Browse > Article
http://dx.doi.org/10.5352/JLS.2018.28.12.1536

Epigenetic Mechanisms of Depression: Role of Histone Modification and DNA Methylation in BDNF Gene  

Park, Sung Woo (Department of Convergence Biomedical Science, College of Medicine, Paik Institute for Clinical Research, Inje University)
Publication Information
Journal of Life Science / v.28, no.12, 2018 , pp. 1536-1544 More about this Journal
Abstract
Depression is a common, serious, and recurring mental disorder. The pathogenesis of depression involves many factors such as environmental factor, genetic factor and alteration of structure and function in neurobiological systems. Increasing evidence supports that epigenetic alteration may be associated with depression. The epigenetics is explained as the mechanisms by which environmental factor causes changes in chromatin structure and alters gene expression without changing DNA base sequence. DNA methylation and histone modification involving histone acetylation and methylation are the main epigenetic mechanisms. Animal studies have shown that stressful environment such as early life stress can leave persistent epigenetic marks in the genome, which alter gene expression and influence neural and behavioral function through adulthood. A potentially important gene in depression is brain-derived neurotrophic factor (BDNF). BDNF plays a central role in depression and antidepressant action. In studies of the rodent, exposure to stress at prenatal, postnatal, and adult stages alters BDNF expression through histone modification and DNA methylation of the BDNF gene which results in anxiety and depressive-like behavior. This review discusses recent advances in the study of the epigenetic mechanisms that contribute to depression, particularly histone modification and DNA methylation of the BDNF gene, that may help in the development of new targets for depression treatment.
Keywords
BDNF; depression; DNA methylation; epigenetic mechanisms; histone modification;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Fuchikami, M., Morinobu, S., Segawa, M., Okamoto, Y., Yamawaki, S., Ozaki, N. and Terao, T. 2011. DNA methylation profiles of the brain-derived neurotrophic factor (BDNF) gene as a potent diagnostic biomarker in major depression. PLoS One 6, e23881.   DOI
2 Gassen, N. C., Fries, G. R., Zannas, A. S., Hartmann, J., Zschocke, J., Hafner, K. and Rein, T. et al. 2015. Chaperoning epigenetics: FKBP51 decreases the activity of DNMT1 and mediates epigenetic effects of the antidepressant paroxetine. Sci. Signal. 8, ra119.   DOI
3 Izzo, A. and Schneider, R. 2010. Chatting histone modifications in mammals. Brief. Funct. Genomics 9, 429-443.   DOI
4 Januar, V., Ancelin, M. L., Ritchie, K., Saffery, R. and Ryan, J. 2015. BDNF promoter methylation and genetic variation in late-life depression. Transl. Psychiatry 5, e619.   DOI
5 Jiang, Y., Langley, B., Lubin, F. D., Renthal, W., Wood, M. A., Yasui, D. H., Kumar, A., Nestler, E. J., Akbarian, S. and Beckel-Mitchener, A. C. 2008. Epigenetics in the nervous system. J. Neurosci. 28, 11753-11759.   DOI
6 Kouzarides, T. 2007. Chromatin modifications and their function. Cell 128, 693-705.   DOI
7 Shirayama, Y., Chen, A. C., Nakagawa, S., Russell, D. S. and Duman, R. S. 2002. Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J. Neuosci. 22, 3251-3261.   DOI
8 St-Cyr, S. and McGowan, P. O. 2015. Programming of stress-related behavior and epigenetic neural gene regulation in mice offspring through maternal exposure to predator odor. Front. Behav. Neurosci. 9, 1-10.
9 Sullivan, P. F., Neale, M. C. and Kendler, K. S. 2000. Genetic epidemiology of major depression: review and meta-analysis. Am. J. Psychiatry 157, 1552-1562.   DOI
10 Sun, H., Kennedy, P. J. and Nestler, E. J. 2013. Epigenetics of the depressed brain: role of histone acetylation and methylation. Neuropsychopharmacology 38, 124-137.   DOI
11 Tsankova, N. M., Berton, O., Renthal, W., Kumar, A., Neve, R. L. and Nestler, E. J. 2006. Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat. Neurosci. 9, 519-525.   DOI
12 Sapolsky, R. M. 2000. Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders. Arch. Gen. Psychiatry 57, 925-935.   DOI
13 Melas, P. A., Rogdaki, M., Lennrtsson, A., Bjork, K., Qi, H. S., Witasp, A. and Lavebratt, C. 2012. Antidepressant treatment is associated with epigenetic alterations in the promoter of P11 in a genetic model of depression. Int. J. Neuropsychopharmacol. 15, 669-679.   DOI
14 Le Francois, B., Soo, J., Millar, A. M., Daigle, M., Le Guisquet, A. M., Leman, S. and Albert, P. R. 2015. Chronic mild stress and antidepressant treatment alter 5-HT1A receptor expression by modifying DNA methylation of a conserved Sp4 site. Neurobiol. Dis. 82, 332-341.   DOI
15 Lee, P. R., Brady, D. L., Shapiro, R. A., Dorsa, D. M. and Koenig, J. I. 2007. Prenatal stress generates deficits in rat social behavior: Reversal by oxytocin. Brain Res. 1156, 152-167.   DOI
16 Martinowich, K., Hattori, D., Wu, H., Fouse, S., He, F., Hu, Y., Fan, G. and Sun, Y. E. 2003. DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation. Science 302, 890-893.   DOI
17 Tsankova, N., Renthal, W., Kumar, A. and Nestler, E. J. 2007. Epigenetic regulation in psychiatric disorders. Nat. Rev. Neurosci. 8, 355-367.   DOI
18 Tsuang, M. T., Taylor, L. and Faraone, S. V. 2004. An overview of the genetics of psychotic mood disorders. J. Psychiatr. Res. 38, 3-15.   DOI
19 McEwen, B. S., Magarinos, A. M. and Reagan, L. P. 2002. Structural plasticity and tianeptine: cellular and molecular targets. Eur. Psychiatry 17, 318-330.   DOI
20 McGowan, P. O., Suderman, M., Sasaki, A., Huang, T. C., Hallett, M. and Meaney, M. J. et al. 2011. Broad epigenetic signature of maternal care in the brain of adult rats. PLoS One 6, e14739.   DOI
21 Meehan, R. R., Lewis, J. D. and Bird, A. P. 1992. Characterization of MeCP2, a vertebrate DNA binding protein with affinity for methylated DNA. Nucleic Acids Res. 20, 5085-5092.   DOI
22 Moore, L. D., Le, T. and Fan, G. 2013. DNA methylation and its basic function. Neuropsychopharmacology 38, 23-38.   DOI
23 Murgatroyd, C., Patchev, A. V., Wu, Y., Micale, V., Bockmuhl, Y. and Fischer, D. et al. 2009. Dynamic DNA methylation programs persistent adverse effects of early-life stress. Nat. Neurocsi. 12, 1559-1566.   DOI
24 Weaver, I. C., Cervoni, N., Champagne, F. A., D'Alessio, A. C., Sharma, S. and Seckl, J. R. et al. 2004. Epigenetic programming by maternal behavior. Nat. Neurosci. 7, 847-854.   DOI
25 Vialou, V., Feng, J., Robison, A. T. and Nestler, E. J. 2013. Epigenetic mechanisms of depression and antidepressant action. Annu. Rev. Pharmacol. Toxicol. 53, 59-87.   DOI
26 Vogelauer, M., Wu, J., Suka, N. and Grunstein, M. 2000. Global histone acetylation and deacetylation in yeast. Nature 408, 495-498.   DOI
27 Wang, Y.and Leung, F. C. 2004. An evaluation of new criteria for CpG islands in the human genome as gene marker. Bioinformatics 20, 1170-1177.   DOI
28 Wu, C. T. and Morris, J. R. 2001. Genes, genetics, and epigenetics: a correspondence. Science 293, 1103-1105.   DOI
29 Yamawaki, Y., Fuchikami, M., Morinobu, S., Segawa, M., Matsumoto, T. and Yamawaki, S. 2011. Antidepressant-like effect of sodium butyrate (HDAC inhibitor) and its molecular mechanism of action in the rat hippocampus. World J. Biol. Psychiatry 13, 458-467.
30 Yasuda, S., Liang, M. H., Marinova, Z., Yahyavi, A. and Chuang, D. M. 2009. The mood stabilizers lithium and valproate selectively activate the promoter IV of brain-derived neurotrophic factor in neurons. Mol. Psychiatry 14, 51-59.   DOI
31 Zheng, Y., Fan, W., Zhang, X. and Dong, E. 2016. Gestational stress induces depressive-like and anxiety-like phenotypes through epigenetic regulation of BDNF expression in offspring hippocampus. Epigenetics 11, 150-162.   DOI
32 Bird, A. 2008. The methyl-CpG-binding protein MeCP2 and neurological disease. Biochem. Soc. Trans. 36, 575-583.   DOI
33 Albuquerque Filho, M. O., DeFreitas, B. S., Garcia, R. C., Crivelaro, P. C., Schroder, N. and De Lima, M. N. 2017. Dual influences of early-life maternal deprivation on histone deacetylase activity and recognition memory in rats. Neuroscience 344, 360-370.   DOI
34 Berger, S. L. 2007. The complex language of chromatin regulation during transcription. Nature 447, 407-412.   DOI
35 Bienveu, T. and Chelly, J. 2006. Molecular genetics of Rett syndrome: when DNA methylation goes unrecognized. Nat. Rev. Genet.7, 415-426.
36 Blaze, J., Asok, A. and Roth, T. L. 2015. Long-term effects of early-life caregiving experiences on brain-derived neurotrophic factor histone acetylation in the adult rat mPFC. Stress 18, 607-615.   DOI
37 Boersma, G. J., Lee, R. S., Cordner, Z. A., Ewald, E. R., Purcell, R. H., Moghadam, A. A. and Tamashiro, K. L. 2014. Prenatal stress decreases BDNF expression and increases methylation of BDNF exon IV in rats. Epigenetics 9, 437-447.   DOI
38 Nestler, E. J., Barrot, M., DiLeone, R. J., Eisch, A. J., Gold, S. J. and Monteggia, L. M. 2002. Neurobiology of depression. Neuron 34, 13-25.   DOI
39 Na, S. K., Won, E., Kang, J., Chang, H. S., Yoon, H. K., Tae, W. S., Kim, Y. K., Lee, M. S., Joe, S. H., Kim, H. and Ham, B. J. 2016. Brain-derived neurotrophic factor promoter methylation and cortical thickness in recurrent major depressive disorder. Sci. Rep. 6, 21089.   DOI
40 Nephew, B. C. and Bridges, R. S. 2011. Effects of chronic social stress during lactation on maternal behavior and growth in rats. Stress 14, 677-684.   DOI
41 Onishchenko, N., Karpova, N., Sabri, F., Castren, E. and Ceccatelli, S. 2008. Long-lasting depression-like behavior and epigenetic changes of BDNF gene expression induced by perinatal exposure to methylmercury. J. Neurochem. 106, 1378-1387.   DOI
42 Bosker, F. J., Hartman, C. A., Nolte, I. M., Prins, B. P., Terpstra, P. and Posthuma, D. et al. 2011. Poor replication of candidate genes for major depressive disorder using genome-wide association data. Mol. Psychiatry 16, 516-532.   DOI
43 Borrelli, E., Nestler, E. J., Allis, C. D. and Sassone-Corsi, P. 2008. Decoding the epigenetic language of neuronal plasticity. Neuron 60, 961-974.   DOI
44 Boulle, F., van den Hove, D. L., Jakob, S. B., Rutten, B. P., Hamon, M., van Os, J., Lesch, K. P., Lanfumey, L., Steinbusch, H. W. and Kenis, G. 2012. Epigenetic regulation of the BDNF gene: implications for psychiatric disorders. Mol. Psychiatry 17, 584-596.   DOI
45 Newell-Price, J., Clark, A. J. and King, P. 2000. DNA methylation and silencing of gene expression. Trends Endocrinol. Metab. 11, 142-148.   DOI
46 Ng, H. H. and Bird, A. 1999. DNA methylation and chromatin modification. Curr. Opin. Genet. Dev. 9, 158-163.   DOI
47 Rice, J. C. and Allis, C. D. 2001. Histone methylation versus histone acetylation: new insights into epigenetic regulation. Curr. Opin. Cell Biol. 13, 263-273.   DOI
48 Roth, T. L., Lubin, F. D., Funk, A. J. and Sweatt, J. D. 2009. Lasting epigenetic influence of early-life adversity on the BDNF gene. Biol. Psychiatry 65, 760-769.   DOI
49 Carlberg, L., Scheibelreiter, J., Hassler, M. R., Schloegelhofer, M., Schmoeger, M., Ludwig, B. and Schosser, A. 2014. Brainderived neurotrophic factor (BDNF)-Epigenetic regulation in unipolar and bipolar affective disorder. J. Affect. Disord. 168, 399-406.   DOI
50 Brunoni, A. R., Lopes, M. and Fregni, F. 2008. A systematic review and meta-analysis of clinical studies on major depression and BDNF levels: implications for the role of neuroplasticity in depression. Int. J. Neuropsychopharmacol. 11, 1169-1180.   DOI
51 Choi, J. K. and Howe, L. J. 2009. Histone acetylation: truth of consequences? Biochem. Cell Biol. 87, 139-150.   DOI
52 Sales, A. J. and Joca, S. R. L. 2018. Antidepressant administration modulates stress-induced DNA methylation and DNA methyltransferase expression in rat prefrontal cortex and hippocampus. Behav. Brain Res. 343, 8-15.   DOI
53 Roth, T. L., Zoladz, P. R., Sweatt, J. D. and Diamond, D. M. 2011. Epigenetic modification of hippocampal BNDF DNA in adult rats in animal model of post-traumatic stress disorder. J. Psychiatr. Res. 45, 919-926.   DOI
54 Roy. B., Shelton, R. C. and Dwivedi, Y. 2017. DNA methylation and expression of stress related genes in PBMC of MDD patients with and without serious suicidal ideation. J. Psychiatr. Res. 89, 115-124.   DOI
55 Saavedra, K., Molina-Marquez, A. M., Saavedra, N., Zambrano, T. and Salazar, L. A. 2016. Epigenetic modifications of major depressive disorder. Int. J. Mol. Sci.17, E1279.   DOI
56 Duman, R. S. and Monteggia, L. M. 2006. A neurotrophic model for stress-related mood disorders. Biol. Psychiatry 59, 1116-1127.   DOI
57 Covington 3rd H. E., Maze, I., LaPlant, Q. C., Vialou, V. F., Ohnishi, Y. N. and Berton, O. et al. 2009. Antidepressant actions of histone deacetylase inhibitors. J. Neurosci. 29, 11451-11460.   DOI
58 D'addario, C., Dell'osso, B., Galimberti, D., Palazzo, M. C., Benatti, B., Di Francesco, A. and Maccarrone, M. 2013. Epigenetic modulation of BDNF gene in patients with major depressive disorder. Biol. Psychiatry 73, e6-7.   DOI
59 de Ruijter, A. J., van Gennip, A. H., Caron, H. N., Kemp, S. and van Kuilenburg, A. B. 2003. Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem. J. 370, 737-749.   DOI
60 Duman, R. S. 2004. Depression: a case of neuronal life and death? Biol. Psychiatry 56, 140-145.   DOI
61 Dwivedi, T. and Zhang, H. 2014. Lithium-induced neuroprotection is associated with epigenetic modification of specific BDNF gene promoter and altered expression of apoptotic-regulatory proteins. Front. Neurosci. 8, 457.
62 Sheline, Y. I., Gado, M. H. and Kraemer, H. C. 2003. Untreated depression and hippocampal volume loss. Am. J. Psychiatry 160, 1516-1518.   DOI
63 Schroeder, F. A., Lin, C. L., Crusio, W. E. and Akbarian, S. 2007. Antidepressant-like effects of the histone deacetylase inhibitor, sodium butyrate, in the mouse. Biol. Psychiatry 62, 55-64.   DOI
64 Seo, M. K., Ly, N. N., Lee, C. H., Cho, H. Y., Choi, C. M., Nhu, L. H., Lee, J. G., Lee, B. J., Kim, G. M., Yoon, B. J., Park, S. W. and Kim, Y. H. 2016. Early life stress increases stress vulnerability through BDNF gene epigenetic changes in the rat hippocampus. Neuropharmacology 105, 388-397.   DOI