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A PRIORI ERROR ESTIMATES AND SUPERCONVERGENCE
PROPERTY OF VARIATIONAL DISCRETIZATION FOR
NONLINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS'

YUELONG TANG* AND YUCHUN HUA

ABSTRACT. In this paper, we investigate a priori error estimates and su-
perconvergence of varitional discretization for nonlinear parabolic optimal
control problems with control constraints. The time discretization is based
on the backward Euler method. The state and the adjoint state are ap-
proximated by piecewise linear functions and the control is not directly
discretized. We derive a priori error estimates for the control and super-
convergence between the numerical solution and elliptic projection for the
state and the adjoint state and present a numerical example for illustrating
our theoretical results.
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1. Introduction

There have been extensive studies in convergence of finite element approxi-
mation for some classes of nonlinear elliptic optimal control problems, see, for
example, [1, 3, 14], although it is impossible to give even a brief review here.
Systematic introduction of finite element method for PDEs and optimal control
can be found in [7, 13, 15, 19, 20, 21].

The superconvergence property of finite element solutions has also been an ac-
tive research area in numerical analysis for PDEs and optimal control problems,
see, for example, [4, 5, 11, 18, 22, 23, 24, 26, 27, 28]. Recently, superconvergnece
of mixed finite element methods for optimal control problems has been studied
in [6, 25] and a second-order convergence result of elliptic optimal control prob-
lems is proved by Hinze [9]. For parabolic optimal control problems, a priori
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error estimates of h + k were established in [2, 8, 16, 17]. But it is more difficult
to obtain error estimates and superconvergence for nonlinear parabolic optimal
control problems.

In this paper, we are interested in the following nonlinear parabolic optimal
control problem:

min 1/T </(y—yd)2+/u2>dt,
u€laa 2 J Q Q
y — div(AVy) + o(y) = f +u, inQ x(0,7], (1)
y=0, ondQ x (0,7T],
y(0) =yo, inQ,

where Q be a bounded domain in R™(n < 3) with a Lipschitz boundary 052,
0 < T < +oo. The coefficient A = (a;;(x))nxn € (WH*°(Q))"*", such that for
any £ € R, (A(z)€) - € > c | € |? with ¢ > 0. Let yq, f € C(0,T; L*(2)). We
assume that the function ¢(-) € W2°°(—R, R) for any R > 0, ¢'(-) € L*(Q2) and
¢'(-) > 0. Moreover, we suppose that U, is a nonempty closed convex set in
L2(0,T; L*(2)), defined by

Uaa = { v(z,t) € L*(0,T; L*(Q)) : a < v(z,t) < b, a.e. inQx(0,7] },

where a and b are constants.

The purpose of this work is to obtain the convergence of h? 4k for linear finite
element method and the backward Euler method solving nonlinear parabolic
optimal control problems with control constraints.

We adopt the standard notation W4() for Sobolev spaces on £ with norm
|| [lwm.a(e) and seminorm |- [yym.a(q). We set Hg(Q) = {v € H(Q) : v|po = 0}
and denote W™2(Q) by H™(Q). We denote by L*(J; W™4(Q)) the Banach
space of L* integrable functions from J into W™ 4(2) with norm ||v||rs (7,wm.a(a)) =

1
(fOT \|v||€vm,q<9)dt) * for s € [1,00) and the standard modification for s = oo.

Similarly, one can define the space H!(J; W™4(Q)). The details can be found
in [13]. In addition, ¢ or C' denotes a generic positive constant independent of h
and k.

The rest of the paper is organized as follows. In Section 2, we define a
variational discretization approximation for the model problem. In Section 3,
we derive a priori error estimates for the control. In Section 4, we obtain a
superconvergence propery for the state and the adjoint state. We present a
numerical example to verify our theoretical results in the last section.

2. Variational discretization for nonlinear parabolic control
problems

In this section, we introduce a variational discretization approximation of the
model problem. For ease of exposition, we set V = L2(0,T; W) with W = HZ ()
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and X = L2(0,T;U) with U = L2(Q),
K={v(z) € L*(Q) :a<v(z) <b, ae inQ}.

Moreover, we denote | - || gm () and || - [[L2(@) by || - [lm and || - ||, respectively.
Let

a(v,w) = /(AV’U) -V, Yo, weW,
Q

(fl,f2):/ﬂf1‘f27 Vf1,f2€U.

It follows from the assumptions on A that
a(v,v) > clolli, la(v,w)| < Cllofhllwlly, Vv, weW.

Thus a possible weak formula for the model problem (1) reads:

min 1/T(/( — )2+/u2>dt

u€Uqzq 2 0 Q y yd Q ’ 2

() + aly,w) + (60),w) = (f +ww),  vwewre@r, @

y(0) = yo.
It is well known (see, e.g., [13]) that the problem (2) has a solution (y,u), and
the pair (y,u) € (H*(0,T; L*(2)) N'V) X U,gq is the solution of (2) if there is a
adjoint state p € H(0,T; L?(2)) NV such that the triplet (y,p,u) satisfies the
following optimality conditions:

(ye, w) + a(y,w) + (6(y), w) = (f + u, w), YweW,te(0,T],

¥(0) = o, ®)

—(pe,q) +alg,p) + (&' (Wp, @) = (a —y,q),  YqgeW,te[0,T), @
p(T) =0,

(uw—p,v—u) >0, Vve K, tel0,T). (5)

Let 7" be regular triangulations of Q and Q = U, 71 7. Let h = max,¢7n {h,},
where h., denotes the diameter of the element 7. Moreover, we set

Wh = { Up € C(Q) : ’U}L|7— elPy, V7T e Th,vh|aQ =0 },

where Py is the space of polynomials up to order 1.
We discuss a fully discrete variational discretization approximation of the
problem (2) Let 0=typ<t1 <---<tn =T, k; =t; —ti1,0=1,2,--- 7N,k:
. i .
pax, k;. Set " = p(x,t;) and
ol — il

,i=1,2,--,N.
[

dtQOi =
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We define for 1 < p < oo the discrete time-dependent norms

Nl ]
i || P
il 0,7 = <’“ > H‘PZme»q(m) ’

i=1-1

where [ = 0 for the control u and the state y and [ = 1 for the adjoint state
p, with the standard modification for p = oco. Just for simplicity, we denote

I - |\|lP(O,T;Ww(Q)) by ] - |||ZP(W”"vQ) and let
10, T;W™1(Q)) == { ¢ : [lllllwwma <o},  1<p<oo.

Then a possible fully discrete variational discretization approximation of (2)
is as follows:

N
1 / L o
min - » k; ynL =y +/u‘ ),
i g ok ([ ks f
(dty;wwh) +a (y27wh) + ((b(ylzz)vwh) = (fz +u;lwwh) ’
th S Wh7i: 1727"' 7N7 yiOL :yg>
where y{} is an elliptic projection of yq.

It follows (see e.g. [26]) that the control problem (6) has a solution (yj,u}),
i1 =1,2,---,N, and (y}”uz) € Whx K,i=1,2--,N, is the solution of
(6) if there is a adjoint state pz_l e Wh i=1,2,---,N, such that the triplet
(yfl,p;;l, u}l) eWhxWhxK,i=1,2,---, N, satisfies the following optimality
conditions:

(dty;nwh) +a (y;za wh) + (¢(y;1)7wh) = (fl + u;wwh) ; (7)
Vw, e Whi=12,--- N,y = yg,
— (el qn) + a(qn Py ") + (&' Widph "t an) = (vh — visan) »
th EWhvi:N7"' a2717p§1\, :07

(8)

(u%—pﬁbfl,v—uZ)ZO, Yve K,i=1,2,---,N. (9)

It should be point out that we minimize over the infinite dimensional set K
instead of minimize over a finite dimensional subset of K like in [10].

3. A priori error estimates

In this section, we consider a priori error estimates for the control. We define
the following intermediate variables. Let (yj(u),p) '(u)) € Wh x Wh, i =
1,2,--- , N, satisfies the following system:

(deyh(u), wn) + a (yp,(w), wn) + (¢(yh(u)), wn) = (f* +u',wp)

10
V’LUhGWh7i:1727"'aNay}OL(u):y6L7 ( )
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— (dtpi(UL qh) +a (qh,pifl(U)) + (¢'(yi(U))p?1(U), qh) = (yé — yh(u), qh) 7

Vgn € W' i=N,--- 2,1, p, (u) =0.

We introduce the elliptic projection operator P, : W — W, which satisfies:
for any ¢ € W

a(¢p — Pro,wy) =0,  Yw, € W (12)
It has the following approximation properties:
lo = Pugll < CR?|[0ll2, V¢ € H*(Q). (13)
Lemma 3.1. Let (y,p,u) and (yn(u),pn(u)) be the solutions of (3)-(5) and
(10)-(11), respectively. Suppose that y,p € 1%(0,T; H*(Q)) N H(0,T; H?(2)) N
H?(0,T; L*(Q)). Then

1lyn (@) = ylllizz2) + o) = pllliz(zzy < C(h* + k). (14)

Proof. From the definition of Py, (3) and (10), for any wy, € W" i =1,2,--- , N,

we have

(deyi,(u) — de Pry’,wi) + a (yj,(w) — Puy*,wp)
- (dtphyivwh) - a(yiawh) + (f +u 7wh) - (¢(y;1(u))7wh) (15)
— (dePry’ — dyy' s wn) — (dey’ — yi, wn) + (6(y") — d(yh (u), wh).

By selecting wy, =y} (u) — Ppy*, we obtain

(deyp (w) — de Poy’, yh () — Pry’) + a (yi (u) — Puy’, yh (u) — Pry')
— (dePry’ — duy’, yp, (u) — Pry’) — (dey’ — i, yh(u) — Pay’) (16)
+ ((Pay") — d(yi,(w), yj, (w) — Pay") + (0(y") — ¢(Pay’), yh(u) — Pry’).

Note that ¢'(-) > 0, a (y}b(u) — Pyt yh (u) — Phyi) >0, and

(dtyZ( ) = de Py’ yi, (u) — Pry’)

| ' (17)
> oo () = 21 = ko0 = o )~ By
It follows from (13), (16)-(17) and Holder’s inequality that
; — b < — Pyt + P _ i i1
i, () = oy’ < |3~ & I b

+ Hy - — kiyt|| + CR?ksl|y’ |2
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Summing ¢ from 1 to N* (1 < N* < N), we get

07|

N* N*
< P =D =y O+ D v =yt = ki + CR2 [yl a2y
=1 =1

N* N* t;
<Y Ry =y 4 3 [ e = Ol dt+ Ry
i=1 i=1""ti—1

N* oty N™ ot
<on Y [ e + 63 [ el e+ CH ey
i=1 7 ti- i=17ti-1

e N
<cn? / lyell, d + & / lyeell dt + CR2| [g]l12
0 0

<C (h2 19ell L2 gz + el L2 ey + Ch2|||y|||lz(Hz)) .
Thus, we have
llyn(w) = Puylllioe 2y < C (B> + k) -

From (13), we derive

i
Y

N I N
|||Phy—y”|122(L2):Zki Phyz—yZH §0h4Zl€i
i=1 =1

According to embedding theorem and (20)-(21), we have
lyn (1) = yllliz2) < C (h* + k).
Similarly, we can prove that
Ilpn(w) = pllli2(r2) < C (A + k).
Then (14) follows from (22) and (23).

For ease of exposition, we set

J(u)—;/OT(/Q@—yd)M/Qu?)du

Jh(uh);/OT(/Q(ZJhyd)2+/QU%L>dt.

It can be shown that

T
(' (), v) = / (u— p.v)dt,

(Jhie (un) ,v) = Zkz (uj, —pz_l(uh),v) .

2
4
9 =Ch H|y|Hl22(H2)'

(19)
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In many applications, J(+) is uniform convex near the solution u (see, e.g., [14])
that is closely related to the second order sufficient conditions of the control
problem. It is assumed in many studies on numerical methods of the problem
(see, e.g., [3]). Hence, if h and k are small enough, we can assume that Jy(-) is
uniform convex, namely, there is a positive constant ¢, such that

clllu =l < (Jhn(w) = g (V) ,u=v),  VuveK. (24)

Theorem 3.2. Let (y,p,u) and (yn,pn, un) be the solutions of (3)-(5) and (7)-
(9), respectively. Assume that all the conditions in Lemma 3.1 are satisfied.
Then, we have

Jw —unllliz(r2y < C (R + k). (25)
Proof. From (5), (9) and (24), we obtain

e|llu = unlllz r2
< (J}/Lk(u) - Jl/zk (un),u —up)

N N

= Z ki (u' — py (), 0’ — ) — Z ki (uf, —pptout —uj) (26)
i1 i=1
N .

<k — gt — )
i=1

=1
N
— kz i—1 _ i—1 , i i + kz i 0 , _
; (p ph (), u uh) ; (p P uh) -
N . . 2 N . . 2 N . .12
<CO Y k||p ™ = pi @] + @Yk |p = p 6D ke i
i=1 =1 =1
<C0) (Illpn(u) — lel22(L2) + kz'lptHiQ(J;L2(Q))) +6|f|u — uh|\|122(L2)
From (14) and (26)-(27), we obtain (25). O

4. Superconvergence analysis

In this section, we discuss the superconvergence properties for the state vari-
able and the adjoint state variable.

Theorem 4.1. Let (y,p,u) and (yn, pn, un) be the solutions (3)-(5) and (7)-(9),
respectively. Assume that all the conditions in Theorem 3.2 are valid. Then

1Pry — ynlllizcery + 11 Pap — palllizcany < C (R* + k). (28)
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Proof. From (3) and (7), for any w, € W" and i = 1,2,--- , N, we obtain the
following error equation:
(Yt — deyi,wn) +a (y' = yi,wn) + (DY) = S(yh),wn) = (u' = up,wp) . (29)
By choosing wy, = Pny* — yi and using the definition of P, we get
(dePry’ — dey' + dey’ — y; + 6(Pry') — Sy") +u' — ujy, Pay’ — y3)

= (de Pry’ — duyi,, Puy’ — u) + a (Puy’ — vh, Puy' — uh) (30)
+ (¢(Pry’) — o(Wh), Pry’ — up)-
Note that
1

(dPuy’ = duh Py’ = ) = 5 (1Puy’ = wi|” = 1Py = 7). 1)

2%
and
(dePry™ — dey™, Proy™ — i) < ||dePoy’ — duyf'|| | Poy’ — v |
<Ch? [|dey' (|, || Pay" = v |

<ot [ " el Pyt — o | e
-
SCthi_% el L2ty s m2(92)) HPhyi - 3/2” .
Additionally,
(dey’ — i, Poy' — i) =k (v' — o' = kyt, Puy® — u)
<k ly' =yt = kyi]| || Py’ — vl
(33)

t; ) .
=k ! / (tim1 — t)ypedt HPhy" - yZH

ti—1

Scki%HyttHLz(ti_l,ti;L?(Q)) HPhyi - yﬁ“ »
and
(6(Pry") = &), Puy’ — y3,) <ClIPry" = y' [l Pay" — il
<COPay’ = y' 1> + 8] Puy’ — yi1? (34)
<CO Y113+ 011 Pay’ — yi|1*.

Let 0 be small enough. Multiplying both sides of (30) by 2k; and summing @
from 1 to N, by using Holder’s inequality and Young’s inequality, we have

N
2
o - e
i=1

<C(9) (h4|‘yt||iQ(J;H2(Q)) + kQHyttHQLZ(J;LQ(Q)) + h4”|y||‘122(H2) + [|Ju — Uh\”??(L?))
From Theorem 3.2, (25) and (35), we get
1Pry = ynlllizczrny < C (R + k). (36)

. 112
=i

(35)



Variational discretization for nonlinear parabolic control problems 487

Similarly, we can prove that
1Pap = palllizcay < C (h* + k). (37)
Then (28) follows from (36)-(37). O

5. Numerical experiments

In this section, we present a numerical example to illustrate our theoretical
results. The optimal control problem was dealt numerically with codes developed
based on AFEPack. This package is freely available and the details can be found
n [12].

We solve the following nonlinear parabolic optimal control problem:

min 2 [ ([ w0 -wwor+ [we?)

yi(, 1) — div(A(z)Vy(z, 1) + o(y(, 1)) = fz, 1) +u(z,t), inQx(0,T], (38)
y(z,t) =0, ondf x (0,7,
y(2,0) = yo(x), inQ,
The discretization was described in Section 2. For ease of exposition, we
denote |[| - [[[iz(z1) by [|| - [[]1-
Example 1. Let Q =[0,1] x [0,1], T = 1. The data are as follows:

oY) =vy>,a=-05b=0.5A(x)=1

p(z,t) = bln(27rx1)51n(27rx2)(1 —t),

y(x,t) = sin(2mrxy )sin(27a)t,

u(z,t) = max( 0.5, min(0.5, p(z,t))),

[, ) = yi(2,t) — div(A(2)Vy(z, 1) + o(y(z, 1)) — u(z,1),

ya(@,t) = y(a,t) — po(, ) — div(A* (@) Vp(a, 1) + ¢ (y(w, )p(a, ).

The errors |||u — ugl|l, |||Pry — ynlll1 and |||Pnp — prl|l1 on a sequence of

uniformly refined meshes are shown in Table 1 where the convergence order is
computed by the following formula: Rate = M—:g;% In Figure 1, we

show the relationship between logig(error) and logio(sqrt(dofs)). Tt is easy to
see |[[u = un||| = O (h* + k), I[Py — ynllls = O (h* + k) and ||[Php — pallly =
O (h2 + k) are consistent with our theoretical results. In Figure 2, we plot the
profiles of the approximation solution w;, when ¢ = 0.5.

TABLE 1. Numerical results, Example 1.

h | k| [llu—wunll] | Rate | [[[Pny — ynlllL | Rate | [[[Pap — palllr | Rate
T L 457845002 | — | 331962e-02 | | 331860002 |
LT L [1.223880-02 | 1.90 | 8.22965¢-03 | 2.01 | 8.22864e-03 | 2.01
L1l [3:091920-03 | 1.98 | 2.05253¢-03 | 2.00 | 2.05242¢-03 | 2.00
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FIGURE 1. The order of convergence.
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FIGURE 2. The numerical solution u; when t = 0.5.
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