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ERROR ESTIMATES FOR FULLY DISCRETE MIXED

DISCONTINUOUS GALERKIN APPROXIMATIONS FOR

PARABOLIC PROBLEMS

Mi Ray Ohm†, Hyun Young Lee, and Jun Yong Shin∗

Abstract. In this paper, we introduce fully discrete mixed discontinuous

Galerkin approximations for parabolic problems. And we analyze the error
estimates in l∞(L2) norm for the primary variable and the error estimates

in the energy norm for the primary variable and the flux variable.

1. Introduction

To approximate the solution of elliptic or parabolic problems, many authors
[1, 6, 20] introduced discontinuous Galerkin methods with interior penalties
which generalized the Nitsche method in [11]. Because of its advantages such
as the mesh adaptivity and the local mass conservativeness, the discontinuous
Galerkin methods which have now a lot of forms and names are widely used for
many partial differential problems. We refer to [2, 3] and the literatures cited
therein, for more details.

Riviere and Wheeler [19] introduced semidiscrete and fully discrete locally
conservative discontinuous Galerkin methods for nonlinear parabolic equations
and they obtained optimal error estimates in L2(H1) and suboptimal error
estimates in L∞(L2) for semidiscrete approximations and obtained optimal error
estimates in `2(H1) and suboptimal error estimates in `∞(L2) for fully discrete
approximations. Ohm et. al [12, 13] obtained optimal error estimates in L∞(L2)
for semidiscrete approximations and optimal error estimates in `∞(L2) for fully
discrete approximations, which improved the results of Riviere and Wheeler
[19]. And Ohm et. al [14] introduced fully discrete discontinuous Galerkin
method for nonlinear parabolic equations based on Crank-Nicolson method for
time stepping and obtained optimal error estimates in `∞(L2) for both spatial
and temporal directions.
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To approximate both primary variable and its flux variable simultaneously,
Raviart and Thomas [18] and Nedelec [10] introduced mixed finite element meth-
ods with the inf-sup conditions. These mixed finite element methods were widely
used for elliptic or parabolic problems [5, 7, 9]. And Pani [16] introduced H1-
Galerkin mixed finite element method without inf-sup conditions for parabolic
problems. Applications of these H1-Galerkin mixed finite element method were
given in [8] for the Sobolev equation and in [17] for parabolic integro-differential
equations.

Chen [3] introduced a family of mixed discontinuous finite element methods
for second-order elliptic equations. Chen and Chen [4] developed a theory for
stability and convergence for mixed discontinuous finite element methods in
a general form for second-order partial differential problems. Ohm et. al [15]
introduced a semidiscrete mixed discontinuous Galerkin method with an interior
penalty to approximate the solution of parabolic problems and obtained optimal
error estimates in L∞(L2) for the primary variable u, optimal error estimates
in L2(L2) for ut and suboptimal error estimates in L∞(L2) for the flux variable
σ.

In this paper, we consider fully discrete mixed discontinuous Galerkin ap-
proximations for parabolic problems and obtain error estimates for the primary
variable and its flux variable. In section 2, we introduce a model problem, fi-
nite element spaces, and the mixed formulation with an interior penalty for the
model problem. In section 3, we state some projections with approximation
properties which will be used later. And in section 4, we obtain the error esti-
mates in l∞(L2) norm for the primary variable and the error estimates in the
energy norm for the primary variable and the flux variable.

2. Model problems and finite element spaces

We consider the following parabolic problem

ut −∇ · (a∇u) = f, in Ω× (0, T ],(2.1)

u = gD, on ΓD × (0, T ],(2.2)

a∇u · n = gN , on ΓN × (0, T ],(2.3)

u(x, 0) = u0(x), in Ω.(2.4)

Here Ω ⊂ Rd, 1 ≤ d ≤ 3, is an open bounded convex domain with the boundary
∂Ω = ΓD ∪ ΓN , ΓD ∩ ΓN = φ and n is the unit outward normal vector to
∂Ω. We assume that a is a symmetric, positive definite bounded tensor and the
given functions f ∈ L2(Ω), u0 ∈ L2(Ω), gD ∈ H1/2(ΓD), and gN ∈ H−1/2(ΓN ).
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By introducing σ = a(x)∇u in (2.1), we get the following mixed form

ut −∇ · σ = f, in Ω× (0, T ],(2.5)

σ = a∇u, in Ω× (0, T ],(2.6)

σ · n = gN , on ΓN × (0, T ],(2.7)

u = gD, on ΓD × (0, T ],(2.8)

u(x, 0) = u0(x), in Ω.(2.9)

To introduce the mixed discontinuous Galerkin finite element approximations
of (2.5)-(2.9), let {Th} be a sequence of finite element partitions of Ω for h > 0,
and each subdomain T ∈ Th have a Lipschitz boundary. We allow the property
that a vertex of one element can lie on the edge or face of another element for
the given two adjacent elements in Th. For a given Th, let EIh be the set of all
interior boundaries e of Th, EDh and ENh the sets of boundaries e on ΓD and ΓN ,
respectively, EBh = EDh ∪ ENh the set of the boundaries e on ∂Ω, EIDh = EIh ∪ EDh ,
and Eh = EIh ∪EBh . For an e ∈ EBh , we denote n the outward unit normal vector
to ∂Ω and for an e ∈ EIh with e = T1 ∩ T2 and T1, T2 ∈ Th, we associate the
direction of n with the definition of jump across e.

For l ≥ 0, we define

H`(Th) = {v ∈ L2(Ω) : v|T ∈ H`(T ), T ∈ Th}

together with its norm

‖v‖H`(Th) =
( ∑
T∈Th

‖v‖2H`(T )

)1/2
.

For v ∈ H`(Th) with l > 1
2 , we define the jump of v across e ∈ EIh by

[v] = v|T2∩e − v|T1∩e

and the jump of v across e ∈ EBh by

[v] =

{
v, e ∈ EDh ,
0, e ∈ ENh .

And we define the average of v on e ∈ EIh by

{v} =
1

2

(
v|T1∩e + v|T2∩e

)
and the average of v on e ∈ EBh by

{v} = v|e.

Let V = H1(Th), W = {w ∈ (H1(Th))d | ∇ · w ∈ L2}, and Vh ⊂ V and
W h ⊂ W the finite element subspaces, respectively. Then they are defined
locally on each element T ∈ Th, so that W h(T ) = W h|T and Vh(T ) = Vh|T .
Neither continuity constraint nor boundary values are imposed on W h × Vh.
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Now the corresponding mixed formulation with an interior penalty for (2.1)-
(2.4) can be defined as follows: find u ∈ V and σ ∈W such that

(ut, v) +
∑
T∈Th

(σ,∇v)T −
∑

e∈EIDh

({σ · n}, [v])e + J(u, v)(2.10)

= (f, v) +
∑
e∈ENh

(gN , v)e +
∑
e∈EDh

h−1(gD, v)e, ∀ v ∈ V,

(α(x)σ, τ )−
∑
T∈Th

(∇u, τ )T +
∑

e∈EIDh

({τ · n}, [u])e(2.11)

=
∑
e∈EDh

(gD, τ · n)e, ∀ τ ∈W ,

where α(x) = a(x)−1, J(u, v) =
∑

e∈EIDh
h−1e

∫
e
[u][v]dx, he = |e|, ( , ) denote

an L2 inner product on Ω, ( , )T an L2 inner product on T , and ( , )e an L2

inner product on e. Notice that the solution u and σ of (2.5)-(2.9) satisfies the
system (2.10)-(2.11).

We define bilinear forms A,B, and C as follows: for any τ , r ∈ W and
u, v ∈ V

A(τ , r) = (ατ , r),(2.12)

B(τ , v) =
∑
T∈Th

(τ ,∇v)T −
∑

e∈EIDh

({τ · n}, [v])e,(2.13)

C(u, v) = J(u, v) + λ(u, v),(2.14)

where λ is a positive real number. And also we define linear functionals F,G1
D, G

2
D,

and GN as follows: for any τ ∈W and v ∈ V

F (v) = (f, v),(2.15)

G1
D(τ ) =

∑
e∈EDh

(gD, τ · n)e,(2.16)

G2
D(v) =

∑
e∈EDh

h−1(gD, v)e,(2.17)

GN (v) =
∑
e∈ENh

(gN , v)e.(2.18)

Then, by using the bilinear forms (2.12)-(2.14) and linear functionals (2.15)-
(2.18), the system (2.10)-(2.11) can be rewritten into the system

(ut, v) +B(σ, v) + C(u, v)− λ(u, v)(2.19)

= F (v) +GN (v) +G2
D(v), ∀v ∈ V

A(σ, τ )−B(τ , u) = G1
D(τ ), ∀τ ∈W .(2.20)



FULLY-DISCRETE MIXED DISCONTINUOUS GALERKIN METHODS 689

Define the following broken norms on V and W : for any v ∈ V and τ ∈W

|||v|||2S = ‖v‖21 + J(v, v),(2.21)

|||τ |||2W = ‖τ‖2 +
∑
T∈Th

h2T ‖∇ · τ‖2T ,(2.22)

|||v|||2C = J(v, v) + λ‖v‖2,(2.23)

‖τ‖2A = A(τ , τ ),(2.24)

where ‖ ‖1 denotes H1 norm on W and ‖ ‖ denotes L2 norm on V or W .

3. Auxiliary projections and some estimates

For a given (u,σ) ∈ V ×W , we can define (ũ, σ̃) ∈ Vh ×W h such that

B(σ − σ̃, v) + C(u− ũ, v) = 0, ∀v ∈ Vh,(3.1)

A(σ − σ̃, τ )−B(τ , u− ũ) = 0, ∀τ ∈W h.(3.2)

The unique existence of (ũ, σ̃) ∈ Vh ×W h follows from the following Lemmas
3.1 and 3.2 whose proofs can be found in [15].

Lemma 3.1. For any u, v ∈ V and any σ, τ ∈W , the followings hold:
(1) A(σ, τ ) ≤ K|||σ|||A|||τ |||A, A(σ, τ ) ≤ K|||σ|||W |||τ |||W ;
(2) B(σ, v) ≤ K|||σ|||W |||v|||S ;
(3) C(u, v) ≤ K|||u|||S |||v|||S .

Lemma 3.2. For any v ∈ V and any τ ∈W h, the followings hold:
(1) A(τ , τ ) ≥ K|||τ |||2W ;
(2) C(v, v) ≥ K|||v|||2C .

Lemma 3.3. For any (u,σ), (ut,σt) ∈ V ×W , we have

|||u− ũ|||C + ‖σ − σ̃‖A ≤ Khk(‖σ‖k+1 + ‖u‖k+1),

|||ut − ũt|||C + ‖σt − σ̃t‖A ≤ Khk
(
‖ut‖k+1 + ‖σt‖k+1

)
,

|||σ − σ̃|||W ≤ Khk(‖σ‖k+1 + ‖u‖k+1),

|||σt − σ̃t|||W ≤ Khk
(
‖ut‖k+1 + ‖σt‖k+1

)
,

where (ũ, σ̃) ∈ Vh ×W h is given in (3.1) and (3.2).

Proof. The proofs of these results can be found in Lemma 3.1 - Lemma 3.3 of
[15]. �
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Lemma 3.4. For any (u,σ), (ut,σt) ∈ V ×W , we have

‖un − ũn‖ ≤ Khk+1(‖un‖k+1 + ‖σn‖k+1),

‖unt − ũnt ‖ ≤ Khk+1(‖unt ‖k+1 + ‖σn
t ‖k+1),

‖untt − ũntt‖ ≤ Khk+1(‖untt‖k+1 + ‖σn
tt‖k+1),

where (ũ, σ̃) ∈ Vh ×W h are given in (3.1) and (3.2).

Proof. The proofs of first two results can be found in Lemma 3.4 of [15]. The
proof of the last result is very similar to ones of first two results. �

4. Error Estimates

In this section, we want to construct the fully discrete mixed discontinuous
Galerkin approximations of (2.1)-(2.4). For the given positive integer N , let
4t = T

N , tj = j4t for j = 0, 1, 2, · · · , N . Then the fully discrete mixed discon-

tinuous Galerkin approximations {U j}Nj=0 ⊂ Vh, {Σj}Nj=1 ⊂ W h of (2.1)-(2.4)
are defined as follows: for j = 1, 2, · · · , N(U j − U j−1

4t
, vh
)

+B(Σj , vh) + C(U j , vh)− λ(U j , vh)(4.1)

= F (vh) +GN (vh) +G2
D(vh), ∀ vh ∈ Vh,

A(Σj , τh)−B(τh, U
j) = G1

D(τh), ∀ τh ∈W h(4.2)

and U0(x) is an appropriate projection of u0(x).

Theorem 4.1. If (u,σ) ∈ V ×W is the solution of (2.5)-(2.9) and {U j}Nj=0 ⊂
Vh and {Σj}Nj=1 ⊂W h are the solution of (4.1)-(4.2), then

‖uj − U j‖2 ≤ K
(
h2(k+1) + (4t)2

)
, j = 0, 1, 2, · · · , N,

and

4t
N∑
j=1

(
|||uj − U j |||2C + ‖σj −Σj‖2A

)
≤ K

(
h2k + (4t)2

)
.

Proof. It is clear that

‖ũ0 − U0‖ ≤ ‖ũ0 − u0‖+ ‖u0 − U0‖ ≤ Khk+1
(
‖u0‖k+1 + ‖σ0‖k+1

)
.

From (4.1)-(4.2) and the fact that the solution u and σ of (2.5)-(2.9) satisfies
the system (2.19)-(2.20), we obtain the error equation for j

(ujt − ∂tU j , vh) +B(σj −Σj , vh) + C(uj − U j , vh)(4.3)

= λ(uj − U j , vh), ∀ vh ∈ Vh,

A(σj −Σj , τh)−B(τh, u
j − U j) = 0, ∀ τh ∈W h,(4.4)
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where ∂tU
j = Uj−Uj−1

4t . Then we have

(∂tũ
j − ∂tU j , vh) +B(σ̃j −Σj , vh) + C(ũj − U j , vh)(4.5)

= (∂tũ
j − ũjt , vh) + (ũjt − u

j
t , vh) +B(σ̃j − σj , vh)

+ C(ũj − uj , vh) + λ(uj − U j , vh),

= (∂tũ
j − ũjt , vh) + (ũjt − u

j
t , vh) + λ(uj − U j , vh), ∀ vh ∈ Vh,

A(σ̃j −Σj , τh)−B(τh, ũ
j − U j)(4.6)

= A(σ̃j − σj , τh)−B(τh, ũ
j − uj) = 0, ∀ τh ∈W h.

From (4.5)-(4.6) with vh = ũj − U j and τh = σ̃j −Σj , we get

(∂tũ
j − ∂tU j , ũj − U j) + ‖σ̃j −Σj‖2A + |||ũj − U j |||2C

= (∂tũ
j − ũjt , ũj − U j) + (ũjt − u

j
t , ũ

j − U j) + λ(uj − U j , ũj − U j).

Since

(∂tũ
j − ∂tU j , ũj − U j)

=
1

4t
(
(ũj − U j)− (ũj−1 − U j−1), ũj − U j

)
≥ 1

24t
(‖ũj − U j‖2 − ‖ũj−1 − U j−1‖2)

and

∂tũ
j − ũjt =

1

4t
(
ũj − [ũj −4tũjt +

1

2
(4t)2ũjtt]

)
− ũjt

∼= 4t ũjtt,

we have

1

24t
(‖ũj − U j‖2 − ‖ũj−1 − U j−1‖2) + |||ũj − U j |||2C + ‖σ̃j −Σj‖2A(4.7)

≤ ‖∂tũj − ũjt‖‖ũj − U j‖+ ‖ujt − ũ
j
t‖‖ũj − U j‖

+ λ(‖uj − ũj‖+ ‖ũj − U j‖)‖ũj − U j‖

≤ K
(
4t‖ũjtt‖+ ‖ujt − ũ

j
t‖+ λ(‖uj − ũj‖+ ‖ũj − U j‖)

)
× ‖ũj − U j‖.

And so for sufficiently small 4t, we get from (4.7)

‖ũj − U j‖2 − ‖ũj−1 − U j−1‖2 + 24t
(
|||ũj − U j |||2C + ‖σ̃j −Σj‖2A

)
(4.8)

≤ K4t
[
(4t)2‖ũjtt‖2 + ‖ũjt − u

j
t‖2 + λ2‖uj − ũj‖2

]
.
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Hence summing the inequality (4.8) from j = 1 to j = m, we have from Lemma
3.3

‖ũm − Um‖2 + 24t
m∑
j=1

(
|||ũj − U j |||2C + ‖σ̃j −Σj‖2A

)
≤ ‖ũ0 − U0‖2 +K4t

m∑
j=1

[
(4t)2‖ũjtt‖2 + ‖ũjt − u

j
t‖2 + λ2‖uj − ũj‖2

]
≤ K

(
h2(k+1) + (4t)2

)
.

Now, by Lemma 3.3, Lemma 3.4, and the triangular inequality, we have

‖uj − U j‖2 ≤ K
(
h2(k+1) + (4t)2

)
, j = 0, 1, 2, · · · , N,

4t
N∑
j=1

(
|||uj − U j |||2C + ‖σj −Σj‖2A

)
≤ K

(
h2k + (4t)2

)
,

which completes the proof. �
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