_{i} /\left|\lambda_{i}\right| \neq \lambda_{j} /\left|\lambda_{j}\right|$ for some $1 \leq i, j \leq N$. Then the following conditions are equivalent:
(i) $\left\|\sum_{j=1}^{N} \lambda_{j} C_{\varphi_{j}}\right\|=\sum_{j=1}^{n}\left|\lambda_{j}\right|$ on h^{∞}.
(ii) $\left\|\sum_{j=1}^{N} \lambda_{j} C_{\varphi_{j}}\right\|=\sum_{j=1}^{n}\left|\lambda_{j}\right|$ on H^{∞}.
(iii) There exists a sequence $\left\{z_{n}\right\}_{n} \in \mathcal{Z}\left(\left\{\varphi_{j}\right\}\right)$ satisfying $\rho\left(\varphi_{i}\left(z_{n}\right), \varphi_{j}\left(z_{n}\right)\right) \rightarrow$ 1 as $n \rightarrow \infty$ for every $1 \leq i, j \leq N$ with $\lambda_{i} /\left|\lambda_{i}\right| \neq \lambda_{j} /\left|\lambda_{j}\right|$.

Proof. (ii) \Leftrightarrow (iii) was proven in [11, Theorem 3.1]. (ii) \Rightarrow (i) is trivial.
We shall prove (i) \Rightarrow (iii). Suppose that (i) holds. By Lemma 2.2, there is a sequence $\left\{z_{n}\right\}_{n}$ in \mathbb{D} with $\left|z_{n}\right| \rightarrow 1$ such that

$$
\lim _{n \rightarrow \infty}\left\|\sum_{j=1}^{N} \lambda_{j} P_{\varphi_{j}\left(z_{n}\right)}\right\|_{1}=\sum_{j=1}^{N}\left|\lambda_{j}\right| .
$$

Suppose that $\lambda_{j_{1}} /\left|\lambda_{j_{1}}\right| \neq \lambda_{j_{2}} /\left|\lambda_{j_{2}}\right|$. Then

$$
\sum_{j=1}^{N}\left|\lambda_{j}\right|=\lim _{n \rightarrow \infty}\left\|\sum_{j=1}^{N} \lambda_{j} P_{\varphi_{j}\left(z_{n}\right)}\right\|_{1}
$$

$$
\leq \liminf _{n \rightarrow \infty}\left\|\lambda_{j_{1}} P_{\varphi_{j_{1}}\left(z_{n}\right)}+\lambda_{j_{2}} P_{\varphi_{j_{2}}\left(z_{n}\right)}\right\|_{1}+\sum_{j: j \neq j_{1}, j_{2}}\left|\lambda_{j}\right|
$$

Hence

$$
\left\|\lambda_{j_{1}} P_{\varphi_{j_{1}}\left(z_{n}\right)}+\lambda_{j_{2}} P_{\varphi_{j_{2}}\left(z_{n}\right)}\right\|_{1} \rightarrow\left|\lambda_{j_{1}}\right|+\left|\lambda_{j_{2}}\right|
$$

as $n \rightarrow \infty$. By Lemma 2.3, $\left\|P_{\varphi_{j_{1}}\left(z_{n}\right)}-P_{\varphi_{j_{2}}\left(z_{n}\right)}\right\|_{1} \rightarrow 2$. By Lemma 2.4, $\rho\left(\varphi_{j_{1}}\left(z_{n}\right), \varphi_{j_{2}}\left(z_{n}\right)\right) \rightarrow$. Hence $\max \left\{\left|\varphi_{j_{1}}\left(z_{n}\right)\right|,\left|\varphi_{j_{2}}\left(z_{n}\right)\right|\right\} \rightarrow 1$ as $n \rightarrow \infty$. Thus we get (iii).

To study the compactness of $\sum_{j=1}^{N} \lambda_{j} C_{\varphi_{j}}$, we use the following lemma which follows from that $B\left(h^{\infty}\right)$ is a normal family.

Lemma 2.6. Let $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{N}$ be functions in $\mathcal{S}(\mathbb{D})$ satisfying $\varphi_{i} \neq \varphi_{j}$ for $i \neq j$ and $\lambda_{j} \in \mathbb{C}$ with $\lambda_{j} \neq 0$ for every $1 \leq j \leq N$. Then $\sum_{j=1}^{N} \lambda_{j} C_{\varphi_{j}}$ is compact on h^{∞} if and only if $\left\|\sum_{j=1}^{N} \lambda_{j} C_{\varphi_{j}} f_{n}\right\|_{\infty} \rightarrow 0$ as $n \rightarrow \infty$ for every sequence $\left\{f_{n}\right\}_{n}$ in $B\left(h^{\infty}\right)$ such that $\left\{f_{n}\right\}_{n}$ converges to 0 uniformly on any compact subset of \mathbb{D}.

From this, if $\|\varphi\|_{\infty}<1$, then C_{φ} is compact on h^{∞}. The following is a characterization of the compactness of $\sum_{j=1}^{N} \lambda_{j} C_{\varphi_{j}}$ on h^{∞}.
Theorem 2.7. Let $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{N}$ be functions in $\mathcal{S}(\mathbb{D})$ with $\left\|\varphi_{j}\right\|_{\infty}=1$ satisfying $\varphi_{i} \neq \varphi_{j}$ for $i \neq j$ and $\lambda_{j} \in \mathbb{C}$ with $\lambda_{j} \neq 0$ for every $1 \leq j \leq N$. Then the following conditions are equivalent:
(i) $\sum_{j=1}^{N} \lambda_{j} C_{\varphi_{j}}$ is compact on h^{∞}.
(ii) $\sum_{j=1}^{N} \lambda_{j} C_{\varphi_{j}}$ is compact on H^{∞}.
(iii) $\sum\left\{\lambda_{i}: i \in I\left(\left\{z_{n}\right\}, t\right)\right\}=0$ for every $\left\{z_{n}\right\}_{n} \in \mathcal{Z}\left(\left\{\varphi_{j}\right\}\right)$ and $t \in$ $I\left(\left\{z_{n}\right\}\right)$.
Proof. (ii) \Leftrightarrow (iii) was proven in [11, Theorem 2.2]. (i) \Rightarrow (ii) is trivial.
The proof (iii) \Rightarrow (i) is the same as the one in [11, Theorem 2.2] essentially. Suppose that $\sum_{j=1}^{N} \lambda_{j} C_{\varphi_{j}}$ is not compact on h^{∞}. By Lemma 2.6, there is a sequence $\left\{f_{n}\right\}_{n}$ in $B\left(h^{\infty}\right)$ such that $f_{n} \rightarrow 0$ uniformly on any compact subset of \mathbb{D} and $\left\|\sum_{j=1}^{N} \lambda_{j} f_{n} \circ \varphi_{j}\right\|_{\infty} \nrightarrow 0$ as $n \rightarrow \infty$. Considering a subsequence of $\left\{f_{n}\right\}_{n}$, we may assume that there exists $\delta>0$ such that

$$
\left\|\sum_{j=1}^{N} \lambda_{j} f_{n} \circ \varphi_{j}\right\|_{\infty}>\delta \quad \text { for every } n \geq 1
$$

Take a sequence $\left\{z_{n}\right\}_{n}$ in \mathbb{D} satisfying $\left|z_{n}\right| \rightarrow 1$ and

$$
\left|\sum_{j=1}^{N} \lambda_{j} f_{n}\left(\varphi_{j}\left(z_{n}\right)\right)\right|>\delta \quad \text { for every } n \geq 1
$$

We may assume that $\varphi_{j}\left(z_{n}\right) \rightarrow \alpha_{j} \in \overline{\mathbb{D}}$ for every $1 \leq j \leq N$. Since $f_{n} \rightarrow 0$ uniformly on any compact subset of $\mathbb{D},\left|\alpha_{j}\right|=1$ for some j. Considering
a subsequence of $\left\{f_{n}\right\}_{n}$, we may assume that $\left\{z_{n}\right\}_{n} \in \mathcal{Z}\left(\left\{\varphi_{j}\right\}\right)$. By (2.1), $I\left(\left\{z_{n}\right\}\right)=\left\{j:\left|\alpha_{j}\right|=1,1 \leq j \leq N\right\}$. Then we have

$$
\begin{equation*}
\liminf _{k \rightarrow \infty}\left|\sum_{j \in I\left(\left\{z_{n}\right\}\right)} \lambda_{j} f_{k}\left(\varphi_{j}\left(z_{k}\right)\right)\right| \geq \delta \tag{2.4}
\end{equation*}
$$

Let $\left\{t_{1}, t_{2}, \ldots, t_{\ell}\right\} \subset I\left(\left\{z_{n}\right\}\right)$ such that $I\left(\left\{z_{n}\right\}\right)=\bigcup_{p=1}^{\ell} I\left(\left\{z_{n}\right\}, t_{p}\right)$ and $I\left(\left\{z_{n}\right\}\right.$, $\left.t_{p}\right) \cap I\left(\left\{z_{n}\right\}, t_{q}\right)=\emptyset$ for $p \neq q$. Let $j \in I\left(\left\{z_{n}\right\}, t_{p}\right) . \quad$ By (2.2) and (2.3), $\rho\left(\varphi_{j}\left(z_{k}\right), \varphi_{t_{p}}\left(z_{k}\right)\right) \rightarrow 0$ as $k \rightarrow \infty$. By Lemma 2.4, $\left\|P_{\varphi_{j}\left(z_{k}\right)}-P_{\varphi_{t_{p}}\left(z_{k}\right)}\right\|_{1} \rightarrow 0$. Since $\left\{f_{k}\left(\varphi_{j}\left(z_{k}\right)\right)\right\}_{k}$ is a bounded sequence, considering a subsequence of $\left\{f_{k}\right\}_{k}$, we may assume that $f_{k}\left(\varphi_{j}\left(z_{k}\right)\right) \rightarrow \gamma_{j} \in \overline{\mathbb{D}}$ as $k \rightarrow \infty$ for every $1 \leq j \leq N$. We have

$$
\begin{aligned}
\left|f_{k}\left(\varphi_{j}\left(z_{k}\right)\right)-f_{k}\left(\varphi_{t_{p}}\left(z_{k}\right)\right)\right| & =\left|\int_{\partial \mathbb{D}} f_{k}^{*}\left(P_{\varphi_{j}\left(z_{k}\right)}-P_{\varphi_{t_{p}}\left(z_{k}\right)}\right) d \sigma\right| \\
& \leq\left\|P_{\varphi_{j}\left(z_{k}\right)}-P_{\varphi_{t_{p}}\left(z_{k}\right)}\right\|_{1} \\
& \rightarrow 0 \quad \text { as } k \rightarrow \infty
\end{aligned}
$$

Thus we get $\gamma_{j}=\gamma_{t_{p}}$ for every $j \in I\left(\left\{z_{n}\right\}, t_{p}\right)$. Therefore

$$
\begin{aligned}
\lim _{k \rightarrow \infty} \sum_{j \in I\left(\left\{z_{n}\right\}\right)} \lambda_{j} f_{k}\left(\varphi_{j}\left(z_{k}\right)\right) & =\lim _{k \rightarrow \infty} \sum_{p=1}^{\ell} \sum_{j \in I\left(\left\{z_{n}\right\}, t_{p}\right)} \lambda_{j} f_{k}\left(\varphi_{j}\left(z_{k}\right)\right) \\
& =\sum_{p=1}^{\ell} \gamma_{t_{p}} \sum_{j \in I\left(\left\{z_{n}\right\}, t_{p}\right)} \lambda_{j} \\
& =0 \quad \text { by condition (iii). }
\end{aligned}
$$

This contradicts with (2.4). Thus we get (iii) \Rightarrow (i).

3. Essential norms of linear combinations

Let $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{N}$ be functions in $\mathcal{S}(\mathbb{D})$ with $\left\|\varphi_{j}\right\|_{\infty}=1$ satisfying $\varphi_{i} \neq \varphi_{j}$ for $i \neq j$ and $\lambda_{j} \in \mathbb{C}$ with $\lambda_{j} \neq 0$ for every $1 \leq j \leq N$. Let \mathcal{K} be the set of compact operators on h^{∞}. The essential norm is defined by

$$
\left\|\sum_{j=1}^{n} \lambda_{j} C_{\varphi_{j}}\right\|_{e}=\inf _{K \in \mathcal{K}}\left\|K+\sum_{j=1}^{n} \lambda_{j} C_{\varphi_{j}}\right\|
$$

For each $\left\{z_{n}\right\}_{n} \in \mathcal{Z}\left(\left\{\varphi_{j}\right\}\right)$, we define

$$
\begin{equation*}
\Gamma\left(\left\{z_{n}\right\}\right)=\liminf _{k \rightarrow \infty}\left\|\sum_{j \in I\left(\left\{z_{n}\right\}\right)} \lambda_{j} P_{\varphi_{j}\left(z_{k}\right)}\right\|_{1} . \tag{3.1}
\end{equation*}
$$

This term is used to determine the values of essential norms of linear combinations of composition operators. The following is an elementary property of Poisson kernels.

Lemma 3.1. Let $\left\{z_{j, k}\right\}_{k}$ be sequences in \mathbb{D} such that $z_{j, k} \rightarrow \alpha_{j}$ as $k \rightarrow \infty$ and $\left|\alpha_{j}\right|=1$ for every $1 \leq j \leq N$. Let U be an open subset of $\partial \mathbb{D}$ satisfying $\left\{\alpha_{j}\right\}_{j=1}^{N} \subset U$. Then for $\lambda_{j} \in \mathbb{C}, 1 \leq j \leq N$, we have

$$
\lim _{k \rightarrow \infty} \int_{\partial \mathbb{D}} \chi_{U}\left|\sum_{j=1}^{N} \lambda_{j} P_{z_{j, k}}\right| d \sigma=\lim _{k \rightarrow \infty}\left\|\sum_{j=1}^{N} \lambda_{j} P_{z_{j, k}}\right\|_{1} .
$$

First, we give a lower estimate of $\left\|\sum_{j=1}^{N} \lambda_{j} C_{\varphi_{j}}\right\|_{e}$.
Theorem 3.2. Let $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{N}$ be functions in $\mathcal{S}(\mathbb{D})$ with $\left\|\varphi_{j}\right\|_{\infty}=1$ satisfying $\varphi_{i} \neq \varphi_{j}$ for $i \neq j$ and $\lambda_{j} \in \mathbb{C}$ with $\lambda_{j} \neq 0$ for every $1 \leq j \leq N$. Then

$$
\sup _{\left\{z_{n}\right\}_{n} \in \mathcal{Z}\left(\left\{\varphi_{j}\right\}\right)} \Gamma\left(\left\{z_{n}\right\}\right) \leq\left\|\sum_{j=1}^{N} \lambda_{j} C_{\varphi_{j}}\right\|_{e} .
$$

Proof. Let $\left\{z_{n}\right\}_{n} \in \mathcal{Z}\left(\left\{\varphi_{j}\right\}\right)$. We may assume that $\Gamma\left(\left\{z_{n}\right\}\right)>0$. Considering a subsequence of $\left\{z_{n}\right\}_{n}$, we may assume that

$$
\begin{equation*}
\Gamma\left(\left\{z_{n}\right\}\right)=\lim _{k \rightarrow \infty}\left\|\sum_{j \in I\left(\left\{z_{n}\right\}\right)} \lambda_{j} P_{\varphi_{j}\left(z_{k}\right)}\right\|_{1} \tag{3.2}
\end{equation*}
$$

and

$$
\left\|\sum_{j \in I\left(\left\{z_{n}\right\}\right)} \lambda_{j} P_{\varphi_{j}\left(z_{k}\right)}\right\|_{1} \neq 0 \quad \text { for every } k \geq 1
$$

By condition (b) in Section 2, $\varphi_{j}\left(z_{k}\right) \rightarrow \alpha_{j} \in \overline{\mathbb{D}}$ as $k \rightarrow \infty$ for every j. Recall that $\left|\alpha_{j}\right|=1$ for $j \in I\left(\left\{z_{n}\right\}\right)$ and $\left|\alpha_{j}\right|<1$ for $j \notin I\left(\left\{z_{n}\right\}\right)$.

By induction, we shall take a subsequence $\left\{z_{n_{k}}\right\}_{k}$ of $\left\{z_{n}\right\}_{n}$ and a sequence of open subsets $\left\{U_{k}\right\}_{k}$ of $\partial \mathbb{D}$ satisfying the following two conditions;

$$
\begin{equation*}
\left\{\alpha_{j}: j \in I\left(\left\{z_{n}\right\}\right)\right\} \subset U_{k+1} \subset U_{k}, \quad\left\{\alpha_{j}: j \in I\left(\left\{z_{n}\right\}\right)\right\}=\bigcap_{k=1}^{\infty} U_{k} \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\partial \mathbb{D}} \chi_{\left(U_{k} \backslash U_{k+1}\right)}\left|\sum_{j \in I\left(\left\{z_{n}\right\}\right)} \lambda_{j} P_{\varphi_{j}\left(z_{n_{k}}\right)}\right| d \sigma>\Gamma\left(\left\{z_{n}\right\}\right)\left(1-\frac{1}{k}\right) \tag{3.4}
\end{equation*}
$$

Put $n_{1}=1$. Then there is an open subset U_{1} of $\partial \mathbb{D}$ with $\left\{\alpha_{j}: j \in I\left(\left\{z_{n}\right\}\right)\right\} \subset$ U_{1} such that

$$
\int_{\partial \mathbb{D}} \chi_{U_{1}}\left|\sum_{j \in I\left(\left\{z_{n}\right\}\right)} \lambda_{j} P_{\varphi_{j}\left(z_{n_{1}}\right)}\right| d \sigma>0
$$

We may take an open subset U_{2} of $\partial \mathbb{D}$ with $\left\{\alpha_{j}: j \in I\left(\left\{z_{n}\right\}\right)\right\} \subset U_{2} \subset U_{1}$ such that

$$
\int_{\partial \mathbb{D}} \chi_{\left(U_{1} \backslash U_{2}\right)}\left|\sum_{j \in I\left(\left\{z_{n}\right\}\right)} \lambda_{j} P_{\varphi_{j}\left(z_{n_{1}}\right)}\right| d \sigma>0 .
$$

Let m be a positive integer. We assume that $\left\{z_{n_{1}}, z_{n_{2}}, \ldots, z_{n_{m}}\right\}$ and $\left\{U_{1}, U_{2}\right.$, $\left.\ldots, U_{m+1}\right\}$ are taken satisfying conditions (3.3) and (3.4). We have

$$
\begin{aligned}
& \lim _{k \rightarrow \infty} \int_{\partial \mathbb{D}} \chi_{U_{m+1}}\left|\sum_{j \in I\left(\left\{z_{n}\right\}\right)} \lambda_{j} P_{\varphi_{j}\left(z_{k}\right)}\right| d \sigma \\
= & \lim _{k \rightarrow \infty}\left\|\sum_{j \in I\left(\left\{z_{n}\right\}\right)} \lambda_{j} P_{\varphi_{j}\left(z_{k}\right)}\right\|_{1} \quad \text { by Lemma 3.1 } \\
= & \Gamma\left(\left\{z_{n}\right\}\right) \quad \text { by }(3.2) .
\end{aligned}
$$

Hence there exists a positive integer n_{m+1} such that

$$
\int_{\partial \mathbb{D}} \chi_{U_{m+1}}\left|\sum_{j \in I\left(\left\{z_{n}\right\}\right)} \lambda_{j} P_{\varphi_{j}\left(z_{n_{m+1}}\right)}\right| d \sigma>\Gamma\left(\left\{z_{n}\right\}\right)\left(1-\frac{1}{m+1}\right) .
$$

It is not difficult to take an open subset U_{m+2} of $\partial \mathbb{D}$ with

$$
\left\{\alpha_{j}: j \in I\left(\left\{z_{n}\right\}\right)\right\} \subset U_{m+2} \subset U_{m+1}
$$

such that

$$
\int_{\partial \mathbb{D}} \chi_{\left(U_{m+1} \backslash U_{m+2}\right)}\left|\sum_{j \in I\left(\left\{z_{n}\right\}\right)} \lambda_{j} P_{\varphi_{j}\left(z_{n_{m+1}}\right)}\right| d \sigma>\Gamma\left(\left\{z_{n}\right\}\right)\left(1-\frac{1}{m+1}\right) .
$$

Of course we may take $\left\{U_{k}\right\}_{k}$ satisfying the second condition in (3.3). This completes the induction.

For each positive integer k, there exists a function $g_{k} \in L^{\infty}(\partial \mathbb{D})$ such that

$$
g_{k}\left(\sum_{j \in I\left(\left\{z_{n}\right\}\right)} \lambda_{j} P_{\varphi_{j}\left(z_{n_{k}}\right)}\right)=\left|\sum_{j \in I\left(\left\{z_{n}\right\}\right)} \lambda_{j} P_{\varphi_{j}\left(z_{n_{k}}\right)}\right| \quad \text { a.e. on } \partial \mathbb{D} .
$$

Note that $\left|g_{k}\right|=1$ a.e. on $\partial \mathbb{D}$. Let $h_{k}=\chi_{\left(U_{k} \backslash U_{k+1}\right)} g_{k}$. Then $\left\|h_{k}\right\|_{\infty}=1$, and by (3.3) $h_{k} \rightarrow 0$ weakly in $L^{\infty}(\partial \mathbb{D})$, so $\hat{h}_{k} \rightarrow 0$ weakly in h^{∞}. Let K be a compact operator on h^{∞}. Then we have $\left\|K \hat{h}_{k}\right\|_{\infty} \rightarrow 0$ and

$$
\left|\sum_{j \notin I\left(\left\{z_{n}\right\}\right)} \lambda_{j} \hat{h}_{k}\left(\varphi_{j}\left(z_{n_{k}}\right)\right)\right| \rightarrow 0 \quad \text { as } k \rightarrow \infty .
$$

Therefore

$$
\begin{aligned}
& \left\|\sum_{j=1}^{N} \lambda_{j} C_{\varphi_{j}}+K\right\| \\
\geq & \limsup _{k \rightarrow \infty}\left\|\left(\sum_{j=1}^{N} \lambda_{j} C_{\varphi_{j}}\right) \hat{h}_{k}+K \hat{h}_{k}\right\|_{\infty} \\
= & \limsup _{k \rightarrow \infty}\left\|\sum_{j=1}^{N} \lambda_{j} \hat{h}_{k} \circ \varphi_{j}\right\|_{\infty}
\end{aligned}
$$

$$
\begin{aligned}
& \geq \limsup _{k \rightarrow \infty}\left(\left|\sum_{j \in I\left(\left\{z_{n}\right\}\right)} \lambda_{j} \hat{h}_{k}\left(\varphi_{j}\left(z_{n_{k}}\right)\right)\right|-\left|\sum_{j \notin I\left(\left\{z_{n}\right\}\right)} \lambda_{j} \hat{h}_{k}\left(\varphi_{j}\left(z_{n_{k}}\right)\right)\right|\right) \\
& =\limsup _{k \rightarrow \infty}\left|\sum_{j \in I\left(\left\{z_{n}\right\}\right)} \lambda_{j} \hat{h}_{k}\left(\varphi_{j}\left(z_{n_{k}}\right)\right)\right| \\
& =\limsup _{k \rightarrow \infty}\left|\int_{\partial \mathbb{D}} h_{k}\left(\sum_{j \in I\left(\left\{z_{n}\right\}\right)} \lambda_{j} P_{\varphi_{j}\left(z_{n_{k}}\right)}\right) d \sigma\right| \\
& =\limsup _{k \rightarrow \infty} \int_{\partial \mathbb{D}} \chi_{\left(U_{k} \backslash U_{k+1}\right)}\left|\sum_{j \in I\left(\left\{z_{n}\right\}\right)} \lambda_{j} P_{\varphi_{j}\left(z_{n_{k}}\right)}\right| d \sigma \\
& \geq \Gamma\left(\left\{z_{n}\right\}\right) \quad \text { by }(3.4) .
\end{aligned}
$$

Thus we get the assertion.
Next we shall study an upper estimate of $\left\|\sum_{j=1}^{N} \lambda_{j} C_{\varphi_{j}}\right\|_{e}$ and this is the main subject of this paper. For $g \in L^{\infty}(\partial \mathbb{D})$, we define the bounded linear operator M_{g} on h^{∞} by

$$
\left(M_{g} f\right)(z)=\int_{\partial \mathbb{D}} g f^{*} P_{z} d \sigma, \quad f \in h^{\infty}, \quad z \in \mathbb{D} .
$$

Let U, V be measurable subsets of $\partial \mathbb{D}$. Then $M_{\chi_{U}} M_{\chi_{V}}=M_{\chi_{(U \cap V)}}$ and $I=$ $M_{\chi_{U}}+M_{\chi_{U^{c}}}$, where I is the identity operator on h^{∞}.

Lemma 3.3. Let $\varphi \in \mathcal{S}(\mathbb{D})$ with $\|\varphi\|_{\infty}=1$. For $0<\delta<1$, let U be a measurable subset of $\partial \mathbb{D}$ with $U \subset\left\{e^{i \theta} \in \partial \mathbb{D}:\left|\varphi^{*}\left(e^{i \theta}\right)\right| \leq \delta\right\}$. Then $M_{\chi_{U}} C_{\varphi}$ is compact on h^{∞}.
Proof. Let $\left\{f_{n}\right\}_{n}$ be a sequence in $B\left(h^{\infty}\right)$ such that $\left\{f_{n}\right\}_{n}$ converges uniformly on any compact subset of \mathbb{D}. Then $\sup _{e^{i t} \in U}\left|f_{n}\left(\varphi^{*}\left(e^{i t}\right)\right)\right| \rightarrow 0$ as $n \rightarrow \infty$. Hence

$$
\left\|M_{\chi_{U}} C_{\varphi} f_{n}\right\|_{\infty}=\left\|\chi_{U}\left(f_{n} \circ \varphi\right)^{*}\right\|_{\infty}=\sup _{z \in \mathbb{D}}\left|\int_{U} f_{n}\left(\varphi^{*}\right) P_{z} d \sigma\right| \rightarrow 0
$$

as $n \rightarrow \infty$. By Lemma 2.6, $M_{\chi_{U}} C_{\varphi}$ is compact on h^{∞}.
One easily checks the following.
Lemma 3.4. Let $U_{1}, U_{2}, \ldots, U_{m}$ be measurable subsets of $\partial \mathbb{D}$ with $U_{i} \cap U_{j}=\emptyset$ for $i \neq j$. For every bounded linear operators $T_{1}, T_{2}, \ldots, T_{m}$ on h^{∞}, we have

$$
\left\|\sum_{j=1}^{m} M_{\chi_{U_{j}}} T_{j}\right\|=\max _{1 \leq j \leq m}\left\|M_{\chi_{U_{j}}} T_{j}\right\|
$$

Lemma 3.5. Let $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{N}$ be functions in $\mathcal{S}(\mathbb{D})$ satisfying $\varphi_{i} \neq \varphi_{j}$ for $i \neq j$ and $\lambda_{j} \in \mathbb{C}$ with $\lambda_{j} \neq 0$ for every $1 \leq j \leq N$. Then

$$
\left\|M_{\chi_{U}} \sum_{j=1}^{N} \lambda_{j} C_{\varphi_{j}}\right\|_{e}=\inf _{K \in \mathcal{K}}\left\|M_{\chi_{U}}\left(K+\sum_{j=1}^{N} \lambda_{j} C_{\varphi_{j}}\right)\right\| .
$$

Proof. It is trivial that

$$
\left\|M_{\chi_{U}} \sum_{j=1}^{N} \lambda_{j} C_{\varphi_{j}}\right\|_{e} \leq \inf _{K \in \mathcal{K}}\left\|M_{\chi_{U}}\left(K+\sum_{j=1}^{N} \lambda_{j} C_{\varphi_{j}}\right)\right\| .
$$

Let $K \in \mathcal{K}$. Then

$$
\begin{aligned}
& \left\|K+M_{\chi_{U}} \sum_{j=1}^{N} \lambda_{j} C_{\varphi_{j}}\right\| \\
= & \left\|\left(M_{\chi_{U}}+M_{\chi_{U^{c}}}\right) K+M_{\chi_{U}} \sum_{j=1}^{N} \lambda_{j} C_{\varphi_{j}}\right\| \\
= & \left\|M_{\chi_{U}}\left(K+\sum_{j=1}^{N} \lambda_{j} C_{\varphi_{j}}\right)+M_{\chi_{U}} K\right\| \\
\geq & \left\|M_{\chi_{U}}\left(K+\sum_{j=1}^{N} \lambda_{j} C_{\varphi_{j}}\right)\right\| \quad \text { by Lemma 3.4. }
\end{aligned}
$$

Therefore we get the assertion.
Let $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{N}$ be functions in $\mathcal{S}(\mathbb{D})$ with $\left\|\varphi_{j}\right\|_{\infty}=1$ satisfying $\varphi_{i} \neq \varphi_{j}$ for $i \neq j$. For $0<\delta<1$, write

$$
W_{\delta, j}=\left\{e^{i \theta} \in \partial \mathbb{D}:\left|\varphi_{j}^{*}\left(e^{i \theta}\right)\right|>\delta\right\} .
$$

We define the family Λ by

$$
\Lambda=\left\{p=\left(p_{1}, p_{2}, \ldots, p_{N}\right): p_{j}=0 \text { or } 1,1 \leq j \leq N\right\} .
$$

We use the following notations;

$$
\begin{equation*}
W_{\delta, j}^{0}=W_{\delta, j} \quad \text { and } \quad W_{\delta, j}^{1}=W_{\delta, j}^{c}=\partial D \backslash W_{\delta, j} \tag{3.5}
\end{equation*}
$$

For each $p=\left(p_{1}, p_{2}, \ldots, p_{N}\right) \in \Lambda$, write

$$
\begin{equation*}
W_{\delta, p}=\bigcap_{j=1}^{N} W_{\delta, j}^{p_{j}} \quad \text { and } \quad \tilde{p}=\left\{j: p_{j}=0,1 \leq j \leq N\right\} \tag{3.6}
\end{equation*}
$$

Note that $W_{\delta, p}$ may be an empty set for some $p \in \Lambda$, and $W_{\delta, p} \cap W_{\delta, q}=\emptyset$ holds for $p, q \in \Lambda$ with $p \neq q$. We have

$$
1=\prod_{j=1}^{N}\left(\chi_{W_{\delta, j}}+\chi_{W_{\delta, j}^{c}}\right)=\sum_{p \in \Lambda} \chi_{W_{\delta, p}} \quad \text { on } \partial \mathbb{D} .
$$

Hence $I=\sum_{p \in \Lambda} M_{\chi_{W_{\delta, p}}}$ on h^{∞}.

Lemma 3.6. Let $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{N}$ be functions in $\mathcal{S}(\mathbb{D})$ with $\left\|\varphi_{j}\right\|_{\infty}=1$ satisfying $\varphi_{i} \neq \varphi_{j}$ for $i \neq j$ and $\lambda_{j} \in \mathbb{C}$ with $\lambda_{j} \neq 0$ for every $1 \leq j \leq N$. For a measurable subset U of $\partial D, 0<\delta<1$ and a nonempty subset $L \subset\{1,2, \ldots, N\}$, we have

$$
\left\|M_{\chi_{U}} \sum_{j \in L} \lambda_{j} C_{\varphi_{j}}\right\|_{e}=\max _{p \in \Lambda}\left\|M_{\chi_{\left(U \cap W_{\delta, p}\right)}} \sum_{j \in L \cap \tilde{p}} \lambda_{j} C_{\varphi_{j}}\right\|_{e} .
$$

Proof. Let $p \in \Lambda$. If $j \notin \tilde{p}$, then by (3.5) and (3.6) $\left|\chi_{W_{\delta, p}} \varphi_{j}^{*}\right| \leq \delta$ on $\partial \mathbb{D}$. Hence by Lemma 3.3, $M_{\chi W_{\delta, p}} C_{\varphi_{j}} \in \mathcal{K}$. Let $K_{p} \in \mathcal{K}$ for every $p \in \Lambda$. We have

$$
\begin{aligned}
& \left\|M_{\chi_{U}} \sum_{j \in L} \lambda_{j} C_{\varphi_{j}}\right\|_{e} \\
= & \left\|M_{\chi_{U}}\left(\sum_{p \in \Lambda} M_{\chi_{W_{\delta, p}}}\right) \sum_{j \in L} \lambda_{j} C_{\varphi_{j}}\right\|_{e} \\
= & \left\|M_{\chi_{U}} \sum_{p \in \Lambda}\left(M_{\chi_{W_{\delta, p}}} \sum_{j \in L \cap \tilde{p}} \lambda_{j} C_{\varphi_{j}}\right)\right\|_{e} \\
\leq & \left\|\sum_{p \in \Lambda} M_{\chi_{\left(U \cap W_{\delta, p}\right)}}\left(K_{p}+\sum_{j \in L \cap \tilde{p}} \lambda_{j} C_{\varphi_{j}}\right)\right\| \\
= & \max _{p \in \Lambda}\left\|M_{\chi_{\left(U \cap W_{\delta, p)}\right.}}\left(K_{p}+\sum_{j \in L \cap \tilde{p}} \lambda_{j} C_{\varphi_{j}}\right)\right\| \quad \text { by Lemma 3.4. }
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \left\|M_{\chi_{U}} \sum_{j \in L} \lambda_{j} C_{\varphi_{j}}\right\|_{e} \\
\leq & \max _{p \in \Lambda} \inf _{K_{p} \in \mathcal{K}}\left\|M_{\chi_{\left(U \cap W_{\delta, p}\right)}}\left(K_{p}+\sum_{j \in L \cap \tilde{p}} \lambda_{j} C_{\varphi_{j}}\right)\right\| \\
= & \max _{p \in \Lambda}\left\|M_{\chi_{\left(U \cap W_{\delta, p}\right)}} \sum_{j \in L \cap \tilde{p}} \lambda_{j} C_{\varphi_{j}}\right\|_{e} \quad \text { by Lemma 3.5. }
\end{aligned}
$$

There also exists a sequence $\left\{K_{n}\right\}_{n}$ in \mathcal{K} satisfying

$$
\left\|M_{\chi_{U}} \sum_{j \in L} \lambda_{j} C_{\varphi_{j}}\right\|_{e}=\lim _{n \rightarrow \infty}\left\|K_{n}+M_{\chi_{U}} \sum_{j \in L} \lambda_{j} C_{\varphi_{j}}\right\| .
$$

We have

$$
\begin{aligned}
& \left\|K_{n}+M_{\chi_{U}} \sum_{j \in L} \lambda_{j} C_{\varphi_{j}}\right\| \\
= & \left\|\left(\sum_{p \in \Lambda} M_{\chi_{W_{\delta, p}}}\right)\left(K_{n}+M_{\chi_{U}} \sum_{j \in L} \lambda_{j} C_{\varphi_{j}}\right)\right\| \\
= & \max _{p \in \Lambda}\left\|M_{\chi_{W_{\delta, p}}}\left(K_{n}+M_{\chi_{U}} \sum_{j \in L} \lambda_{j} C_{\varphi_{j}}\right)\right\| \quad \text { by Lemma } 3.4
\end{aligned}
$$

$$
\begin{aligned}
& =\max _{p \in \Lambda}\left\|M_{\chi_{W_{\delta, p}}}\left(K_{n}+M_{\chi_{U}} \sum_{j \in L \cap \tilde{p}} \lambda_{j} C_{\varphi_{j}}+M_{\chi U} \sum_{j \in L \backslash \tilde{p}} \lambda_{j} C_{\varphi_{j}}\right)\right\| \\
& \geq \max _{p \in \Lambda}\left\|M_{\chi_{\left(U \cap W_{\delta, p}\right)}} \sum_{j \in L \cap \tilde{p}} \lambda_{j} C_{\varphi_{j}}\right\|_{e}
\end{aligned}
$$

Therefore we get

$$
\left\|M_{\chi_{U}} \sum_{j \in L} \lambda_{j} C_{\varphi_{j}}\right\|_{e} \geq \max _{p \in \Lambda}\left\|M_{\chi_{\left(U \cap W_{\delta, p}\right)}} \sum_{j \in L \cap \tilde{p}} \lambda_{j} C_{\varphi_{j}}\right\|_{e} .
$$

Lemma 3.7. Let $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{N}$ be functions in $\mathcal{S}(\mathbb{D})$ with $\left\|\varphi_{j}\right\|_{\infty}=1$ satisfying $\varphi_{i} \neq \varphi_{j}$ for $i \neq j$ and $\lambda_{j} \in \mathbb{C}$ with $\lambda_{j} \neq 0$ for every $1 \leq j \leq N$. Let U be a measurable subset of $\partial \mathbb{D}$ with $\sigma(U)>0$ and a nonempty subset $L \subset\{1,2, \ldots, N\}$. Let $0<\delta_{i}<1$ for $i=1,2$. Suppose that $\left|\varphi_{j}^{*}\right|>\delta_{1}$ a.e. on U for every $j \in L$ and $\left|\varphi_{j}^{*}\right| \leq \delta_{2}$ a.e. on U for every $j \notin L$. Then there is a sequence $\left\{z_{n}\right\}_{n}$ in \mathbb{D} satisfying the following conditions:
(i) $\left\|M_{\chi_{U}} \sum_{j \in L} \lambda_{j} C_{\varphi_{j}}\right\| \leq \liminf _{n \rightarrow \infty}\left\|\sum_{j \in L} \lambda_{j} P_{\varphi_{j}\left(z_{n}\right)}\right\|_{1}$.
(ii) $\left|\left(\prod_{j \in L} \varphi_{j}\right)\left(z_{n}\right)\right|>\delta_{1}^{N}$ for every $n \geq 1$.
(iii) $\left|\varphi_{j}\left(z_{n}\right)\right|<\left(1+\delta_{2}\right) / 2$ for every $n \geq 1$ and $j \notin L$.

Proof. Note that

$$
\begin{equation*}
\left|\prod_{j \in L} \varphi_{j}^{*}\right|>\delta_{1}^{N} \quad \text { a.e. on } U \tag{3.7}
\end{equation*}
$$

and

$$
A:=\left\|M_{\chi_{U}} \sum_{j \in L} \lambda_{j} C_{\varphi_{j}}\right\|>0 .
$$

For each positive integer n, there exists $f_{n} \in B\left(h^{\infty}\right)$ satisfying

$$
A-\frac{1}{n}<\left\|\left(M_{\chi_{U}} \sum_{j \in L} \lambda_{j} C_{\varphi_{j}}\right) f_{n}\right\|_{\infty} \leq A,
$$

that is,

$$
A-\frac{1}{n}<\left\|\chi_{U} \sum_{j \in L} \lambda_{j}\left(f_{n} \circ \varphi_{j}\right)^{*}\right\|_{\infty} \leq A
$$

By (3.7), there is $z_{n} \in \mathbb{D}$ such that

$$
\left|\left(\prod_{j \in L} \varphi_{j}\right)\left(z_{n}\right)\right|>\delta_{1}^{N}
$$

and

$$
\begin{equation*}
A-\frac{1}{n}<\left|\int_{\partial \mathbb{D}} \chi_{U}\left(\sum_{j \in L} \lambda_{j}\left(f_{n} \circ \varphi_{j}\right)^{*}\right) P_{z_{n}} d \sigma\right|<A \tag{3.8}
\end{equation*}
$$

We have

$$
\begin{aligned}
A-\frac{1}{n} & <\left|\int_{U} \sum_{j \in L} \lambda_{j}\left(f_{n} \circ \varphi_{j}\right)^{*} P_{z_{n}} d \sigma\right| \\
& =\left|\int_{\partial \mathbb{D}} \sum_{j \in L} \lambda_{j}\left(f_{n} \circ \varphi_{j}\right)^{*} P_{z_{n}} d \sigma-\int_{U^{c}} \sum_{j \in L} \lambda_{j}\left(f_{n} \circ \varphi_{j}\right)^{*} P_{z_{n}} d \sigma\right| \\
& \leq\left|\sum_{j \in L} \lambda_{j} f_{n}\left(\varphi_{j}\left(z_{n}\right)\right)\right|+\left|\int_{U^{c}} \sum_{j \in L} \lambda_{j}\left(f_{n} \circ \varphi_{j}\right)^{*} P_{z_{n}} d \sigma\right| \\
& :=I_{1}(n)+I_{2}(n) \quad \text { say. }
\end{aligned}
$$

We have

$$
I_{1}(n) \leq\left\|\sum_{j \in L} \lambda_{j} P_{\varphi_{j}\left(z_{n}\right)}\right\|_{1}
$$

Also by (3.8),

$$
A-\frac{1}{n}<\left|\int_{U} \sum_{j \in L} \lambda_{j}\left(f_{n} \circ \varphi_{j}\right)^{*} P_{z_{n}} d \sigma\right| \leq A \int_{U} P_{z_{n}} d \sigma
$$

so we get $A \int_{U^{c}} P_{z_{n}} d \sigma<1 / n$. Since $A \neq 0, \int_{U^{c}} P_{z_{n}} d \sigma \rightarrow 0$. Hence we have $I_{2}(n) \rightarrow 0$ as $n \rightarrow \infty$. Therefore

$$
A \leq \liminf _{n \rightarrow \infty}\left\|\sum_{j \in L} \lambda_{j} P_{\varphi_{j}\left(z_{n}\right)}\right\|_{1} .
$$

Thus we get (i).
Let $j \notin L$. By the assumption, $\left|\varphi_{j}^{*}\right| \leq \delta_{2}$ a.e. on U. Then

$$
\left|\varphi_{j}\left(z_{n}\right)\right| \leq\left|\int_{U} \varphi_{j}^{*} P_{z_{n}} d \sigma\right|+\left|\int_{U^{c}} \varphi_{j}^{*} P_{z_{n}} d \sigma\right| \leq \delta_{2}+\left|\int_{U^{c}} P_{z_{n}} d \sigma\right|
$$

Thus we get

$$
\limsup _{n \rightarrow \infty}\left|\varphi_{j}\left(z_{n}\right)\right| \leq \delta_{2}
$$

Considering a subsequence of $\left\{z_{n}\right\}_{n}$, we have (iii).

Theorem 3.8. Let $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{N}$ be functions in $\mathcal{S}(\mathbb{D})$ with $\left\|\varphi_{j}\right\|_{\infty}=1$ satisfying $\varphi_{i} \neq \varphi_{j}$ for $i \neq j$ and $\lambda_{j} \in \mathbb{C}$ with $\lambda_{j} \neq 0$ for every $1 \leq j \leq N$. Then there exists $\left\{z_{n}\right\}_{n} \in \mathcal{Z}\left(\left\{\varphi_{j}\right\}\right)$ satisfying

$$
\left\|\sum_{j=1}^{N} \lambda_{j} C_{\varphi_{j}}\right\|_{e} \leq \Gamma\left(\left\{z_{n}\right\}\right) .
$$

Proof. We may assume that

$$
\begin{equation*}
\left\|\sum_{j=1}^{N} \lambda_{j} C_{\varphi_{j}}\right\|_{e}>0 . \tag{3.9}
\end{equation*}
$$

Take a sequence $\left\{\delta_{n}\right\}_{n}$ satisfying $0<\delta_{n}<\delta_{n+1}<1$ and $\delta_{n} \rightarrow 1$. By Lemma 3.6,

$$
\left\|\sum_{j=1}^{N} \lambda_{j} C_{\varphi_{j}}\right\|_{e}=\max _{p \in \Lambda}\left\|M_{\chi_{W_{\delta_{1}}, p}} \sum_{j \in \tilde{p}} \lambda_{j} C_{\varphi_{j}}\right\|_{e}
$$

Hence there exists $p^{1} \in \Lambda$ satisfying

$$
\left\|\sum_{j=1}^{N} \lambda_{j} C_{\varphi_{j}}\right\|_{e}=\left\|M_{\chi_{W_{\delta_{1}, p^{1}}}} \sum_{j \in \widetilde{p^{1}}} \lambda_{j} C_{\varphi_{j}}\right\|_{e}
$$

By Lemma 3.6 again,

$$
\left\|\sum_{j=1}^{N} \lambda_{j} C_{\varphi_{j}}\right\|_{e}=\max _{p \in \Lambda}\left\|M_{\chi_{\left(W_{\delta_{1}, p^{1}} \cap W_{\delta_{2}}, p^{)}\right.}} \sum_{j \in \widetilde{p^{1}} \cap \widetilde{p}} \lambda_{j} C_{\varphi_{j}}\right\|_{e} .
$$

Hence there exists $p^{2} \in \Lambda$ satisfying

$$
\left\|\sum_{j=1}^{N} \lambda_{j} C_{\varphi_{j}}\right\|_{e}=\left\|M_{\chi\left(W_{\delta_{1}, p^{1}} \cap W_{\left.\delta_{2}, p^{2}\right)}\right.} \sum_{j \in \widetilde{p^{1}} \cap \widetilde{p^{2}}} \lambda_{j} C_{\varphi_{j}}\right\|_{e} .
$$

Repeating the same argument, there exists a sequence $\left\{p^{\ell}\right\}_{\ell}$ in Λ satisfying

$$
\left\|\sum_{j=1}^{N} \lambda_{j} C_{\varphi_{j}}\right\|_{e}=\left\|M_{\chi_{\left(\cap_{\ell=1}^{k} W_{\left.\delta_{\ell}, p^{\ell}\right)}\right)}} \sum_{j \in \bigcap_{\ell=1}^{k} \tilde{p^{\ell}}} \lambda_{j} C_{\varphi_{j}}\right\|_{e} .
$$

Since $\widetilde{p^{\ell}} \subset\{1,2, \ldots, N\}$, there exists a positive integer k_{0} satisfying

$$
\begin{equation*}
L_{0}:=\bigcap_{\ell=1}^{k_{0}} \widetilde{p^{\ell}}=\bigcap_{\ell=1}^{k} \widetilde{p^{\ell}} \quad \text { for every } k \geq k_{0} \tag{3.10}
\end{equation*}
$$

By (3.9), we have $L_{0} \neq \emptyset$,

$$
\sigma\left(\bigcap_{\ell=1}^{k} W_{\delta_{\ell}, p^{\ell}}\right)>0
$$

and

$$
\begin{equation*}
\left\|\sum_{j=1}^{N} \lambda_{j} C_{\varphi_{j}}\right\|_{e}=\left\|M_{\chi_{\left(\cap_{\ell=1}^{k} W_{\left.\delta_{\ell}, p^{\ell}\right)}\right)}} \sum_{j \in L_{0}} \lambda_{j} C_{\varphi_{j}}\right\|_{e} \tag{3.11}
\end{equation*}
$$

for every $k \geq k_{0}$.
Let $k \geq k_{0}$ and $j \in L_{0}$. By (3.10), $j \in \widetilde{p^{k}}$, so by (3.5), $p_{j}^{k}=0$ and by (3.6),

$$
\bigcap_{\ell=1}^{k} W_{\delta_{\ell, p^{\ell}}} \subset W_{\delta_{k}, p^{k}} \subset W_{\delta_{k}, j}^{p_{j}^{k}}=W_{\delta_{k}, j}
$$

Since $W_{\delta_{k}, j}=\left\{e^{i \theta} \in \partial \mathbb{D}:\left|\varphi_{j}^{*}\left(e^{i \theta}\right)\right|>\delta_{k}\right\}$, we get

$$
\left|\varphi_{j}^{*}\right|>\delta_{k} \text { a.e. on } \bigcap_{\ell=1}^{k} W_{\delta_{\ell}, p^{\ell}} \text { for } j \in L_{0}
$$

Let $j \notin L_{0}$. By (3.10), there is an integer i with $1 \leq i \leq k_{0}$ such that $j \notin \widetilde{p^{i}}$, so $p_{j}^{i}=1$. Hence by (3.5) and (3.6),

$$
\bigcap_{\ell=1}^{k} W_{\delta_{\ell}, p^{\ell}} \subset W_{\delta_{i}, p^{i}} \subset W_{\delta_{i}, j}^{p_{j}^{i}}=W_{\delta_{i}, j}^{c} .
$$

Since $\left|\varphi_{j}^{*}\right| \leq \delta_{i}$ a.e. on $W_{\delta_{i}, j}^{c}$ and $\delta_{i} \leq \delta_{k_{0}}$, we have

$$
\left|\varphi_{j}^{*}\right| \leq \delta_{k_{0}} \text { a.e. on } \bigcap_{\ell=1}^{k} W_{\delta_{\ell}, p^{\ell}} \text { for } j \notin L_{0} .
$$

Applying Lemma 3.7, for each $k \geq k_{0}$ there is a sequence $\left\{z_{k, n}\right\}_{n}$ in \mathbb{D} satisfying

$$
\begin{gather*}
\left\|M_{\chi_{\left(\cap_{\ell=1}^{k} W_{\left.\delta_{\ell}, p^{\ell}\right)}\right.}} \sum_{j \in L_{0}} \lambda_{j} C_{\varphi_{j}}\right\| \leq \liminf _{n \rightarrow \infty}\left\|\sum_{j \in L_{0}} \lambda_{j} P_{\varphi_{j}\left(z_{k, n}\right)}\right\|_{1}, \tag{3.12}\\
\left|\left(\prod_{j \in L_{0}} \varphi_{j}\right)\left(z_{k, n}\right)\right|>\delta_{k}^{N} \quad \text { for every } n \geq 1 \tag{3.13}
\end{gather*}
$$

and

$$
\begin{equation*}
\left|\varphi_{j}\left(z_{k, n}\right)\right|<\left(1+\delta_{k_{0}}\right) / 2 \quad \text { for every } n \geq 1 \text { and } j \notin L_{0} . \tag{3.14}
\end{equation*}
$$

We have

$$
\begin{aligned}
\left\|\sum_{j=1}^{N} \lambda_{j} C_{\varphi_{j}}\right\|_{e} & =\left\|M_{\chi_{\left(\cap_{\ell=1}^{k} W_{\delta_{\ell, p}, \ell^{\ell}}\right.}} \sum_{j \in L_{0}} \lambda_{j} C_{\varphi_{j}}\right\|_{e} \quad \text { by }(3.11) \\
& \leq\left\|M_{\chi_{\left(\cap_{\ell=1}^{k} W_{\left.\delta_{\ell}, p^{\ell}\right)}\right.}} \sum_{j \in L_{0}} \lambda_{j} C_{\varphi_{j}}\right\| \\
& \leq \liminf _{n \rightarrow \infty}\left\|\sum_{j \in L_{0}} \lambda_{j} P_{\varphi_{j}\left(z_{k, n}\right)}\right\|_{1} \quad \text { by }(3.12) .
\end{aligned}
$$

For each $k \geq k_{0}$, we may take a positive integer n_{k} satisfying

$$
\liminf _{n \rightarrow \infty}\left\|\sum_{j \in L_{0}} \lambda_{j} P_{\varphi_{j}\left(z_{k, n}\right)}\right\|_{1}-\frac{1}{k} \leq\left\|\sum_{j \in L_{0}} \lambda_{j} P_{\varphi_{j}\left(z_{k, n_{k}}\right)}\right\|_{1} .
$$

Then

$$
\begin{equation*}
\left\|\sum_{j=1}^{N} \lambda_{j} C_{\varphi_{j}}\right\|_{e} \leq \liminf _{k \rightarrow \infty}\left\|\sum_{j \in L_{0}} \lambda_{j} P_{\varphi_{j}\left(z_{k, n_{k}}\right)}\right\|_{1} . \tag{3.15}
\end{equation*}
$$

By (3.13),

$$
\left|\left(\prod_{j \in L_{0}} \varphi_{j}\right)\left(z_{k, n_{k}}\right)\right|>\delta_{k}^{N} \quad \text { for every } k \geq k_{0}
$$

Since $\delta_{k} \rightarrow 1$,

$$
\lim _{k \rightarrow \infty}\left|\left(\prod_{j \in L_{0}} \varphi_{j}\right)\left(z_{k, n_{k}}\right)\right|=1
$$

By (3.14),

$$
\limsup _{k \rightarrow \infty}\left|\varphi_{j}\left(z_{k, n_{k}}\right)\right| \leq\left(1+\delta_{k_{0}}\right) / 2 \quad \text { for every } j \notin L_{0}
$$

Considering a subsequence of $\left\{z_{k, n_{k}}\right\}_{k}$, we may assume that $\left\{z_{k, n_{k}}\right\}_{k} \in \mathcal{Z}\left(\left\{\varphi_{j}\right\}\right)$ and $I\left(\left\{z_{k, n_{k}}\right\}\right)=L_{0}$. Hence

$$
\begin{aligned}
\left\|\sum_{j=1}^{N} \lambda_{j} C_{\varphi_{j}}\right\|_{e} & \leq \liminf _{m \rightarrow \infty}\left\|\sum_{j \in I\left(\left\{z_{k, n_{k}}\right\}\right)} \lambda_{j} P_{\varphi_{j}\left(z_{m, n_{m}}\right)}\right\|_{1} \quad \text { by }(3.15) \\
& =\Gamma\left(\left\{z_{n}\right\}\right) \quad \text { by }(3.1) .
\end{aligned}
$$

This completes the proof.

Combining Theorems 3.2 with 3.8 , we have the main theorem.
Theorem 3.9. Let $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{N}$ be functions in $\mathcal{S}(\mathbb{D})$ with $\left\|\varphi_{j}\right\|_{\infty}=1$ satisfying $\varphi_{i} \neq \varphi_{j}$ for $i \neq j$ and $\lambda_{j} \in \mathbb{C}$ with $\lambda_{j} \neq 0$ for every $1 \leq j \leq N$. Then

$$
\left\|\sum_{j=1}^{N} \lambda_{j} C_{\varphi_{j}}\right\|_{e}=\max _{\left\{z_{n}\right\}_{n} \in \mathcal{Z}\left(\left\{\varphi_{j}\right\}\right)} \Gamma\left(\left\{z_{n}\right\}\right) .
$$

Corollary 3.10. Let $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{N}$ be functions in $\mathcal{S}(\mathbb{D})$ with $\left\|\varphi_{j}\right\|_{\infty}=1$ satisfying $\varphi_{i} \neq \varphi_{j}$ for $i \neq j$ and $\lambda_{j} \in \mathbb{C}$ with $\lambda_{j} \neq 0$ for every $1 \leq j \leq N$. Then $\sum_{j=1}^{N} \lambda_{j} C_{\varphi_{j}}$ is a compact operator on h^{∞} if and only if $\Gamma\left(\left\{z_{n}\right\}\right)=0$ for every $\left\{z_{n}\right\}_{n} \in \mathcal{Z}\left(\left\{\varphi_{j}\right\}\right)$.

In the last part of this section, we give a characterization for $\sum_{j=1}^{N} \lambda_{j} C_{\varphi_{j}}$ to satisfy

$$
\left\|\sum_{j=1}^{N} \lambda_{j} C_{\varphi_{j}}\right\|_{e}=\sum_{j=1}^{N}\left|\lambda_{j}\right| .
$$

Theorem 3.11. Let $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{N}$ be functions in $\mathcal{S}(\mathbb{D})$ with $\left\|\varphi_{j}\right\|_{\infty}=1$ satisfying $\varphi_{i} \neq \varphi_{j}$ for $i \neq j$ and $\lambda_{j} \in \mathbb{C}$ with $\lambda_{j} \neq 0$ for every $1 \leq j \leq N$. Then

$$
\left\|\sum_{j=1}^{N} \lambda_{j} C_{\varphi_{j}}\right\|_{e}=\sum_{j=1}^{N}\left|\lambda_{j}\right|
$$

if and only if there is $\left\{z_{n}\right\}_{n} \in \mathcal{Z}\left(\left\{\varphi_{j}\right\}\right)$ satisfying the following conditions:
(i) $\left|\left(\prod_{j=1}^{N} \varphi_{j}\right)\left(z_{n}\right)\right| \rightarrow 1$ as $n \rightarrow \infty$.
(ii) $\rho\left(\varphi_{i}\left(z_{n}\right), \varphi_{j}\left(z_{n}\right)\right) \rightarrow 1$ as $n \rightarrow \infty$ for every $1 \leq i, j \leq N$ with $\lambda_{i} /\left|\lambda_{i}\right| \neq$ $\lambda_{j} /\left|\lambda_{j}\right|$.

To prove the above theorem, we need a lemma.
Lemma 3.12. Let $\left\{F_{j, n}\right\}_{n}, 1 \leq j \leq m$, be sequences of positive functions in $L^{1}(\partial \mathbb{D})$. Suppose that $\left\|F_{j, n}\right\|_{1} \rightarrow c_{j} \neq \infty$ for every $1 \leq j \leq N$ and $\| F_{i, n}-$ $F_{j, n} \|_{1} \rightarrow c_{i}+c_{j}$ for every $1 \leq i, j \leq N$ with $i \neq j$ as $n \rightarrow \infty$. Then for $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m} \in \mathbb{C}$, we have

$$
\left\|\sum_{j=1}^{m} \lambda_{j} F_{j, n}\right\|_{1} \rightarrow \sum_{j=1}^{m}\left|\lambda_{j}\right| c_{j} \quad \text { as } n \rightarrow \infty .
$$

Proof. Let

$$
E_{i, j, n}=\left\{e^{i \theta} \in \partial \mathbb{D}:\left(F_{i, n}-F_{j, n}\right)\left(e^{i \theta}\right)>0\right\}, \quad i \neq j .
$$

Then $E_{i, j, n}^{c}=E_{j, i, n}$. Since

$$
\left\|F_{i, n}-F_{j, n}\right\|_{1}=\int_{E_{i, j, n}} F_{i, n}-F_{j, n} d \sigma+\int_{E_{i, j, n}^{c}} F_{j, n}-F_{i, n} d \sigma
$$

and $\left\|F_{i, n}-F_{j, n}\right\|_{1} \rightarrow c_{i}+c_{j}$, we have

$$
\int_{E_{i, j, n}} F_{i, n} d \sigma \rightarrow c_{i} \quad \text { and } \quad \int_{E_{i, j, n}^{c}} F_{j, n} d \sigma \rightarrow c_{j}
$$

Hence

$$
\int_{E_{j, i, n}} F_{j, n} d \sigma \rightarrow c_{j} \quad \text { for } i \neq j
$$

For each $1 \leq j \leq N$, we write

$$
\tilde{E}_{j, n}=\bigcap_{i: i \neq j} E_{j, i, n}
$$

Then

$$
\begin{equation*}
\int_{\tilde{E}_{j, n}} F_{j, n} d \sigma \rightarrow c_{j} \quad \text { and } \quad \int_{\tilde{E}_{j, n}^{c}} F_{j, n} d \sigma \rightarrow 0 . \tag{3.16}
\end{equation*}
$$

For $j_{1} \neq j_{2}$, we have

$$
\begin{aligned}
\tilde{E}_{j_{1}, n} \cap \tilde{E}_{j_{2}, n} & =\left(\bigcap_{t: t \neq j_{1}} E_{j_{1}, t, n}\right) \cap\left(\bigcap_{s: s \neq j_{2}} E_{j_{2}, s, n}\right) \\
& \subset E_{j_{1}, j_{2}, n} \cap E_{j_{2}, j_{1}, n} \\
& =E_{j_{1}, j_{2}, n} \cap E_{j_{1}, j_{2}, n}^{c}=\emptyset .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\left\|\sum_{j=1}^{m} \lambda_{j} F_{j, n}\right\|_{1} & \geq \sum_{j=1}^{m} \int_{\tilde{E}_{j, n}}\left|\sum_{i=1}^{m} \lambda_{i} F_{i, n}\right| d \sigma \\
& \geq \sum_{j=1}^{m}\left(\int_{\tilde{E}_{j, n}}\left|\lambda_{j}\right| F_{j, n} d \sigma-\sum_{i \neq j}\left|\lambda_{i}\right| \int_{\tilde{E}_{j, n}} F_{i, n} d \sigma\right) \\
& \rightarrow \sum_{j=1}^{m}\left|\lambda_{j}\right| c_{j} \quad \text { as } n \rightarrow \infty \text { by }(3.16) .
\end{aligned}
$$

This completes the proof.
Proof of Theorem 3.11. Suppose that

$$
\left\|\sum_{j=1}^{N} \lambda_{j} C_{\varphi_{j}}\right\|_{e}=\sum_{j=1}^{N}\left|\lambda_{j}\right| .
$$

By Theorem 3.9, there exists a sequence $\left\{z_{n}\right\}_{n} \in \mathcal{Z}\left(\left\{\varphi_{j}\right\}\right)$ satisfying

$$
\Gamma\left(\left\{z_{n}\right\}\right)=\sum_{j=1}^{N}\left|\lambda_{j}\right| .
$$

By (3.1),

$$
\liminf _{k \rightarrow \infty}\left\|\sum_{j \in I\left(\left\{z_{n}\right\}\right)} \lambda_{j} P_{\varphi_{j}\left(z_{k}\right)}\right\|_{1}=\sum_{j=1}^{N}\left|\lambda_{j}\right| .
$$

This shows that $I\left(\left\{z_{n}\right\}\right)=\{1,2, \ldots, N\}$, so (i) holds, and we have

$$
\lim _{k \rightarrow \infty}\left\|\sum_{j=1}^{N} \lambda_{j} P_{\varphi_{j}\left(z_{k}\right)}\right\|_{1}=\sum_{j=1}^{N}\left|\lambda_{j}\right| .
$$

By the proof of Theorem 2.5, we get condition (ii).
Suppose that there is $\left\{z_{n}\right\}_{n} \in \mathcal{Z}\left(\left\{\varphi_{j}\right\}\right)$ satisfying (i) and (ii). Then $I\left(\left\{z_{n}\right\}\right)$ $=\{1,2, \ldots, N\}$. For each $1 \leq j \leq N$, let

$$
J_{j}=\left\{i: \lambda_{i} /\left|\lambda_{i}\right|=\lambda_{j} /\left|\lambda_{j}\right| .\right.
$$

Then there exist $j_{1}, j_{2}, \ldots, j_{\ell}$ such that $J_{j_{t}} \cap J_{j_{s}}=\emptyset$ for $t \neq s$ and $\bigcup_{t=1}^{\ell} J_{j_{t}}=$ $\{1,2, \ldots, N\}$. We have

$$
\begin{aligned}
\left\|\sum_{j=1}^{N} \lambda_{j} P_{\varphi_{j}\left(z_{n}\right)}\right\|_{1} & =\left\|\sum_{t=1}^{\ell} \sum_{i \in J_{j_{t}}} \lambda_{i} P_{\varphi_{i}\left(z_{n}\right)}\right\|_{1} \\
& =\left\|\sum_{t=1}^{\ell} \frac{\lambda_{j_{t}}}{\left|\lambda_{j_{t}}\right|} \sum_{i \in J_{j_{t}}}\left|\lambda_{i}\right| P_{\varphi_{i}\left(z_{n}\right)}\right\|_{1} .
\end{aligned}
$$

Let $1 \leq t, s \leq \ell$ with $t \neq s$. By condition (ii), for every $i_{1} \in J_{j_{t}}$ and $i_{2} \in J_{j_{s}}$ we have $\rho\left(\varphi_{i_{1}}\left(z_{n}\right), \varphi_{i_{2}}\left(z_{n}\right)\right) \rightarrow 1$. By Lemma 2.4,

$$
\left\|P_{\varphi_{i_{1}}\left(z_{n}\right)}-P_{\varphi_{i_{2}}\left(z_{n}\right)}\right\|_{1} \rightarrow 2 \quad \text { as } n \rightarrow \infty .
$$

We write

$$
F_{t, n}=\sum_{i \in J_{j_{t}}}\left|\lambda_{i}\right| P_{\varphi_{i}\left(z_{n}\right)} .
$$

Then $\left\|F_{t, n}\right\|_{1}=\sum_{i \in J_{j_{t}}}\left|\lambda_{i}\right|$, and

$$
\left\|F_{t, n}-F_{s, n}\right\|_{1} \rightarrow\left(\sum_{i \in J_{j_{t}}}\left|\lambda_{i}\right|\right)+\left(\sum_{i \in J_{j_{s}}}\left|\lambda_{i}\right|\right) \quad \text { as } n \rightarrow \infty .
$$

Therefore by Lemma 3.12,

$$
\begin{aligned}
\left\|\sum_{j=1}^{N} \lambda_{j} P_{\varphi_{j}\left(z_{n}\right)}\right\|_{1} & =\left\|\sum_{t=1}^{\ell} \frac{\lambda_{j_{t}}}{\left|\lambda_{j_{t}}\right|} \sum_{i \in J_{j_{t}}}\left|\lambda_{i}\right| P_{\varphi_{i}\left(z_{n}\right)}\right\|_{1} \\
& \rightarrow \sum_{t=1}^{\ell} \sum_{i \in J_{j_{t}}}\left|\lambda_{i}\right| \quad \text { as } n \rightarrow \infty \\
& =\sum_{j=1}^{N}\left|\lambda_{j}\right| .
\end{aligned}
$$

Thus we get $\Gamma\left(\left\{z_{n}\right\}\right)=\sum_{j=1}^{N}\left|\lambda_{j}\right|$. By Theorem 3.9,

$$
\Gamma\left(\left\{z_{n}\right\}\right) \leq\left\|\sum_{j=1}^{N} \lambda_{j} C_{\varphi_{j}}\right\|_{e} \leq \sum_{j=1}^{N}\left|\lambda_{j}\right|,
$$

so we get

$$
\left\|\sum_{j=1}^{N} \lambda_{j} C_{\varphi_{j}}\right\|_{e}=\sum_{j=1}^{N}\left|\lambda_{j}\right|,
$$

4. Examples

Let $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{N}$ be functions in $\mathcal{S}(\mathbb{D})$ with $\left\|\varphi_{j}\right\|_{\infty}=1$ satisfying $\varphi_{i} \neq \varphi_{j}$ for $i \neq j$ and $\lambda_{j} \in \mathbb{C}$ with $\lambda_{j} \neq 0$ for every $1 \leq j \leq N$. Then we have

$$
\begin{equation*}
\left\|\sum_{j=1}^{N} \lambda_{j} C_{\varphi_{j}}\right\|_{e} \leq\left\|\sum_{j=1}^{N} \lambda_{j} C_{\varphi_{j}}\right\| \leq \sum_{j=1}^{N}\left|\lambda_{j}\right| . \tag{4.1}
\end{equation*}
$$

In this section, we shall give examples $\sum_{j=1}^{N} \lambda_{j} C_{\varphi_{j}}$ satisfying the following conditions, respectively:

$$
\begin{align*}
& \left\|\sum_{j=1}^{N} \lambda_{j} C_{\varphi_{j}}\right\|_{e}<\left\|\sum_{j=1}^{N} \lambda_{j} C_{\varphi_{j}}\right\|<\sum_{j=1}^{N}\left|\lambda_{j}\right|, \tag{4.2}\\
& \left\|\sum_{j=1}^{N} \lambda_{j} C_{\varphi_{j}}\right\|_{e}<\left\|\sum_{j=1}^{N} \lambda_{j} C_{\varphi_{j}}\right\|=\sum_{j=1}^{N}\left|\lambda_{j}\right|, \tag{4.3}\\
& \left\|\sum_{j=1}^{N} \lambda_{j} C_{\varphi_{j}}\right\|_{e}=\left\|\sum_{j=1}^{N} \lambda_{j} C_{\varphi_{j}}\right\|<\sum_{j=1}^{N}\left|\lambda_{j}\right|, \tag{4.4}\\
& \left\|\sum_{j=1}^{N} \lambda_{j} C_{\varphi_{j}}\right\|_{e}=\left\|\sum_{j=1}^{N} \lambda_{j} C_{\varphi_{j}}\right\|=\sum_{j=1}^{N}\left|\lambda_{j}\right| . \tag{4.5}
\end{align*}
$$

Example 4.1. Let $\varphi_{1}(z)=s z+1-s$ for $0<s<1$ and $\varphi_{2}(z)=\varphi_{1}(z)+t(z-1)^{b}$. For $b>2$ and t is real and $|t|$ is so small, we have $\varphi_{1} \in \mathcal{S}(\mathbb{D})$. By [12, Example 1], $C_{\varphi_{1}}-C_{\varphi_{2}}$ is compact on H^{∞}. By Theorem 2.7, $C_{\varphi_{1}}-C_{\varphi_{2}}$ is compact on h^{∞}. Hence $\left\|C_{\varphi_{1}}-C_{\varphi_{2}}\right\|_{e}=0$. By [12, Theorem 3],

$$
\lim _{z \rightarrow 1} \rho\left(\varphi_{1}(z), \varphi_{2}(z)\right)=0
$$

By Theorem 2.5, $\left\|C_{\varphi_{1}}-C_{\varphi_{2}}\right\|<2$. It is easy to see that $0<\left\|C_{\varphi_{1}}-C_{\varphi_{2}}\right\|$. Thus $C_{\varphi_{1}}-C_{\varphi_{2}}$ is an example satisfying (4.2).

Example 4.2. Let $\varphi_{1}(z)=(z+2) / 3$ and $\varphi_{2}(z)=(z-2) / 3$. Then $\left\|\varphi_{1}\right\|_{\infty}=$ $\left\|\varphi_{2}\right\|_{\infty}=1>\left\|\varphi_{1} \varphi_{2}\right\|_{\infty}$. By Theorem 2.5, it is easy to see that $\left\|C_{\varphi_{1}}-C_{\varphi_{2}}\right\|=2$. Let $\left\{z_{n}\right\}_{n} \in \mathcal{Z}\left(\left\{\varphi_{1}, \varphi_{2}\right\}\right)$. If $1 \in I\left(\left\{z_{n}\right\}\right)$, then $\varphi_{1}\left(z_{n}\right) \rightarrow 1$, so $z_{n} \rightarrow 1$. Hence $\varphi_{2}\left(z_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. Thus $I\left(\left\{z_{n}\right\}\right)=\{1\}$. Similarly if $2 \in I\left(\left\{z_{n}\right\}\right)$, then $I\left(\left\{z_{n}\right\}\right)=\{2\}$. Hence by (3.1), $\Gamma\left(\left\{z_{n}\right\}\right)=1$. Therefore

$$
\max _{\left\{z_{n}\right\}_{n} \in \mathcal{Z}\left(\left\{\varphi_{1}, \varphi_{2}\right\}\right)} \Gamma\left(\left\{z_{n}\right\}\right)=1 .
$$

By Theorem 3.9, $\left\|C_{\varphi_{1}}-C_{\varphi_{2}}\right\|_{e}=1$. So $C_{\varphi_{1}}-C_{\varphi_{2}}$ satisfies (4.3).

Example 4.3. This example is similar to the one given in [9]. Let $\varphi_{1}(z)=z$ and $\varphi_{2}(z)=z^{2}$. Let $\left\{z_{n}\right\}_{n}$ be a sequence of real numbers in \mathbb{D} with $z_{n} \rightarrow-1$. Then $\left\{z_{n}\right\}_{n} \in \mathcal{Z}\left(\left\{\varphi_{1}, \varphi_{2}\right\}\right)$ and $I\left(\left\{z_{n}\right\}\right)=\{1,2\}$. Since $\varphi_{1}\left(z_{n}\right) \rightarrow-1$ and $\varphi_{2}\left(z_{n}\right) \rightarrow 1$ as $n \rightarrow \infty$, we have

$$
\Gamma\left(\left\{z_{n}\right\}\right)=\liminf _{n \rightarrow \infty}\left\|P_{\varphi_{1}\left(z_{n}\right)}-P_{\varphi_{2}\left(z_{n}\right)}\right\|_{1}=2 .
$$

By Theorem 3.9, $\left\|C_{\varphi_{1}}-C_{\varphi_{2}}\right\|_{e}=2$. By (4.1), $C_{\varphi_{1}}-C_{\varphi_{2}}$ satisfies (4.5).
Example 4.4. Take $\varphi_{1} \in \mathcal{S}(\mathbb{D})$ satisfying $\left\|\varphi_{1}\right\|_{\infty}=1$ and

$$
\int_{\partial \mathbb{D}} \log \left(1-\left|\varphi_{1}^{*}\right|\right) d \sigma>-\infty .
$$

Then there exists an outer function $\omega(z) \in H^{\infty}$ satisfying

$$
\begin{equation*}
\left|\omega^{*}\right|=1-\left|\varphi_{1}^{*}\right| \quad \text { a.e. on } \partial \mathbb{D} \tag{4.6}
\end{equation*}
$$

(see $[3,7]$). We have

$$
\begin{equation*}
|\omega|+\left|\varphi_{1}\right| \leq 1 \quad \text { on } \mathbb{D} . \tag{4.7}
\end{equation*}
$$

By (4.6), there is a sequence $\left\{z_{n}\right\}_{n}$ in \mathbb{D} satisfying

$$
\frac{1-\left|\varphi_{1}\left(z_{n}\right)\right|}{\left|\omega\left(z_{n}\right)\right|} \rightarrow 1 \quad \text { as } n \rightarrow \infty
$$

and

$$
\begin{equation*}
\left|\varphi_{1}\left(z_{n}\right)\right| \rightarrow 1 \quad \text { as } n \rightarrow \infty \tag{4.8}
\end{equation*}
$$

Here we may assume that

$$
\begin{equation*}
\frac{1-\left|\varphi_{1}\left(z_{n}\right)\right|}{\omega\left(z_{n}\right)} \rightarrow 1 \quad \text { as } n \rightarrow \infty . \tag{4.9}
\end{equation*}
$$

For $0<t<1$, let

$$
\varphi_{2}(z)=\varphi_{1}(z)+t \omega(z) \varphi_{1}(z) .
$$

By (4.6), $\varphi_{2} \in \mathcal{S}(\mathbb{D})$. Since $\omega\left(z_{n}\right) \rightarrow 0,\left|\varphi_{2}\left(z_{n}\right)\right| \rightarrow 1$. We have

$$
\begin{aligned}
\rho\left(\varphi_{1}(z), \varphi_{2}(z)\right) & =\left|\frac{t \omega(z) \varphi_{1}(z)}{1-\left|\varphi_{1}(z)\right|^{2}-t \omega(z)\left|\varphi_{1}(z)\right|^{2}}\right| \\
& \leq \frac{t\left|\varphi_{1}(z)\right|}{\left|\frac{1-\left|\varphi_{1}(z)\right|^{2}}{\omega(z)}\right|-t\left|\varphi_{1}(z)\right|^{2}} \\
& \leq \frac{t\left|\varphi_{1}(z)\right|}{1+\left|\varphi_{1}(z)\right|-t\left|\varphi_{1}(z)\right|^{2}} \quad \text { by (4.7) } \\
& \leq \frac{t}{2-t} .
\end{aligned}
$$

Hence

$$
\rho\left(\varphi_{1}(z), \varphi_{2}(z)\right) \leq \frac{t}{2-t}, \quad z \in \mathbb{D} .
$$

On the other hand,

$$
\begin{aligned}
\limsup _{n \rightarrow \infty} \rho\left(\varphi_{1}\left(z_{n}\right), \varphi_{2}\left(z_{n}\right)\right) & =\limsup _{n \rightarrow \infty}\left|\frac{t \varphi_{1}\left(z_{n}\right)}{\frac{1-\left|\varphi_{1}\left(z_{n}\right)\right|^{2}}{\omega\left(z_{n}\right)}-t\left|\varphi_{1}\left(z_{n}\right)\right|^{2}}\right| \\
& =\frac{t}{2-t} \quad \text { by (4.8) and (4.9). }
\end{aligned}
$$

Therefore

$$
\sup _{z \in \mathbb{D}} \rho\left(\varphi_{1}(z), \varphi_{2}(z)\right)=\limsup _{n \rightarrow \infty} \rho\left(\varphi_{1}\left(z_{n}\right), \varphi_{2}\left(z_{n}\right)\right)=\frac{t}{2-t}
$$

By Lemmas 2.1 and 2.4,

$$
\begin{aligned}
\left\|C_{\varphi_{1}}-C_{\varphi_{2}}\right\| & =\sup _{z \in \mathbb{D}}\left\|P_{\varphi_{1}(z)}-P_{\varphi_{2}(z)}\right\|_{1} \\
& =\limsup _{n \rightarrow \infty}\left\|P_{\varphi_{1}\left(z_{n}\right)}-P_{\varphi_{2}\left(z_{n}\right)}\right\|_{1} \\
& =2-\frac{4 \cos ^{-1} \frac{t}{2-t}}{\pi}<2 .
\end{aligned}
$$

By (3.1) and Theorem 3.2, we have

$$
\left\|C_{\varphi_{1}}-C_{\varphi_{2}}\right\|_{e} \geq \limsup _{n \rightarrow \infty}\left\|P_{\varphi_{1}\left(z_{n}\right)}-P_{\varphi_{2}\left(z_{n}\right)}\right\|_{1}=2-\frac{4 \cos ^{-1} \frac{t}{2-t}}{\pi}
$$

Hence $\left\|C_{\varphi_{1}}-C_{\varphi_{2}}\right\|=\left\|C_{\varphi_{1}}-C_{\varphi_{2}}\right\|_{e}$. Therefore $C_{\varphi_{1}}-C_{\varphi_{2}}$ satisfies (4.4).

References

[1] J. S. Choa, K. J. Izuchi, and S. Ohno, Composition operators on the space of bounded harmonic functions, Integral Equations Operator Theory 61 (2008), no. 2, 167-186.
[2] C. C. Cowen and B. MacCluer, Composition Operators on Spaces of Analytic Functions, CRC Press, Boca Raton, 1995.
[3] K. de Leeuw and W. Rudin, Extreme points and extremum problems in H_{1}, Pacific J. Math. 8 (1958), 467-485.
[4] J. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981.
[5] P. Gorkin and R. Mortini, Norms and essential norms of linear combinations of endomorphisms, Trans. Amer. Math. Soc. 358 (2006), no. 2, 553-571.
[6] P. Gorkin, R. Mortini, and D. Suárez, Homotopic composition operators on $H^{\infty}\left(B^{n}\right)$, Function spaces (Edwardsville, IL, 2002), 177-88, Contemp. Math., 328, Amer. Math. Soc., Providence, RI, 2003.
[7] K. Hoffman, Banach Spaces of Analytic Functions, Prentice Hall, Englewood Cliffs, N.J., 1962.
[8] T. Hosokawa and K. J. Izuchi, Essential norms of differences of composition operators on H^{∞}, J. Math. Soc. Japan 57 (2005), no. 3, 669-690.
[9] T. Hosokawa, K. J. Izuchi, and S. Ohno, Topological structure of the space of weighted composition operators on H^{∞}, Integral Equations Operator Theory 53 (2005), no. 4, 509-526.
[10] T. Hosokawa, K. J. Izuchi, and D. Zheng, Isolated points and essential components of composition operators on H^{∞}, Proc. Amer. Math. Soc. 130 (2002), no. 6, 1765-1773.
[11] K. J. Izuchi and S. Ohno, Linear combinations of composition operators on H^{∞}, J. Math. Anal. Appl. 338 (2008), no. 2, 820-839.
[12] B. MacCluer, S. Ohno, and R. Zhao, Topological structure of the space of composition operators on H^{∞}, Integral Equations Operator Theory 40 (2001), no. 4, 481-494.
[13] J. Shapiro, Composition Operators and Classical Function Theory, Springer-Verlag, New York, 1993.

Kei Ji Izuchi
Department of Mathematics
Niigata University
Niigata 950-2181, Japan
E-mail address: izuchi@math.sc.niigata-u.ac.jp
Kou Hei Izuchi
Department of Mathematics
Faculty of Education
Yamaguchi University
Yamaguchi 753-8511, Japan
E-mail address: izuchi@yamaguchi-u.ac.jp

[^0]: Received January 17, 2012.
 2010 Mathematics Subject Classification. 47B33, 46J15.
 Key words and phrases. essential norm, linear combination of composition operators, Banach space of bounded harmonic functions.

 The first author is partially supported by Grant-in-Aid for Scientific Research (No. 21540166), Japan Society for the Promotion of Science.

