• Title/Summary/Keyword: error estimates

Search Result 929, Processing Time 0.022 seconds

ERROR ESTIMATES OF PHYSICS-INFORMED NEURAL NETWORKS FOR INITIAL VALUE PROBLEMS

  • JIHAHM YOO;JAYWON KIM;MINJUNG GIM;HAESUNG LEE
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.28 no.1
    • /
    • pp.33-58
    • /
    • 2024
  • This paper reviews basic concepts for Physics-Informed Neural Networks (PINN) applied to the initial value problems for ordinary differential equations. In particular, using only basic calculus, we derive the error estimates where the error functions (the differences between the true solution and the approximations expressed by neural networks) are dominated by training loss functions. Numerical experiments are conducted to validate our error estimates, visualizing the relationship between the error and the training loss for various first-order differential equations and a second-order linear equation.

A POSTERIORI L(L2)-ERROR ESTIMATES OF SEMIDISCRETE MIXED FINITE ELEMENT METHODS FOR HYPERBOLIC OPTIMAL CONTROL PROBLEMS

  • Hou, Tianliang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.1
    • /
    • pp.321-341
    • /
    • 2013
  • In this paper, we discuss the a posteriori error estimates of the semidiscrete mixed finite element methods for quadratic optimal control problems governed by linear hyperbolic equations. The state and the co-state are discretized by the order $k$ Raviart-Thomas mixed finite element spaces and the control is approximated by piecewise polynomials of order $k(k{\geq}0)$. Using mixed elliptic reconstruction method, a posterior $L^{\infty}(L^2)$-error estimates for both the state and the control approximation are derived. Such estimates, which are apparently not available in the literature, are an important step towards developing reliable adaptive mixed finite element approximation schemes for the control problem.

Lp and W1,p Error Estimates for First Order GDM on One-Dimensional Elliptic and Parabolic Problems

  • Gong, Jing;Li, Qian
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.4 no.2
    • /
    • pp.41-57
    • /
    • 2000
  • In this paper, we consider first order generalized difference scheme for the two-point boundary value problem and one-dimensional second order parabolic type problem. The optimal error estimates in $L_p$ and $W^{1,p}$ ($2{\leq}p{\leq}{\infty}$) as well as some superconvergence estimates in $W^{1,p}$ ($2{\leq}p{\leq}{\infty}$) are obtained. The main results in this paper perfect the theory of GDM.

  • PDF

ERROR ESTIMATES FOR A SEMI-DISCRETE MIXED DISCONTINUOUS GALERKIN METHOD WITH AN INTERIOR PENALTY FOR PARABOLIC PROBLEMS

  • Ohm, Mi Ray;Lee, Hyun Young;Shin, Jun Yong
    • East Asian mathematical journal
    • /
    • v.32 no.1
    • /
    • pp.101-115
    • /
    • 2016
  • In this paper, we consider a semi-discrete mixed discontinuous Galerkin method with an interior penalty to approximate the solution of parabolic problems. We define an auxiliary projection to analyze the error estimate and obtain optimal error estimates in $L^{\infty}(L^2)$ for the primary variable u, optimal error estimates in $L^2(L^2)$ for ut, and suboptimal error estimates in $L^{\infty}(L^2)$ for the flux variable ${\sigma}$.

Lp error estimates and superconvergence for finite element approximations for nonlinear parabolic problems

  • LI, QIAN;DU, HONGWEI
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.4 no.1
    • /
    • pp.67-77
    • /
    • 2000
  • In this paper we consider finite element mathods for nonlinear parabolic problems defined in ${\Omega}{\subset}R^d$ ($d{\leq}4$). A new initial approximation is taken. Optimal order error estimates in $L_p$ for $2{\leq}p{\leq}{\infty}$ are established for arbitrary order finite element. One order superconvergence in $W^{1,p}$ for $2{\leq}q{\leq}{\infty}$ are demonstrated as well.

  • PDF

ERROR ESTIMATES FOR FULLY DISCRETE MIXED DISCONTINUOUS GALERKIN APPROXIMATIONS FOR PARABOLIC PROBLEMS

  • OHM, MI RAY;LEE, HYUN YOUNG;SHIN, JUN YONG
    • East Asian mathematical journal
    • /
    • v.31 no.5
    • /
    • pp.685-693
    • /
    • 2015
  • In this paper, we introduce fully discrete mixed discontinuous Galerkin approximations for parabolic problems. And we analyze the error estimates in $l^{\infty}(L^2)$ norm for the primary variable and the error estimates in the energy norm for the primary variable and the flux variable.

AUXILIARY PRINCEPLE AND ERROR ESTIMATES FOR VARIATIONAL INEQUALITIES

  • NOOR, MUHAMMED ASLAM
    • Honam Mathematical Journal
    • /
    • v.15 no.1
    • /
    • pp.105-120
    • /
    • 1993
  • The auxiliary principle technique is used to prove the uniqueness and the existence of solutions for a class of nonlinear variational inequalities and suggest an innovative iterative algorithm for computing the approximate solution of variational inequalities. Error estimates for the finite element approximation of the solution of variational inequalities are derived, which refine the previous known results. An example is given to illustrate the applications of the results obtained. Several special cases are considered and studied.

  • PDF

L^INFINITY ERROR ESTIMATES FOR FINITE DIFFERENCE SCHEMES FOR GENERALIZED CAHN-HILLIARD AND KURAMOTO-SIVASHINSKY EQUATIONS

  • Choo, S.M.
    • Journal of applied mathematics & informatics
    • /
    • v.23 no.1_2
    • /
    • pp.571-579
    • /
    • 2007
  • Finite difference schemes are considered for a generalization of the Cahn-Hilliard equation with Neumann boundary conditions and the Kuramoto-Sivashinsky equation with a periodic boundary condition, which is of the type $ut+\frac{{\partial}^2} {{\partial}x^2}\;g\;(u,\;u_x,\;u_{xx})=f(u,\;u_x,\;u_{xx})$. Stability and $L^{\infty}$ error estimates of approximate solutions for the corresponding schemes are obtained using the extended Lax-Richtmyer equivalence theorem.

A PRIORI ERROR ESTIMATES AND SUPERCONVERGENCE PROPERTY OF VARIATIONAL DISCRETIZATION FOR NONLINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS

  • Tang, Yuelong;Hua, Yuchun
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.3_4
    • /
    • pp.479-490
    • /
    • 2013
  • In this paper, we investigate a priori error estimates and superconvergence of varitional discretization for nonlinear parabolic optimal control problems with control constraints. The time discretization is based on the backward Euler method. The state and the adjoint state are approximated by piecewise linear functions and the control is not directly discretized. We derive a priori error estimates for the control and superconvergence between the numerical solution and elliptic projection for the state and the adjoint state and present a numerical example for illustrating our theoretical results.

ERROR ESTIMATES OF MIXED FINITE ELEMENT APPROXIMATIONS FOR A CLASS OF FOURTH ORDER ELLIPTIC CONTROL PROBLEMS

  • Hou, Tianliang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.4
    • /
    • pp.1127-1144
    • /
    • 2013
  • In this paper, we consider the error estimates of the numerical solutions of a class of fourth order linear-quadratic elliptic optimal control problems by using mixed finite element methods. The state and co-state are approximated by the order $k$ Raviart-Thomas mixed finite element spaces and the control variable is approximated by piecewise polynomials of order $k(k{\geq}1)$. $L^2$ and $L^{\infty}$-error estimates are derived for both the control and the state approximations. These results are seemed to be new in the literature of the mixed finite element methods for fourth order elliptic control problems.