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ABSTRACT. This paper reviews basic concepts for Physics-Informed Neural Networks (PINN)
applied to the initial value problems for ordinary differential equations. In particular, using only
basic calculus, we derive the error estimates where the error functions (the differences between
the true solution and the approximations expressed by neural networks) are dominated by train-
ing loss functions. Numerical experiments are conducted to validate our error estimates, visual-
izing the relationship between the error and the training loss for various first-order differential
equations and a second-order linear equation.

1. INTRODUCTION

Due to the development of computer capabilities, contemporary machine learning technologies
have widespread applications in science engineering, and everyday life. Particularly, machine
learning approaches are highly beneficial in tasks such as solving differential equations, image
recognition, language processing, and statistical inference. Important mathematical ingredients
in machine learning are neural networks, which consist of a sequential composition of lin-
ear functions and activation functions. Remarkably, neural networks are capable of uniformly
approximating a continuous function defined on a compact set, which follows from the re-
sult called the universal approximation theorem (see [1, 2]). Aligned with this mathematical
principle, neural networks have played a crucial role in approximating functions to describe
phenomena that one seeks to analyze. By utilizing big data and formulating a loss function,
one can train the parameters of a neural network via gradient descent, aiming to minimize the
loss function.
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Recently, in applied mathematics, there has been a trend of using neural networks to approxi-
mate solutions to differential equations (see [3, 4, 5, 6]). Particularly if one desires to approx-
imate the solution of a differential equation using neural networks, Physics-Informed Neural
Networks (PINN) can be employed. The PINN method involves extracting points at random
from the underlying domain to construct the neural network in a manner that forces to satisfy
the differential equation (for more details, see [7, 8] and Section).

Let us briefly mention the development history of PINN. In [9], by transforming differential
equations into finite difference equations, the authors trained the parameters of neural networks
to solve finite difference equations transformed from differential equations. After that, in [10]
using neural networks of the form φ

(
Wx + b

)
, the author studied the special type of homo-

geneous Dirichlet problem for the following Poisson equation:{
∆u(x, y) = sinπx sinπy in [0, 1]2

u =0 on ∂[0, 1]2.

The PINN methods for specific equations, such as initial value problems for ordinary differ-
ential equations and homogeneous Dirichlet problems for two-dimensional Poisson equations
with general forcing terms, were proposed by [7]. In [5], it was confirmed that using Tensor-
Flow for PINN is effectively used to approximate the 1-dimensional Burger’s equation and
2-dimensional Navier-Stokes equations.
Utilizing PINN to obtain approximations for a solution to an initial value problem of a first-
order differential equation gives significant advantages compared to traditional methods in nu-
merical analysis such as Runge-Kutta methods. Firstly, the Runge-Kutta methods only provide
values of approximations at each sampled point on a domain, making it challenging to obtain
a closed form of the approximation in the full domain. Additionally, in the case of the Runge-
Kutta methods, as the number of sample points increases, the computational cost becomes ex-
tensive (see [3, Section 1.5]). In contrast, approximations of a solution to a differential equation
through PINN inherently provide a closed form composed of smooth functions. Consequently,
there is no need for additional efforts in fitting the data at sample points, so that additional cal-
culations on differentiation for approximations are easily employed. A notable advantage for
approximations through PINN lies in the direct confirmation of how well the approximations
satisfy the underlying differential equations, which is achieved through the evaluation of the
training loss. On the other hand, since the Runge-Kutta methods only provide approximations
at each sample point, it is difficult to check how well-fitted approximations satisfy the underly-
ing differential equation.
Finding an approximation of a solution through PINN may have merit in cases where the regu-
larity of the coefficients in differential equations is quite low. Particularly, we can expect error
estimates based on loss functions. Consider, for example, the very simple differential equation
for finding an anti-derivative function presented below:{

y′(t) =f(t), t ∈ [0, T ]

y(0) =0,
(1.1)
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where f is merely a continuous function on [0, T ]. A basic approach to finding a solution y(t)
to (1.1) is to use the Fundamental Theorem of Calculus, and hence we obtain that

y(t) =

∫ t

0
f(s)dt, t ∈ [0, T ].

However, calculating an approximation of
∫ t

0 f(s)ds for each point t in [0, T ] requires lots of
numerical computation effort as the number of t increases. On the other hand, using the Runge-
Kutta method requires that f be at least four times differentiable. In that case, PINN II methods
(see Section 2.2.1) may be an alternative method to find an approximation of y(t). For a brief
explanation, let us define a function NA on [0, T ]

NA(t, θ) = tN(t, θ), t ∈ [0, T ],

whereN is a 3-layer neural network defined as in (2.4). Let S be a set of random sample points
in [0, T ] selected to follow a uniform distribution. Then, we define the loss function LA by

LA(θ) :=

 1

|S|
∑
ti∈S

(N ′A(ti, θ)− f(ti))
2

1/2

,

where |S| is the number of elements in S. Now we can train the parameter θ to minimize LA.
Remarkably, the training loss function LA(θ) and the error function EA(θ) defined by

EA(θ) :=

 1

|S|
∑
ti∈S

(NA(ti, θ)− y(ti))
2

1/2

have a deep connection. Indeed, by the Hölder inequality and the Monte Carlo integration, for
each t ∈ [0, T ] we obtain that

|NA(t, θ)− y(t)| ≤
∫ T

0
|N ′A(s, θ)− y′(s)|ds

≤
√
T

(∫ T

0
|N ′A(s, θ)− f(s)|2ds

)1/2

≈
√
T

(
T

|S|
∑
si∈S
|N ′A(si, θ)− f(si)|2

)1/2

= T

(
1

|S|
∑
si∈S
|N ′A(si, θ)− f(si)|2

)1/2

= TLA(θ).

Therefore, we can present the following inequality:

EA(θ) ≤ TLA(θ), very likely. (1.2)
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Though we only give the above mathematical analysis for error estimation in a very simple
differential Eq. (1.1), the estimates (1.2) will be extended to more general cases including first-
order (non-linear) equations and second-order linear equations, and a rigorous argument will
be presented in Section 3 through basic calculus with some probabilistic arguments. In conclu-
sion, we verify in Error estimates 1-4 that the error functions (the differences between the true
solution and the approximations expressed by neural networks) are dominated by training loss
functions (see (3.2), (3.4), (3.10) and (3.13)). Then, by visualizing the relationship between
the error and the training loss, we present some numerical experiments in Section 4 to validate
the error estimates in Section 3 in various initial value problems for ordinary differential equa-
tions. In particular, we will distinguish between PINN methods as PINN I and PINN II (see
Section 2.2.2). PINN I utilizes conventional real-valued neural networks, while PINN II trains
the parameter θ by incorporating appropriate terms into real-valued neural networks, such as
NA and NA in (2.7) and (3.11), respectively, to enforce the satisfaction of initial conditions for
the ordinary differential equations. Both approaches (PINN I and II) have been verified to yield
error estimates effectively (see Section 4.1).
The main purpose of this paper is to review PINN applied to initial value problems for ordi-
nary differential equations and to derive error estimates through training loss by using basic
calculus. Hence, we not only supplement the results of [11] which derived error estimates
using the non-trivial stability results in [12], but also present a more accessible proof to read-
ers. This paper is structured as follows: In the next section, we explain the theoretical aspect
of the Picard iteration for the existence and uniqueness of solutions to initial value problems
for ordinary differential Eqs. (2.1). Then, in Section 2.2, we discuss the basic concepts for
Physics-Informed Neural Networks (PINN) applied to the initial value problems for the ordi-
nary differential equations and briefly review in Section 2.3 the existing literature studying the
error estimates of PINN for initial value problems for first-order ordinary differential equations.
In Section 3, we show that error functions are dominated by training loss functions by using
basic calculus and probabilistic arguments. In Section 4, we present some numerical experi-
ments in the cases of an antiderivative, a logistic equation, a separable equation, an exact equa-
tion, and a second-order equation with constant coefficients. In the last section, we describe
a summary of our numerical experiments and a brief outlook on the error estimates of PINN.

2. THEORETICAL BACKGROUND

2.1. Existence, uniqueness and stability by the Picard Iteration.

Let us consider the following initial value problem of the ODE:{
y′(t) = f(t, y(t))

y(t0) = y0,
(2.1)

where (t0, y0) ∈ R2 and f is a Lipschitz continuous function on

[t0 − a1, t0 + a2]× [y0 − b1, y0 + b2]
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satisfying that for some M0,K > 0

|f(t, y)| ≤M0, for all (t, y) ∈ [t0 − a1, t0 + a2]× [y0 − b1, y0 + b2].

|f(t, y1)− f(t, y2)| ≤ K|y1 − y2|
for all (t, y1), (t, y2) ∈ [t0 − a1, t0 + a2]× [y0 − b1, y0 + b2]. (2.2)

Let a = min(a1, a2) and b = min(b1, b2). Let J := [t0 − c, t0 + c] with c = min(a, b
M0

).
Then, it is known from Picard iteration (See [13, Chapter 5, Section 4]) that there exists a
continuously differentiable function φ on J such that φ is a unique solution to (2.1) on J , i.e.

φ′(t) = f(t, φ(t)) for all t ∈ J and φ(t0) = y0

and if there exists a continuously differentiable function ψ on I satisfying (2.1) on I where I
is a compact interval in [t0 − a1, t0 + a2] with t0 ∈ I , then φ(t) = ψ(t) for all t ∈ I ∩ J (see
[13, Chapter 5, Section 8]). Indeed, a sequence of continuously differentiable functions on J
which converges to u uniformly on J is defined recursively by

φ0(t) = y0, φk+1 = y0 +

∫ t

t0

f(s, φk(s))ds, t ∈ J.

Moreover, the following stability estimate is obtained by [13, Chapter 5, Theorem 8]:

|φ(t)− φk(t)| ≤
M

K

(Kc)k+1

((k + 1)!)
eKc for all t ∈ J. (2.3)

Certainly, the error estimate in (2.3) rapidly decreases to 0 as k → ∞. However, since φk
is composed of k-th iterated integrals, it requires a large computational cost to calculate φk
numerically. Therefore, it leads us to use numerical methods such as Euler and Runge-Kutta
methods. Finally, we mention that if (2.2) is replaced by

|f(t, y1)− f(t, y2)| ≤ K|y1 − y2| for all (t, y1), (t, y2) ∈ [t0 − a, t0 + a]× R,
then J can be replaced by [t0 − a1, t0 + a2] (see [13, Chapter 5]).

2.2. Physics-Informed Neural Networks (PINN).

2.2.1. Approximations through neural networks.

In this section, we investigate the main idea for approximating a function through neural net-
works in machine learning. A neural network is inspired by a human brain, but mathematically
a neural network is just defined as a function that consists of a sequential composition of linear
functions and activation functions. In particular, the 3-layer neural network is practically and
widely used in machine learning. If we apply the 3-layer neural network to approximate a real-
valued function defined on a subset of R, then we can consider a function N : R→ R defined
by

N(t, θ) = A3σ(A2σ(A1t+ b1) + b2) + b3, t ∈ R, (2.4)
where A1, A2 and A3 are n1 × 1, n2 × n1 and 1 × n2 matrices, respectively, with n1, n2 ∈
N, b1, b2 and b3 are n1 × 1, n2 × 1 and 1 × 1 matrices (column vectors), respectively, σ



38 J. YOO, J. KIM, M. GIM, AND H. LEE

FIGURE 1. A neural network

is a non-linear elementwise activation function and in this case, σ denotes tanh and θ =
θ(n1, n2, A1, A2, A3, b1, b2, b3) denotes a variable made up of components of A1, A2, A3, b1,
b2 and b3. Figure 1 represents a neural network.
The fact that a neural network is expected to be a good approximation of the function we are
looking for is based on a mathematical theorem in functional analysis, which is called “univer-
sal approximation theorem” (see [1, 2]). For instance, let g be an arbitrarily given continuous
function on a compact interval I we are looking for. Then, by the universal approximation
theorem for 3-layer neural networks ([2, Theorem 12]), given ε > 0 there exist n1, n2 ∈ N,
n1 × 1, n2 × n1, 1 × n2 matrices A1, A2 and A3, respectively, and n1 × 1, n2 × 1 and 1 × 1
matrices b1, b2 and b3, respectively, such that

|N(t, θ)− g(t)| < ε, for all t ∈ I,

where θ = θ(A1, A2, A3, b1, b2, b3). Therefore, it is theoretically verified by a mathematical
theorem that the approximation to the function g we are looking for is represented by a neural
network. Therefore, we need to find an algorithm that can find the variable θ that provides an
approximation. If we fix n1 and n2 large enough, now what we have to find is the components
of A1, A2, A3, b1, b2, b3. A standard method to find neural networks to approximate g is to
use big data to fit f . For instance, let us assume that for some large n ∈ N we have data set
D = {(ti, yi)g≤i≤n} satisfying yi = g(ti) for all 1 ≤ i ≤ n. Then we can now train θ so that
neural network N(·, θ) satisfies data set D. Precisely, we define the loss function below:

Loss(θ) :=

(
1

n

n∑
i=1

(
N(ti, θ)− yi

)2)1/2

.

Using computer programming such as Python, θ can be trained in the direction of minimizing
the loss function through a gradient descent algorithm. This is the whole idea of training a
neural network through big data in machine learning to approximate the real function we are
looking for.
Now, let us use the neural network (2.4) to solve the initial value problem (2.1). Note that there
is no data that the solution fits, but we have physical information expressed as an ordinary
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differential equation. Therefore, without given data, we can define a loss function in such a
way that the neural network satisfies our differential equation. We will discuss this in detail in
the next subsection.

2.2.2. Two ways for approximating the solution to (2.1) in PINN.
Now let us consider the initial value problem (2.1) and approximate the solution to (2.1)
through neural networks.

• PINN I: First, consider a neural network N as in (2.4) and define loss functions Lde and
Lic given by

Lde(θ) :=

(
1

n

n∑
i=1

(N ′(ti, θ)− f(ti, N(ti, θ)))
2

)1/2

, Lic(θ) := |N(t0, θ)− y0|, (2.5)

where S = {t1, . . . , tn} is a set of random sample points of an interval on which the solution
is defined and the sample points are selected to follow a uniform distribution. Then our total
loss function is

L(θ) := Lde(θ) + Lic(θ) (2.6)

and we train the parameters θ of L for which L is minimized by using the gradient descent.
Here, we mention that the loss function does not exactly mean the errors that denote the differ-
ence between the true solution and the neural networks. However, in the next section (Section
3), we will mathematically verify the very close relationship between the loss functions and er-
ror functions.

• PINN II: As in PINN I above, we can see that it is very unlikely that either Lde or Lic will
be exactly 0. Thus, one can alternatively consider a function NA defined by

NA(t, θ) := y0 + (t− t0)N(t, θ), t ∈ R, (2.7)

where N is a neural network defined as in (2.4). Note that NA(t0, θ) = y0, so that the initial
condition of (2.1) is always satisfied. Before defining a new loss function, let us check whether
the alternative functionNA above can be a good uniform approximation for the solution to (2.1)
from the perspective of the universal approximation theorem. Observe that by the existence
and uniqueness theorem, the solution y to (2.1) is continuously differentiable on its domain
containing t0 (see Section 2.1). Now let I be a compact interval in the domain of y with t0 ∈ I
and define a function z on I z(t) =

y(t)− y0

t− t0
if z ∈ I \ {t0}

z(t0) =y′(t0).

Then, z is continuous on I and

y(t) = y0 + (t− t0)z(t) for all t ∈ I.
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By the universal approximation theorem for 3-layer neural networks ([2, Theorem 12]), given
ε > 0 there exist n1, n2 ∈ N, n1 × 1, n2 × n1, 1 × n2 matrices A1, A2 and A3, re-
spectively and n1 × 1, n2 × 1 and 1 × 1 matrices b1, b2, b3, respectively, such that if θ =
θ(n1, n2, A1, A2, A3, b1, b2, b3), then

|N(t, θ)− z(t)| < ε

|I|
, for all t ∈ I,

where |I| is the length of the interval I . Thus, we obtain that

|NA(t, θ)− y(t)| =
∣∣∣(t− t0)

(
N(t, θ)− z(t)

)∣∣∣ ≤ |I| · |N(t, θ)− z(t)| < ε for all t ∈ I.

Thus, we can regard NA(·, θ) as a good approximation of y in the perspective of the universal
approximation theorem. Now we define the alternative loss function LA in terms of NA:

LA(θ) =

(
1

n

n∑
i=1

(
N ′A(ti, θ)− f(ti, NA(ti, θ))

)2)1/2

, (2.8)

where S = {t1, . . . , tn} is a set of random sample points of an interval on which the solution
is defined and the sample points are selected to follow a uniform distribution. Then, we train
the parameter θ of LA for which LA is minimized by using the gradient descent.

2.3. The existing literature and our strategy for error estimates.

The existing literature [12] deals with the error estimates for PINN of first-order differential
equations by using the following stability estimates. Here, we restrict the estimates to real-
valued functions.

Theorem 2.1 ([12]). If y is a solution to (2.1) on a closed interval I := [0, c] with t0 = 0 and
ŷ is an arbitrarily given C1-function on I , then the following estimate holds:

|y(t)− ŷ(t)| ≤ eKt|y0 − ŷ(0)|+
∫ t

0
eK(t−s)∣∣ŷ′(s)− f(s, ŷ(s))

∣∣ ds, for all t ∈ I. (2.9)

The proof of Theorem 2.1 is strongly based on the result of [12, Chater I, Variant form of
Theorem 10.2], but unfortunately the proof of [12, Chater I, Variant form of Theorem 10.2] is
not explicitly presented for readers. Even though the authors of [12] may easily derive it, [12,
Chater I, Variant form of Theorem 10.2] is closely related to [12, Chater I, Theorem 10.2] which
is also a nontrivial result based on the observation of the mathematicians, Peano and Perron.
Therefore, we will derive in the next section the known stability estimates using only basic
calculus, which gives an accessible proof of error estimates to readers. Specifically, removing
the weight term eK(t− s) in the right-hand side of (2.9), we will derive in Theorem 3.3

|y(t)− ŷ(t)| ≤ eKt
(
|y0 − ŷ(0)|+

∫ t

0

∣∣ŷ′(s)− f(s, ŷ(s))
∣∣ ds) , for all t ∈ I. (2.10)
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Moreover, in Section 3.2 we also present error estimates for the second-order linear equations.
In this paper, the arbitrarily given C1-function ŷ is replaced by our neural networks N(·, θ)
or alternative functions NA(·, θ) defined in Section 2.2.2. This replacement is based on the
expectation that the right-hand side of (2.10) where ŷ is replaced by N(·, θ) or NA(·, θ) is
sufficiently to be small as θ is trained, and as a result, the error in the left-hand side of (2.10)
will also be sufficiently small. Moreover, in Section 3.2 we derive error estimates for initial
value problems of second-order linear differential equations by using stability estimates for
R2-valued functions. Indeed, the actual training loss function is expressed in the form of a
square mean, and hence we need to convert the loss function expressed as an integral into
the actual training loss expressed in the form of a square mean. To do this, we present basic
probabilistic arguments based on Monte Carlo integration in Theorems 3.2, 3.4, 3.6 and 3.8.

3. ERROR ESTIMATES THROUGH THE TRAINING LOSS FUNCTIONS

3.1. Initial value problems for the first order ODEs.

Given an interval J = [a, b], we write |J | = b− a. Theorems 3.1, 3.2 are mathematical results
to derive error estimates (3.2) for PINN II.

Theorem 3.1. Let (t0, y0) ∈ R2 and a1, a2, b1, b2 > 0. Let f be a continuous function on
[t0 − a1, t0 + a2] × [y0 − b1, y0 + b2] such that for some M0,K > 0 (2.2) holds. Let NA be
a function defined as in (2.7). Let y be a unique solution to (2.1) on I := [t0 − c1, t0 + c2] for
some c1, c2 > 0. Let

LA(θ) :=

∫
I
|N ′A(s, θ)− f(s,NA(s, θ))|ds, (3.1)

where NA is defined as in (2.7). Then,

|NA(t, θ)− y(t)| ≤ eK|t−t0|LA(θ) for all t ∈ I.

Proof. Let us first consider the case of t ∈ [t0, t0 + c2]. Using the fundamental theorem of
calculus and the triangle inequality,

|NA(t, θ)− y(t)| =
∣∣∣∣∫ t

t0

N ′A(s, θ)− y′(s)ds
∣∣∣∣ ≤ ∫ t

t0

∣∣N ′A(s, θ)− y′(s)
∣∣ ds

≤
∫ t

t0

|N ′A(s, θ)− f(s,NA(s, θ))|ds+

∫ t

t0

∣∣∣f(s,NA(s, θ))− f(s, y(s))
∣∣∣ds

≤ LA(θ) +K

∫ t

t0

∣∣NA(s, θ)− y(s)
∣∣ds, for all t ∈ [t0, t0 + c2].

Let

ϕ(t) := LA(θ) +K

∫ t

t0

∣∣NA(s, θ)− y(s)
∣∣ds, t ∈ [t0, t0 + c2].
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Then, 1
Kϕ
′(t) ≤ ϕ(t) for all t ∈ [t0, t0 + c2], so that(

e−Ktϕ(t)
)′ ≤ 0, for all t ∈ [t0, t0 + c2].

Since the map t 7→ e−Ktϕ(t) is decreasing on [t0, t0 + c2], e−Ktϕ(t) ≤ e−Kt0ϕ(t0) for all
t ∈ [t0, t0 + c2]. Therefore, we obtain that

|NA(t, θ)− y(t)| ≤ ϕ(t) ≤ eK(t−t0)ϕ(t0) = eK(t−t0)LA(θ) for all t ∈ [t0, t0 + c2].

Next, consider the case of t ∈ [t0 − c1, t0]. Then, similarly to the above, it holds that

|NA(t, θ)− y(t)| ≤ LA(θ)−K
∫ t

t0

∣∣NA(s, θ)− y(s)
∣∣ds, for all t ∈ [t0 − c1, t0].

Then, defining

ψ(t) := LA(θ)−K
∫ t

t0

∣∣NA(s, θ)− y(s)
∣∣ds, t ∈ [t0 − c1, t0],

we have − 1
Kψ
′(t) ≤ ψ(t) for all t ∈ [t0 − c1, t0], so that(

eKtψ(t)
)′ ≥ 0 for all t ∈ [t0 − c1, t0].

Thus, we finally have

|NA(t, θ)− y(t)| ≤ eK(t0−t)ψ(t0) = eK(t0−t)LA(θ), for all t ∈ [t0 − c1, t0],

and hence the assertion follows. �

The following result is derived by replacing the integral term in (3.1) with the Monte Carlo
Integration.

Theorem 3.2. Assume that the conditions of Theorem 3.1 hold. Let (Xi)i≥1 be a sequence of
independent and identically distributed random variables on a probability space (Ω,F ,P) that
has a continuous uniform distribution on I . Then, for any t ∈ I the following estimate holds:

|NA(t, θ)−y(t)| ≤ |I|eK|t−t0|
E

[
1

n

n∑
i=1

(
N ′A(Xi, θ)− f(Xi, NA(Xi, θ))

)2
]1/2

+
σ√
n

 ,

where NA is defined as in (2.7), σ :=

(
1
|I|
∫
I ϕ

2dt−
(

1
|I|
∫
I ϕdt

)2
)1/2

≥ 0 and

ϕ(t) := |N ′A(t, θ)− f(t,NA(t, θ))|, t ∈ I.

Proof. Let Yi = ϕ(Xi), i ≥ 1. Then, (Yi)i≥1 is a sequence of independent and identically
distributed random variables satisfying that

E[Yi] =
1

|I|

∫
I
ϕ(t)dt =: m, V[Yi] =

1

|I|

∫
I
ϕ2dt−

(
1

|I|

∫
I
ϕdt

)2

= σ2,
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where E and V are the expectation and variance with respect to (Ω,F ,P). Let

Y n =
1

n

n∑
i=1

Yi, n ≥ 1.

Then, E[Y n] = m and V(Y n) = σ2

n , and hence we have

‖Y n −m‖L2(Ω,P) =
σ√
n
.

Let LA(θ) be a function defined in (3.1). Then,

1

|I|
LA(θ) = m = ‖m‖L2(Ω,P) ≤ ‖m− Y n‖L2(Ω,P) + ‖Y n‖L2(Ω,P)

=
σ√
n

+ E

( 1

n

n∑
i=1

Yi

)2
1/2

≤
by Jensen

σ√
n

+ E

[
1

n

n∑
i=1

Y 2
i

]1/2

.

Thus, the assertion follows from Lemma 3.1. �

Assume that the conditions of Theorem 3.1 hold. Then, based on Theorem 3.2, the following er-
ror estimates hold:

Error estimates 1 (PINN II)

|NA(t, θ)− y(t)| ≤ |I|eK|t−t0| · LA(θ) +O

(
1√
n

)
, for all t ∈ I very likely, (3.2)

where NA is defined as in (2.7).

Theorems 3.3, 3.4 are mathematical results to derive Error estimates (3.4) for PINN I.

Theorem 3.3. Let (t0, y0) ∈ R2 and a1, a2, b1, b2 > 0. Let f be a continuous function on
[t0 − a1, t0 + a2] × [y0 − b1, y0 + b2] such that for some M0,K > 0 (2.2) holds. Let y be a
unique solution to (2.1) on I := [t0 − c1, t0 + c2] with c1, c2 > 0. Let

L(θ) :=

∫
I
|N ′(s, θ)− f(s,N(s, θ))|ds+ |N(t0, θ)− y0|, (3.3)

where N is a neural network defined as in (2.4). Then,

|N(t, θ)− y(t)| ≤ eK|t−t0|L(θ) for all t ∈ I.
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Proof. Let us first consider the case of t ∈ [t0, t0 + c2]. Using the fundamental theorem of
calculus and the triangle inequality,

|N(t, θ)− y(t)| =
∣∣∣∣∫ t

t0

N ′(s, θ)− y′(s)ds+ (N(t0, θ)− y(t0))

∣∣∣∣
≤ |(N(t0, θ)− y(t0)|+

∫ t

t0

∣∣N ′(s, θ)− y′(s)∣∣ ds
≤ |(N(t0, θ)− y(t0)|+

∫ t

t0

|N ′(s, θ)− f(s,N(s, θ))|ds+

∫ t

t0

∣∣∣f(s,N(s, θ))− f(s, y(s))
∣∣∣ds

≤ L(θ) +K

∫ t

t0

∣∣N(s, θ)− y(s)
∣∣ds, for all t ∈ [t0, t0 + c2].

Then, analogously to the proof of Theorem 3.1, the assertion follows. �

As we derive Theorem 3.2 based on Theorem 3.1, we can similarly obtain the following result.

Theorem 3.4. Assume that the conditions of Theorem 3.3 hold. Let (Xi)i≥1 be a sequence of
independent and identically distributed random variables on a probability space (Ω,F ,P) that
has a continuous uniform distribution on I . Then, for any t ∈ I the following estimate holds:

|N(t, θ)− y(t)|

≤ |I|eK|t−t0|
E

[
1

n

n∑
i=1

(
N ′(Xi, θ)− f(Xi, N(Xi, θ))

)2
]1/2

+
|N(t0)− y0|

|I|
+

σ√
n

 ,

where N is a neural network defined as in (2.4), σ :=

(
1
|I|
∫
I φ

2dt−
(

1
|I|
∫
I φdt

)2
)1/2

≥ 0

and

φ(t) := |N ′(t, θ)− f(t,N(t, θ))|, t ∈ I.

Proof. The proof is similar to the one of Theorem 3.2. Let Yi = φ(Xi), i ≥ 1. Then, (Yi)i≥1

is a sequence of independent and identically distributed random variables satisfying that

E[Yi] =
1

|I|

∫
I
φ(t)dt =: m, V[Yi] =

1

|I|

∫
I
φ2dt−

(
1

|I|

∫
I
φdt

)2

= σ2,

where E and V are the expectation and variance with respect to (Ω,F ,P). Let

Y n =
1

n

n∑
i=1

Yi, n ≥ 1.

Then, E[Y n] = m and V(Y n) = σ2

n , and hence we have

‖Y n −m‖L2(Ω,P) =
σ√
n
.
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Let L(θ) be defined as in (3.3). Then,

1

|I|

(
L(θ)− |(N(t0, θ)− y0)|

)
= m = ‖m‖L2(Ω,P) ≤ ‖m− Y n‖L2(Ω,P) + ‖Y n‖L2(Ω,P)

=
σ√
n

+ E

( 1

n

n∑
i=1

Yi

)2
1/2

≤
by Jensen

σ√
n

+ E

[
1

n

n∑
i=1

Y 2
i

]1/2

,

as desired. �

Assume that the conditions of Theorem 3.3 hold and that |I| ≥ 1. Then, based on Theorem 3.4,
the following error estimates hold:

Error estimates 2 (PINN I)

|N(t, θ)− y(t)| ≤ |I|eK|t−t0| · L(θ) +O

(
1√
n

)
, for all t ∈ I very likely, (3.4)

whereN is a neural network defined as in (2.4) andL is defined as in (2.6).

3.2. Initial value problems for the second order ODEs.

Now, let us further investigate error estimates for initial value problems for second-order ordi-
nary differential equations of the following form:{

y′′(t) + p(t)y′(t) + q(t)y(t) = r(t)

y(t0) = y0, y′(t0) = y′0
(3.5)

where (t0, y0, y
′
0) ∈ R3 and p, q and r are continuous functions on a compact interval I with

t0 ∈ I . Then, as a direct consequence of the existence and uniqueness theorem for initial value
problems for first-order differential equations, there exists a unique solution y ∈ C2(I) to (3.5)
on I . Indeed, (3.5) is converted to the following problem:
(
y′1(t)

y′2(t)

)
=

(
y2(t)

−p(t)y2(t)− q(t)y1(t) + r(t)

)
=

(
0 1
−q(t) −p(t)

)(
y1(t)

y2(t)

)
+

(
0

r(t)

)
(y1(t0), y2(t0)) = (y0, y

′
0)

We can rewrite the above equation as follows:
y′(t) = P (t)y(t) + g(t)

y(t0) =

(
y0

y′0

)
,
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where P (t) =

(
0 1
−q(t) −p(t)

)
and g(t) =

(
0

r(t)

)
.

The idea of converting second-order differential equations into first-order differential equations
is also crucial for deriving the following error estimates of PINN.

Theorems 3.5, 3.6 are mathematical results to derive Error estimates (3.10) for PINN I.

Theorem 3.5. Let p, q and r be continuous functions on a compact interval I := [t0− c1, t0 +
c2] with c1, c2 > 0. Let y be a unique solution to (3.5) on I . Let N be a neural network defined
as in (2.4). Let M =

√
1 +M2

1 +M2
2 , where M1 := maxt∈I |p(t)|, M2 := maxt∈I |q(t)|.

Define L(θ) by

L(θ) :=

∫
I
|N ′′(s, θ)+p(s)N ′(s, θ)+q(s)N(s, θ)−r(s)|ds+|N(t0, θ)−y0|+|N ′(t0, θ)−y′0|,

where N is a neural network defined as in (2.4). Then,

|N(t, θ)− y(t)| ≤ eM |t−t0|L(θ), for all t ∈ I.
Proof. Let x(t) = N(t, θ) − y(t) and h(t) = N ′′(t, θ) + p(t)N ′(t, θ) + q(t)N(t, θ), t ∈ I .
Then, we get {

x′′(t) + p(t)x′(t) + q(t)x(t) = h(t)− r(t), for all t ∈ I
x(t0) = N(t0, θ)− y0, x′(t0) = N ′(t0, θ)− y′0.

(3.6)

Let x(t) =

(
x(t)

x′(t)

)
, t ∈ I . Then, the Eq. (3.6) is converted to the following:

x′(t) = P (t)x(t) + f(t), for all t ∈ I

x(t0) =

(
N(t0, θ)− y0

N ′(t0, θ)− y′0

)
,

where P (t) =

(
0 1
−q(t) −p(t)

)
and f(t) =

(
0

h(t)− r(t)

)
. Thus, by the fundamental theo-

rem of calculus,

x(t) =

∫ t

t0

x′(s)ds+ x(t0).

First, consider the case of t ∈ [t0, t0 + c2]. Then,

‖x(t)‖ ≤
∥∥∥∥∫ t

t0

x′(s)ds+ x(t0)

∥∥∥∥ ≤ ∫ t

t0

‖x′(s)‖ds+ ‖x(t0)‖

≤
∫ t

t0

‖P (s)‖‖x(s)‖ds+

∫ t

0
‖f(s)‖ds+ ‖x(t0)‖

≤M
∫ t

t0

‖x(s)‖ds+ L(θ), for all t ∈ [t0, t0 + c2]
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Then, using the analogous method in the proof of Theorem 3.1, we get

‖x(t)‖ ≤ eM(t−t0)L(θ), for all t ∈ [t0, t0 + c2].

Next, for the case of t ∈ [t0 − c1, t0], we have

‖x(t)‖ ≤ −M
∫ t

t0

‖x(s)‖ds+ L(θ), for all t ∈ [t0 − c2, t0].

Analogously to the proof of Theorem 3.1, it follows that

‖x(t)‖ ≤ eM(t0−t)L(θ), for all t ∈ [t0 − c1, t0].

Therefore, we finally get

|N(t, θ)− y(t)| = |x(t)| ≤ ‖x(t)‖ ≤ eM |t−t0|L(θ), for all t ∈ I.
�

In a similar way to the proof of Theorem 3.4 based on Theorem 3.3, we derive the following
theorem by using Theorem 3.5.

Theorem 3.6. Assume that the conditions of Theorem 3.5 hold. Let (Xi)i≥1 be a sequence of
independent and identically distributed random variables on a probability space (Ω,F ,P) that
has a continuous uniform distribution on I . Then, for any t ∈ I the following estimate holds:

|N(t, θ)− y(t)|

≤ |I|eK|t−t0|
(
E
[

1

n

n∑
i=1

(
N ′′(Xi, θ) + p(Xi)N

′(Xi, θ) + q(Xi)N(Xi, θ)− r(Xi)
)2
]1/2

+
|N(t0, θ)− y0|+ |N(t0, θ)− y′0|

|I|
+

σ√
n

)
,

where N is a neural network defined as in (2.4), σ :=

(
1
|I|
∫
I φ

2dt−
(

1
|I|
∫
I φdt

)2
)1/2

≥ 0

and

φ(t) :=
∣∣∣N ′′(t, θ) + p(t)N ′(t, θ) + q(t)N(t, θ)− r(t)

∣∣∣, t ∈ I.

Proof. Let Yi = φ(Xi), i ≥ 1. Then, (Yi)i≥1 is a sequence of independent and identically
distributed random variables satisfying that

E[Yi] =
1

|I|

∫
I
φ(t)dt =: m, V[Yi] =

1

|I|

∫
I
φ2dt−

(
1

|I|

∫
I
φdt

)2

= σ2,

where E and V are the expectation and variance with respect to (Ω,F ,P). Let

Y n =
1

n

n∑
i=1

Yi, n ≥ 1.
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Then, E[Y n] = m and V(Y n) = σ2

n , and hence we have

‖Y n −m‖L2(Ω,P) =
σ√
n
.

Let L(θ) be defined as in (3.3). Then,

1

|I|

(
L(θ)− |(N(t0, θ)− y0| − |N ′(t0, θ)− y′0|

)
= m = ‖m‖L2(Ω,P) (3.7)

≤ ‖m− Y n‖L2(Ω,P) + ‖Y n‖L2(Ω,P)

=
σ√
n

+ E

( 1

n

n∑
i=1

Yi

)2
1/2

≤
by Jensen

σ√
n

+ E

[
1

n

n∑
i=1

Y 2
i

]1/2

,

as desired.
�

Now define a loss function L(θ) corresponding to the problem (3.5) and the neural network N
defined as in (2.4):

L(θ) := Lde(θ) + |N(t0, θ)− y0|+ |N ′(t0, θ)− y′0|, (3.8)

where

Lde(θ) :=

[
1

n

n∑
i=1

(
N ′′(ti, θ) + p(ti)N

′(ti, θ) + q(ti)N(ti, θ)− r(ti)
)2
]1/2

(3.9)

and S = {t1, . . . , tn} is a set of random sample points in I selected to follow a uniform distri-
bution. Assume that all conditions of Theorem 3.5 hold and that |I| ≥ 1. Then, based on Theo-
rem 3.6, the following error estimates holds:

Error estimates 3 (PINN I)

|N(t, θ)− y(t)| ≤ |I|eM |t−t0| · L(θ) +O

(
1√
n

)
, for all t ∈ I very likely, (3.10)

where N is defined as in (2.4).

It is obvious that the neural networkN(·, θ) defined as in (2.4) is very unlikely to exactly satisfy
the initial condition of (3.5). Similarly to (2.7), we define a new function NA from N so that
NA satisfies the initial condition of (3.5).

NA(t, θ) := y0 + (t− t0)y′0 + (t− t0)2N(t, θ). (3.11)

Then, using the argument in PINN II of Section 2.1, the functions of the form NA(·, θ) are
nice approximations for a twice continuously differentiable function on I . Now let us define an
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alternative loss function LA in terms of NA

LA(θ) :=

[
1

n

n∑
i=1

(
N
′′
A(ti, θ) + p(ti)N

′
A(ti, θ) + q(ti)NA(ti, θ)− r(ti)

)2
]1/2

, (3.12)

where S = {t1, . . . , tn} is a set of random sample points in I selected to follow a uniform dis-
tribution.

Theorems 3.7, 3.8 are mathematical results to derive Error estimates (3.13) for PINN II.

Theorem 3.7. Let p, q and r be continuous functions on a compact interval I := [t0− c1, t0 +
c2]. Let y be a unique solution to (3.5) on I . Let NA be a neural network defined as in (2.4).
Let M =

√
1 +M2

1 +M2
2 , where M1 := maxt∈I |p(t)|, M2 := maxt∈I |q(t)|. Define LA(θ)

by

LA(θ) :=

∫
I
|N ′′A(s, θ) + p(s)N

′
A(s, θ) + q(s)NA(s, θ)− r(s)|ds,

where NA is a function defined as in (3.11). Then,

|NA(t, θ)− y(t)| ≤ eM |t−t0|LA(θ), for all t ∈ I.

Proof. The proof is the same as the one of Theorem 3.5, ifN , x(t0) and L are replaced byNA,
0 and LA, respectively. �

Theorem 3.8. Assume that the conditions of Theorem 3.7 hold. Let (Xi)i≥1 be a sequence of
independent and identically distributed random variables on a probability space (Ω,F ,P) that
has a continuous uniform distribution on I . Then, for any t ∈ I the following estimate holds:

|NA(t, θ)− y(t)|

≤ |I|eK|t−t0|
(
E
[

1

n

n∑
i=1

(
N
′′
A(Xi, θ) + p(Xi)N

′
A(Xi, θ) + q(Xi)NA(Xi, θ)− r(Xi)

)2
]1/2

)
,

where NA is a function defined as in (3.11), σ :=

(
1
|I|
∫
I ϕ

2dt−
(

1
|I|
∫
I ϕdt

)2
)1/2

≥ 0 and

ϕ(t) :=
∣∣∣N ′′A(t, θ) + p(t)N

′
A(t, θ) + q(t)NA(t, θ)− r(t)

∣∣∣, t ∈ I.

Proof. Applying Theorem 3.5, the proof is the same as the one of Theorem 3.4 if

−|(N(t0, θ)− y0| − |N ′(t0, θ)− y′0|
in (3.7) is replaced by 0. �

Assume that all conditions of Theorem 3.7 hold. As a direct consequence of Theorem 3.8, we
obtain the following error estimates.
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Error estimates 4 (PINN II)

|NA(t, θ)− y(t)| ≤ |I|eM |t−t0| · LA(θ) +O

(
1√
n

)
, for all t ∈ I very likely, (3.13)

whereNA is a function defined as in (3.11).

4. NUMERICAL EXPERIMENTS

4.1. Adjustment for error estimates.

In this section, we validate the Error estimates 1-4 in (3.2), (3.4), (3.10) and (3.13) by visual-
izing the relationship between error functions and training loss functions when PINN methods
I and II are applied on various differential equations. Precisely, in Examples 4.1–4.4, we will
validate the Error estimates 2 in (3.4), as the following form:

(PINN I):

E(θ)2 ≤
(
|I|eK|I| · L(θ) +O

(
1√
n

))2

≤ 3|I|2e2K|I|
(
Lde(θ)

2 + |N(t0, θ)− y0|2
)

+O

(
1

n

)
very likely, (4.1)

where N , Lde and L are defined as in (2.4), (2.5) and (2.6), respectively,

E(θ) :=

(
1

n

n∑
i=1

(N(ti, θ)− y(ti))
2

)1/2

(4.2)

and S = {t1, . . . , tn} is a set of random sample points of an interval on which the solution is
defined and the sample points are selected to follow a uniform distribution. For computational
benefit, we will visualize E(θ)2 and Lde(θ)2 + |N(t0, θ) − y0|2 as the error and the training
loss, respectively.

Likewise, in Examples 4.1–4.4, we will validate the Error estimates 1 in (3.2), as the following
form:

(PINN II):

EA(θ)2 ≤
(
|I|eK|I| · LA(θ) +O

(
1√
n

))2

≤ 2|I|2e2K|I|LA(θ)2 +O

(
1

n

)
very likely, (4.3)
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where NA and LA are defined as in (2.7) and (2.8), respectively,

EA(θ) :=

(
1

n

n∑
i=1

(NA(ti, θ)− y(ti))
2

)1/2

.

Then, for computational benefit, we will visualize EA(θ)2 and LA(θ)2 as the error and the
training loss, respectively.

In Example 4.5, we will validate the Error estimates 3, 4 in (3.10) and (3.13), respectively,
similarly to the arguments above. Precisely, Error estimates 3 in (3.10) is calculated as

(PINN I):

E(θ)2 ≤
(
|I|eM |I| · L(θ) +O

(
1√
n

))2

≤ 4|I|2e2M |I|
(
Lde(θ)

2 + |N(t0, θ)− y0|2 + |N ′(t0, θ)− y′0|2
)

+O

(
1

n

)
very likely,

(4.4)

where E(θ), L(θ) and Lde are defined as in (4.2), (3.8) and (3.9), respectively. For computa-
tional benefit, we will visualize E(θ)2 and Lde(θ)2 + |N(t0, θ) − y0|2 + |N ′(t0, θ) − y′0|2 as
the error and the training loss, respectively.

Finally, Error estimates 4 in (3.13) is calculated as

(PINN II):

EA(θ)2 ≤
(
|I|eM |I| · LA(θ) +O

(
1√
n

))2

≤ 2|I|2e2M |I|LA(θ)2 +O

(
1

n

)
very likely, (4.5)

where NA and LA are functions defined as in (3.11) and (3.12), respectively,

EA(θ) :=

(
1

n

n∑
i=1

(NA(ti, θ)− y(ti))
2

)1/2

and S = {t1, . . . , tn} is a set of random sample points of an interval on which the solution is
defined and the sample points are selected to follow a uniform distribution. For computational
benefit, we will visualize EA(θ)2 and LA(θ)2 as the error and the training loss, respectively.
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4.2. Various examples.

Example 4.1. Consider the following initial value problem:{
y′(t) =− 2te−t

2
, t ∈ [0, 1]

y(0) =1.
(4.6)

The unique solution to (4.6) is y(t) = e−t
2
, t ∈ [0, 1]. Since we know explicitly the true solu-

tion to (4.6), we can visualize the error and the training loss while training the parameters of
approximations through gradient descent as in Fig. 2. As we mentioned in the front of Section
4, the error and the training loss in PINN I are E(θ)2 and Lde(θ)2 + |N(t0, θ)− y0|2, respec-
tively. On the other hand, the error and the training loss in PINN II are EA(θ)2 and LA(θ)2,
respectively. As in Fig. 3, the ratio of error to training loss

(
error

training loss

)
should be always less

than 3 and 2 in PINN I and PINN II by the error estimates (4.1), (4.3), respectively.

FIGURE 2. Visualizing training loss and error for y′(t) = −2te−t
2

, t ∈ [0, 1] with y(0) = 1

FIGURE 3. Visualizing
(

error
training loss

)
for y′(t) = −2te−t

2

, t ∈ [0, 1] with y(0) = 1
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Example 4.2. Consider the following initial value problem:{
y′(t) =1.27y(1− y), t ∈ [0, 1]

y(0) =0.67.
(4.7)

The unique solution to (4.7) is y(t) = 1
1−3.03e−1.27t , t ∈ [0, 1]. The error and the training loss in

PINN I are E(θ)2 and Lde(θ)2 + |N(t0, θ)− y0|2, respectively. As in Fig. 4, we can visualize
the error and the training loss. On the other hand, the error and the training loss in PINN II
are EA(θ)2 and LA(θ)2, respectively. Figure 5 describes that the ratio of error to training loss,(

error
training loss

)
is less than 3 and 2 in PINN I and PINN II, respectively, so that we can validate

the error estimates, (4.1) and (4.3).

FIGURE 4. Visualizing the training loss and the error for y′(t) = 1.27y(1 − y),
t ∈ [0, 1] with y(0) = 0.67

FIGURE 5. Visualizing
(

error
training loss

)
for y′(t) = 1.27y(1− y), t ∈ [0, 1] with y(0) = 0.67
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Example 4.3. Consider the following initial value problem:y′(t) =
3t2 + 4t+ 2

2y − 2
, t ∈ [0, 1]

y(0) =− 1.

(4.8)

The unique solution to (4.8) is y(t) = 1 −
√
t3 + 2t2 + 2t+ 4, t ∈ [0, 1]. The error and the

training loss in PINN I are E(θ)2 and Lde(θ)2 + |N(t0, θ) − y0|2, respectively. On the other
hand, the error and the training loss in PINN II areEA(θ)2 and LA(θ)2, respectively. As in Fig.
6, we can visualize the error and the training loss. Figure 7 describes that the ratio of error to
training loss,

(
error

training loss

)
is less than 3 and 2 in PINN I and PINN II, respectively, so that we

can validate the estimates, (4.1) and (4.3).

FIGURE 6. Visualizing the training loss and the error for y′(t) = 3t2+4t+2
2y−2 , t ∈ [0, 1]

with y(0) = −1

FIGURE 7. Visualizing
(

error
training loss

)
for y′(t) = 3t2+4t+2

2y−2 , t ∈ [0, 1] with y(0) = −1
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Example 4.4. Consider the following initial value problem:y′(t) =
t2 + ty + y2

t2
, t ∈ [1, 2]

y(1) =0.
(4.9)

The unique solution to (4.9) is y(t) = t tan(log(t)), t ∈ [1, 2]. The error and the training loss
in PINN I are E(θ)2 and Lde(θ)2 + |N(t0, θ)− y0|2, respectively. On the other hand, the error
and the training loss in PINN II are EA(θ)2 and LA(θ)2, respectively. As in Fig. 8, we can
visualize the error and the training loss. Figure 9 describes that the ratio of error to training
loss,

(
error

training loss

)
is less than 3 and 2 in PINN I and PINN II, respectively, so that we can

validate the estimates, (4.1) and (4.3).

FIGURE 8. Visualizing the training loss and the error for y′(t) = t2+ty+y2

t2 , t ∈ [1, 2]
with y(1) = 0

FIGURE 9. Visualizing
(

error
training loss

)
for y′(t) = t2+ty+y2

t2 , t ∈ [1, 2] with y(1) = 0
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Example 4.5. Consider the following initial value problem:{
y′′(t) + 2y′(t) + 10y(t) =0, t ∈ [0, 1]

y(0) =0.75, y′(0) = 0
(4.10)

The unique solution to (4.10) is y(t) = e−t
(

3
4 cos(3t) + 1

4 sin(3t)
)
, t ∈ [0, 1]. Since we know

explicitly the true solution to (4.10), we can visualize the error and the training loss while
training the parameters of approximations through gradient descent. As we mentioned in the
front of Section 4, the error and the training loss in PINN I areE(θ)2 and Lde(θ)2+|N(t0, θ)−
y0|2 + |N ′(t0, θ)− y′0|2, respectively. As in Fig. 10, we can visualize the error and the training
loss. On the other hand, the error and the training loss in PINN II are EA(θ)2 and LA(θ)2,
respectively. Figure 11 describes that the ratio of error to training loss,

(
error

training loss

)
is less than

4 and 3 in PINN I and PINN II, respectively, so that we can validate the estimates, (4.4) and
(4.5).

FIGURE 10. Visualizing the training loss and the error for y′′(t)+2y′(t)+10y(t) =
0, t ∈ [0, 1] with y(0) = 0.75, y′(0) = 0

FIGURE 11. Visualizing
(

error
training loss

)
for y′′(t) + 2y′(t) + 10y(t) = 0, t ∈ [0, 1]

with y(0) = 0.75, y′(0) = 0
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4.3. Summary and Outlook.

For the numerical experiments in Section 4.2, the PINN model of (1, 16, 32, 1) was used with
an activation function tanh. Each experiment contained 1000 epochs of training with 10000
sample size and a learning rate of 0.01. Adam optimizer and a scheduler were used addition-
ally. For further details, the code used for numerical experiments is available at
https://github.com/hahmYoo/Error-Estimates-in-PINN.
In summary, by numerical experiments, we verified the Error estimates 1–4 in (3.2), (3.4),
(3.10) and (3.13) hold well. Furthermore, a significant relationship exists between the trajec-
tory of the error and the training loss. In other words, the trajectories of error and training loss
show similar behavior, and we expect that there is a strong tendency beyond the error estimates
we derived. Our error estimates are valid even if the neural network is replaced with an arbi-
trary smooth function, which means that inherent properties of neural networks were not used
to derive our error estimates. Although Fig. 9 presents fairly sharp upper bounds for error

training loss
in the case when the epoch was very small, we can see in many examples that the upper bounds
for error

training loss indicated by the dotted line are quite relaxed. If error estimates are derived based
on the inherent structure of a neural network, such as the universal approximation theorem, it
is expected that more accurate error estimates can be derived in PINN.
Throughout this paper, we verify that error is strongly related to training loss functions by us-
ing basic calculus with probabilistic arguments. By expanding our discussion further, we expect
that PINN methods can be efficiently applied to find approximations of solutions to various el-
liptic and parabolic partial differential equations. We also expect that mathematical analysis for
error estimates via training loss functions can be studied in general partial differential equations
as in [14, 15, 16].
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