• 제목/요약/키워드: epigenetic mechanisms

검색결과 133건 처리시간 0.023초

노화 관련 유전자의 후성유전학적 특성 분석 (Epigenetic Characterization of Aging Related Genes)

  • 류제운;이상철;유재수;김학용
    • 한국콘텐츠학회논문지
    • /
    • 제13권8호
    • /
    • pp.466-473
    • /
    • 2013
  • 유전자 염기서열의 직접적인 변화 대신 염기의 수정 또는 변형을 통해 유전자 발현이 조절되는 후성유전은 크게 DNA 메틸화(methylation), 히스톤 변형(modification), ncRNA(non-coding RNA)에 의해 제어가 가능하다. 본 연구에서는 후성유전을 이해하기 위해 노화 관련 유전자를 대상으로 데이터베이스를 구축하고, DNA 메틸화를 중심으로 후성 유전학적 특성을 분석하였다. 유전자의 upstream 부위와 프로모터(promoter) 부위에 있는 CpG island(CGI)에 메틸화가 될 경우 유전자 발현을 억제하기 때문에 CGI를 중심으로 전체 유전자 그룹과 노화 관련 유전자 그룹간의 분포도를 비교 분석하였다. 또한 메틸화와 관련된 CGI로부터 얻은 메틸화 관련 motif 패턴을 이용하여 노화 유전자와의 관계를 분석하였다. 노화 관련 유전자의 CGI 분포는 전사인자 결합자리의 분포와 일치하였다. 본 연구에서 제공하는 DNA 메틸화 중심의 후성유전학적 정보는 노화 관련 유전자의 조절과 노화를 이해하는데 도움이 될 것으로 사료된다.

Influence of Toxicologically Relevant Metals on Human Epigenetic Regulation

  • Ryu, Hyun-Wook;Lee, Dong Hoon;Won, Hye-Rim;Kim, Kyeong Hwan;Seong, Yun Jeong;Kwon, So Hee
    • Toxicological Research
    • /
    • 제31권1호
    • /
    • pp.1-9
    • /
    • 2015
  • Environmental toxicants such as toxic metals can alter epigenetic regulatory features such as DNA methylation, histone modification, and non-coding RNA expression. Heavy metals influence gene expression by epigenetic mechanisms and by directly binding to various metal response elements in the target gene promoters. Given the role of epigenetic alterations in regulating genes, there is potential for the integration of toxic metal-induced epigenetic alterations as informative factors in the risk assessment process. Here, we focus on recent advances in understanding epigenetic changes, gene expression, and biological effects induced by toxic metals.

우울증의 후성유전기전: BDNF 유전자의 히스톤 변형 및 DNA 메틸화의 역할 (Epigenetic Mechanisms of Depression: Role of Histone Modification and DNA Methylation in BDNF Gene)

  • 박성우
    • 생명과학회지
    • /
    • 제28권12호
    • /
    • pp.1536-1544
    • /
    • 2018
  • 우울증은 심각하며 재발하는 흔한 정신질환이다. 우울증은 환경 요인과 유전 요인, 그리고 신경생물학적 체계의 구조 및 기능의 변화로 발병한다. 후성유전학적 변화가 우울증과 관련 된다는 여러 연구들이 보고되었다. 후성 유전은 환경 요인이 크로마틴 구조를 변화시켜 DNA 염기 서열 변화 없이 유전자 발현을 조절하는 기전으로 설명된다. DNA 메틸화와 히스톤 아세틸화 및 메틸화를 포함하고 있는 히스톤 변형이 주요 후성유전기전으로 알려져 있다. 우울증 동물모델연구에서는 생애 초기 스트레스 같은 스트레스 환경이 게놈에 지속적으로 후성유전표지를 남기게 되고 이로 인해 유전자 발현이 변화되고 결국 성체가 되었을 때 신경 기능이나 행동 기능에 영향을 미치게 된다고 설명하고 있다. BDNF는 우울증과 관련된 대표적인 유전자로 알려져 있다. 설치류가 출생 전, 후, 그리고 성체 기간에 스트레스에 노출되면 해마에서 BDNF 유전자의 히스톤 변형과 DNA 메틸화 패턴이 변화되고 이로 인해 BDNF 발현이 변화된다. 이러한 과정은 불안과 우울 행동에도 영향을 미치게 된다. 본 종설에서는 BDNF 유전자의 히스톤 변형 및 DNA 메틸화와 같은 우울증 발병에 관여하는 후성유전기전의 최신 지견에 대해 논의하여 우울증 치료의 새로운 타겟 개발에 도움이 되고자 한다.

Interplay between Epigenetics and Genetics in Cancer

  • Choi, Jae Duk;Lee, Jong-Soo
    • Genomics & Informatics
    • /
    • 제11권4호
    • /
    • pp.164-173
    • /
    • 2013
  • Genomic instability, which occurs through both genetic mechanisms (underlying inheritable phenotypic variations caused by DNA sequence-dependent alterations, such as mutation, deletion, insertion, inversion, translocation, and chromosomal aneuploidy) and epigenomic aberrations (underlying inheritable phenotypic variations caused by DNA sequence-independent alterations caused by a change of chromatin structure, such as DNA methylation and histone modifications), is known to promote tumorigenesis and tumor progression. Mechanisms involve both genomic instability and epigenomic aberrations that lose or gain the function of genes that impinge on tumor suppression/prevention or oncogenesis. Growing evidence points to an epigenome-wide disruption that involves large-scale DNA hypomethylation but specific hyper-methylation of tumor suppressor genes, large blocks of aberrant histone modifications, and abnormal miRNA expression profile. Emerging molecular details regarding the modulation of these epigenetic events in cancer are used to illustrate the alterations of epigenetic molecules, and their consequent malfunctions could contribute to cancer biology. More recently, intriguing evidence supporting that genetic and epigenetic mechanisms are not separate events in cancer has been emerging; they intertwine and take advantage of each other during tumorigenesis. In addition, we discuss the collusion between epigenetics and genetics mediated by heterochromatin protein 1, a major component of heterochromatin, in order to maintain genome integrity.

식물 유성 생식과정에서 후성유전학적 정보해석 및 연구현황 (Current status and prospects of epigenetic information in sexual reproductive processes of plants)

  • 정유진;조용구;강권규
    • Journal of Plant Biotechnology
    • /
    • 제44권1호
    • /
    • pp.19-26
    • /
    • 2017
  • Rapid progress in epigenetic studies has resulted in genome wide information of genetic functions, other than DNA sequence information. However, insufficient understanding and unclear research direction in epigenetics has failed to attract many researchers. Here, we review the sexual reproduction processes that are particularly related to epigenetics in plants. We aim to elucidate the roles of epigenetic information and molecular mechanisms involved in the complex sexual reproduction process of plants, and examine their biological significance.

Epigenetic modification is linked to Alzheimer's disease: is it a maker or a marker?

  • Lee, Jung-Hee;Ryu, Hoon
    • BMB Reports
    • /
    • 제43권10호
    • /
    • pp.649-655
    • /
    • 2010
  • Alzheimer's disease (AD) is the most common age-dependent neurodegenerative disorder and shows progressive memory loss and cognitive decline. Intraneuronal filaments composed of aggregated hyperphosphorylated tau protein, called neurofibrillary tangles, along with extracellular accumulations of amyloid $\beta$ protein (A$\beta$), called senile plaques, are known to be the neuropathological hallmarks of AD. In light of recent studies, epigenetic modification has emerged as one of the pathogenic mechanisms of AD. Epigenetic changes encompass an array of molecular modifications to both DNA and chromatin, including transcription factors and cofactors. In this review, we summarize how DNA methylation and changes to DNA chromatin packaging by post-translational histone modification are involved in AD. In addition, we describe the role of SIRTs, histone deacetylases, and the effect of SIRT-modulating drugs on AD. Lastly, we discuss how amyloid precursor protein (APP) intracellular domain (AICD) regulates neuronal transcription. Our understanding of the epigenomes and transcriptomes of AD may warrant future identification of novel biological markers and beneficial therapeutic targets for AD.

Epigenetic biomarkers: a step forward for understanding periodontitis

  • Lindroth, Anders M.;Park, Yoon Jung
    • Journal of Periodontal and Implant Science
    • /
    • 제43권3호
    • /
    • pp.111-120
    • /
    • 2013
  • Periodontitis is a common oral disease that is characterized by infection and inflammation of the tooth supporting tissues. While its incidence is highly associated with outgrowth of the pathogenic microbiome, some patients show signs of predisposition and quickly fall into recurrence after treatment. Recent research using genetic associations of candidates as well as genome-wide analysis highlights that variations in genes related to the inflammatory response are associated with an increased risk of periodontitis. Intriguingly, some of the genes are regulated by epigenetic modifications, supposedly established and reprogrammed in response to environmental stimuli. In addition, the treatment with epigenetic drugs improves treatment of periodontitis in a mouse model. In this review, we highlight some of the recent progress identifying genetic factors associated with periodontitis and point to promising approaches in epigenetic research that may contribute to the understanding of molecular mechanisms involving different responses in individuals and the early detection of predispositions that may guide in future oral treatment and disease prevention.

Methylation Status and Expression of BRCA2 in Epithelial Ovarian Cancers in Indonesia

  • Pradjatmo, Heru
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권18호
    • /
    • pp.8599-8604
    • /
    • 2016
  • Ovarian cancer is the main cause of mortality in gynecological malignancy and extensive studies have been conducted to study the underlying molecular mechanisms. The BRCA2 gene is known to be an important tumor suppressor in ovarian cancer, thereby BRCA2 alterations may lead to cancer progression. However, the BRCA2 gene is rarely mutated, and loss of function is suspected to be mediated by epigenetic regulation. In this study we investigated the methylation status and gene expression of BRCA2 in ovarian cancer patients. Ovarian cancer pateints (n=69) were recruited and monitored for 54 months in this prospective cohort study. Clinical specimens were used to study the in situ expression of aberrant BRCA2 proteins and the methylation status of BRCA2. These parameters were then compared with clinical parameters and overall survival rate. We found that BRCA2 methylation was found in the majority of cases (98.7%). However, the methylation status was not associated with protein level expression of BRCA2 (49.3%). Therefore in addition to DNA methylation, other epigenetic mechanisms may regulate BRCA2 expresison. Our findings may become evidence of BRCA2 inactivation mechanism through DNA methylation in the Indonesian population. More importantly, from multivariate analysis, BRCA2 expression was correlated with better overall survival (HR 0.32; p=0.05). High percentage of BRCA2 methylation and correlation of BRCA2 expression with overall survival in epithelial ovarian cancer cases may lead to development of treatment modalities specifically to target methylation of BRCA genes.

Epigenetics: A key paradigm in reproductive health

  • Bunkar, Neha;Pathak, Neelam;Lohiya, Nirmal Kumar;Mishra, Pradyumna Kumar
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제43권2호
    • /
    • pp.59-81
    • /
    • 2016
  • It is well established that there is a heritable element of susceptibility to chronic human ailments, yet there is compelling evidence that some components of such heritability are transmitted through non-genetic factors. Due to the complexity of reproductive processes, identifying the inheritance patterns of these factors is not easy. But little doubt exists that besides the genomic backbone, a range of epigenetic cues affect our genetic programme. The inter-generational transmission of epigenetic marks is believed to operate via four principal means that dramatically differ in their information content: DNA methylation, histone modifications, microRNAs and nucleosome positioning. These epigenetic signatures influence the cellular machinery through positive and negative feedback mechanisms either alone or interactively. Understanding how these mechanisms work to activate or deactivate parts of our genetic programme not only on a day-to-day basis but also over generations is an important area of reproductive health research.

Genetics of Prader-Willi Syndrome

  • Yoon, Ju Young
    • Journal of Interdisciplinary Genomics
    • /
    • 제3권2호
    • /
    • pp.35-40
    • /
    • 2021
  • Prader-Willi syndrome (PWS) is a rare genetic disorder which lead to severe neurodevelopmental, endocrine, and metabolic impairment. PWS is genetic disorder related to genomic errors which lead to inactivation of paternally-inherited genes on chromosome 15q11-q13. Epigenetic mechanisms are also involved in PWS, and epigenetic therapies are under investigation. Here we provide review about genetics of PWS, focused on genes involved in pathophysiology of PWS. We will also summarize epigenetics and genetic counseling of PWS.