Browse > Article
http://dx.doi.org/10.5487/TR.2015.31.1.001

Influence of Toxicologically Relevant Metals on Human Epigenetic Regulation  

Ryu, Hyun-Wook (College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University)
Lee, Dong Hoon (College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University)
Won, Hye-Rim (College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University)
Kim, Kyeong Hwan (College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University)
Seong, Yun Jeong (College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University)
Kwon, So Hee (College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University)
Publication Information
Toxicological Research / v.31, no.1, 2015 , pp. 1-9 More about this Journal
Abstract
Environmental toxicants such as toxic metals can alter epigenetic regulatory features such as DNA methylation, histone modification, and non-coding RNA expression. Heavy metals influence gene expression by epigenetic mechanisms and by directly binding to various metal response elements in the target gene promoters. Given the role of epigenetic alterations in regulating genes, there is potential for the integration of toxic metal-induced epigenetic alterations as informative factors in the risk assessment process. Here, we focus on recent advances in understanding epigenetic changes, gene expression, and biological effects induced by toxic metals.
Keywords
Epigenetics; Gene expression; DNA methylation; Histone modification; Noncoding RNA; Heavy metal; Environmental exposure;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bollati, V., Marinelli, B., Apostoli, P., Bonzini, M., Nordio, F., Hoxha, M., Pegoraro, V., Motta, V., Tarantini, L., Cantone, L., Schwartz, J., Bertazzi, P.A. and Baccarelli, A. (2010) Exposure to metal-rich particulate matter modifies the expression of candidate microRNAs in peripheral blood leukocytes. Environ. Health Perspect., 118, 763-768.   DOI   ScienceOn
2 He, J., Qian, X., Carpenter, R., Xu, Q., Wang, L., Qi, Y., Wang, Z.X., Liu, L.Z. and Jiang, B.H. (2013) Repression of miR-143 mediates Cr (VI)-induced tumor angiogenesis via IGF-IR/IRS1/ERK/IL-8 pathway. Toxicol. Sci., 134, 26-38.   DOI   ScienceOn
3 Li, Y., Li, P., Yu, S., Zhang, J., Wang, T. and Jia, G. (2014) miR-3940-5p associated with genetic damage in workers exposed to hexavalent chromium. Toxicol. Lett., 229, 319-326.   DOI   ScienceOn
4 De Olivera, J.V., Boufleur, L.A., Dos Santos, C.E., Dias, J.F., Squeff, C.H., Silva, G.R., Ianistcki, M., Benvegnu, V.C. and Da Silva, J. (2012) Occupational genotoxicity among copper smelters. Toxicol. Ind. Health, 28, 789-795.   DOI   ScienceOn
5 Kang, J., Lin, C., Chen, J. and Liu, Q. (2004) Copper induces histone hypoacetylation through directly inhibiting histone acetyltransferase activity. Chem. Biol. Interact., 148, 115-123.   DOI   ScienceOn
6 Zoroddu, M.A., Kowalik-Jankowska, T., Kozlowski, H., Molinari, H., Salnikow, K., Broday, L. and Costa, M. (2000) Interaction of Ni(II) and Cu(II) with a metal binding sequence of histone H4: AKRHRK, a model of the H4 tail. Biochim. Biophys. Acta, 1475, 163-168.   DOI   ScienceOn
7 Karavelas, T., Mylonas, M., Malandrinos, G., Plakatouras, J.C., Hadjiliadis, N., Mlynarz, P. and Kozlowski, H. (2005) Coordination properties of Cu(II) and Ni(II) ions towards the C-terminal peptide fragment-ELAKHA-of histone H2B. J. Inorg. Biochem., 99, 606-615.   DOI   ScienceOn
8 Zavitsanos, K., Nunes, A.M., Malandrinos, G. and Hadjiliadis, N. (2011) Copper effective binding with 32-62 and 94-125 peptide fragments of histone H2B. J. Inorg. Biochem., 105, 102-110.   DOI   ScienceOn
9 Nunes, A.M., Zavitsanos, K., Malandrinos, G. and Hadjiliadis, N. (2010) Coordination of Cu(2+) and Ni(2+) with the histone model peptide of H2B N-terminal tail (1-31 residues):A spectroscopic study. Dalton Trans., 39, 4369-4381.   DOI   ScienceOn
10 Bonnet, E., Wuyts, J., Rouze, P. and Van de Peer, Y. (2004) Detection of 91 potential conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes. Proc. Natl. Acad. Sci. U.S.A., 101, 11511-11516.   DOI   ScienceOn
11 Naya, L., Paul, S., Valdes-Lopez, O., Mendoza-Soto, A.B., Nova-Franco, B., Sosa-Valencia, G., Reyes, J.L. and Hernandez, G. (2014) Regulation of copper homeostasis and biotic interactions by microRNA 398b in common bean. PloS One, 9, e84416.   DOI
12 Kasuba, V., Rozgaj, R., Milic, M., Zeljezic, D., Kopjar, N., Pizent, A. and Kljakovic-Gaspic, Z. (2010) Evaluation of lead exposure in battery-manufacturing workers with focus on different biomarkers. J. Appl. Toxicol., 30, 321-328.
13 Wu, J., Basha, M.R., Brock, B., Cox, D.P., Cardozo-Pelaez, F., McPherson, C.A., Harry, J., Rice, D.C., Maloney, B., Chen, D., Lahiri, D.K. and Zawia, N.H. (2008) Alzheimer's disease (AD)-like pathology in aged monkeys after infantile exposure to environmental metal lead (Pb): evidence for a developmental origin and environmental link for AD. J. Neurosci., 28, 3-9.   DOI   ScienceOn
14 Bihaqi, S.W., Huang, H., Wu, J. and Zawia, N.H. (2011) Infant exposure to lead (Pb) and epigenetic modifications in the aging primate brain: implications for Alzheimer's disease. J. Alzheimers Dis., 27, 819-833.
15 Spiegel, S.J. (2009) Occupational health, mercury exposure, and environmental justice: learning from experiences in Tanzania. Am. J. Public Health, 99 Suppl 3, S550-558.
16 Wright, R.O., Schwartz, J., Wright, R.J., Bollati, V., Tarantini, L., Park, S.K., Hu, H., Sparrow, D., Vokonas, P. and Baccarelli, A. (2010) Biomarkers of lead exposure and DNA methylation within retrotransposons. Environ. Health Perspect., 118, 790-795.   DOI   ScienceOn
17 le Sage, C., Nagel, R., Egan, D.A., Schrier, M., Mesman, E., Mangiola, A., Anile, C., Mercatelli, N., Ciafre, S.A., Farace, M.G. and Agami, R. (2007) Regulation of the p27(Kip1) tumor suppressor by miR-221 and miR-222 promotes cancer cell proliferation. EMBO J., 26, 3699-3708.   DOI   ScienceOn
18 Tchounwou, P.B., Ayensu, W.K., Ninashvili, N. and Sutton, D. (2003) Environmental exposure to mercury and its toxicopathologic implications for public health. Environ. Toxicol., 18, 149-175.   DOI   ScienceOn
19 Grotto, D., Valentini, J., Fillion, M., Passos, C.J., Garcia, S.C., Mergler, D. and Barbosa, F. Jr. (2010) Mercury exposure and oxidative stress in communities of the Brazilian Amazon. Sci. Total Environ., 408, 806-811.   DOI   ScienceOn
20 Hanna, C.W., Bloom, M.S., Robinson, W.P., Kim, D., Parsons, P.J., vom Saal, F.S., Taylor, J.A., Steuerwald, A.J. and Fujimoto, V.Y. (2012) DNA methylation changes in whole blood is associated with exposure to the environmental contaminants, mercury, lead, cadmium and bisphenol A, in women undergoing ovarian stimulation for IVF. Hum. Reprod., 27, 1401-1410.   DOI
21 Goodrich, J.M., Basu, N., Franzblau, A. and Dolinoy, D.C. (2013) Mercury biomarkers and DNA methylation among Michigan dental professionals. Environ. Mol. Mutagen., 54, 195-203.   DOI   ScienceOn
22 Arita, A. and Costa, M. (2009) Epigenetics in metal carcinogenesis: nickel, arsenic, chromium and cadmium. Metallomics, 1, 222-228.   DOI   ScienceOn
23 Onishchenko, N., Karpova, N., Sabri, F., Castren, E. and Ceccatelli, S. (2008) Long-lasting depression-like behavior and epigenetic changes of BDNF gene expression induced by perinatal exposure to methylmercury. J. Neurochem., 106, 1378-1387.   DOI   ScienceOn
24 Pallocca, G., Fabbri, M., Sacco, M.G., Gribaldo, L., Pamies, D., Laurenza, I. and Bal-Price, A. (2013) miRNA expression profiling in a human stem cell-based model as a tool for developmental neurotoxicity testing. Cell Biol. Toxicol., 29, 239-257.   DOI   ScienceOn
25 Sutherland, J.E. and Costa, M. (2003) Epigenetics and the environment. Ann. N. Y. Acad. Sci., 983, 151-160.   DOI   ScienceOn
26 Ellen, T.P., Kluz, T., Harder, M.E., Xiong, J. and Costa, M. (2009) Heterochromatinization as a potential mechanism of nickel-induced carcinogenesis. Biochemistry, 48, 4626-4632.   DOI   ScienceOn
27 Govindarajan, B., Klafter, R., Miller, M.S., Mansur, C., Mizesko, M., Bai, X., LaMontagne, K. Jr. and Arbiser, J.L. (2002) Reactive oxygen-induced carcinogenesis causes hypermethylation of p16(Ink4a) and activation of MAP kinase. Mol. Med., 8, 1-8.   DOI
28 Kowara, R., Salnikow, K., Diwan, B.A., Bare, R.M., Waalkes, M.O. and Kasprzak, K.S. (2004) Reduced Fhit protein expression in nickel-transformed mouse cells and in nickelinduced murine sarcomas. Mol. Cell. Biochem., 255, 195-202.   DOI   ScienceOn
29 Ji, W., Yang, L., Yu, L., Yuan, J., Hu, D., Zhang, W., Yang, J., Pang, Y., Li, W., Lu, J., Fu, J., Chen, J., Lin, Z., Chen, W. and Zhuang, Z. (2008) Epigenetic silencing of O6-methylguanine DNA methyltransferase gene in NiS-transformed cells. Carcinogenesis, 29, 1267-1275.   DOI   ScienceOn
30 Chen, H., Ke, Q., Kluz, T., Yan, Y. and Costa, M. (2006) Nickel ions increase histone H3 lysine 9 dimethylation and induce transgene silencing. Mol. Cell. Biol., 26, 3728-3737.   DOI   ScienceOn
31 Chen, X., Fan, Y., Long, X. and Sun, X. (2010) Similar DNA methylation and histone H3 lysine 9 dimethylation patterns in tripronuclear and corrected bipronuclear human zygotes. J. Reprod. Dev., 56, 324-329.   DOI   ScienceOn
32 Ke, Q., Ellen, T.P. and Costa, M. (2008) Nickel compounds induce histone ubiquitination by inhibiting histone deubiquitinating enzyme activity. Toxicol. Appl. Pharmacol., 228, 190-199.   DOI   ScienceOn
33 Ke, Q., Li, Q., Ellen, T.P., Sun, H. and Costa, M. (2008) Nickel compounds induce phosphorylation of histone H3 at serine 10 by activating JNK-MAPK pathway. Carcinogenesis, 29, 1276-1281.   DOI   ScienceOn
34 Karaczyn, A.A., Bal, W., North, S.L., Bare, R.M., Hoang, V.M., Fisher, R.J. and Kasprzak, K.S. (2003) The octapeptidic end of the C-terminal tail of histone H2A is cleaved off in cells exposed to carcinogenic nickel(II). Chem. Res. Toxicol., 16, 1555-1559.   DOI   ScienceOn
35 Karaczyn, A.A., Golebiowski, F. and Kasprzak, K.S. (2005) Truncation, deamidation, and oxidation of histone H2B in cells cultured with nickel(II). Chem. Res. Toxicol., 18, 1934-1942.   DOI   ScienceOn
36 Zhang, J., Zhou, Y., Ma, L., Huang, S., Wang, R., Gao, R., Wu, Y., Shi, H. and Zhang, J. (2013) The alteration of miR-222 and its target genes in nickel-induced tumor. Biol. Trace Elem. Res., 152, 267-274.   DOI   ScienceOn
37 Boyer, I.J. (1989) Toxicity of dibutyltin, tributyltin and other organotin compounds to humans and to experimental animals. Toxicology, 55, 253-298.   DOI   ScienceOn
38 Fragou, D., Fragou, A., Kouidou, S., Njau, S. and Kovatsi, L. (2011) Epigenetic mechanisms in metal toxicity. Toxicol. Mech. Methods, 21, 343-352.   DOI   ScienceOn
39 Osada, S., Nishikawa, J., Nakanishi, T., Tanaka, K. and Nishihara, T. (2005) Some organotin compounds enhance histone acetyltransferase activity. Toxicol. Lett., 155, 329-335.   DOI   ScienceOn
40 Wang, Y., Wang, C., Zhang, J., Chen, Y. and Zuo, Z. (2009) DNA hypomethylation induced by tributyltin, triphenyltin, and a mixture of these in Sebastiscus marmoratus liver. Aquat. Toxicol., 95, 93-98.   DOI   ScienceOn
41 Coppin, J.F., Qu, W. and Waalkes, M.P. (2008) Interplay between cellular methyl metabolism and adaptive efflux during oncogenic transformation from chronic arsenic exposure in human cells. J. Biol. Chem., 283, 19342-19350.   DOI   ScienceOn
42 Franco, R., Schoneveld, O., Georgakilas, A.G. and Panayiotidis, M.I. (2008) Oxidative stress, DNA methylation and carcinogenesis. Cancer Lett., 266, 6-11.   DOI   ScienceOn
43 Heyn, H. and Esteller, M. (2012) DNA methylation profiling in the clinic: applications and challenges. Nat. Rev. Genet., 13, 679-692.   DOI   ScienceOn
44 Baccarelli, A. and Bollati, V. (2009) Epigenetics and environmental chemicals. Curr. Opin. Pediatr., 21, 243-251.   DOI   ScienceOn
45 Koturbash, I., Beland, F.A. and Pogribny, I.P. (2011) Role of epigenetic events in chemical carcinogenesis--a justification for incorporating epigenetic evaluations in cancer risk assessment. Toxicol. Mech. Methods, 21, 289-297.   DOI   ScienceOn
46 Bird, A. (2002) DNA methylation patterns and epigenetic memory. Genes Dev., 16, 6-21.   DOI   ScienceOn
47 De Carvalho, D.D., You, J.S. and Jones, P.A. (2010) DNA methylation and cellular reprogramming. Trends Cell Biol., 20, 609-617.   DOI   ScienceOn
48 Suganuma, T. and Workman, J.L. (2011) Signals and combinatorial functions of histone modifications. Annu. Rev. Biochem., 80, 473-499.   DOI   ScienceOn
49 Hon, G.C., Hawkins, R.D. and Ren, B. (2009) Predictive chromatin signatures in the mammalian genome. Hum. Mol. Genet., 18, R195-201.   DOI   ScienceOn
50 Hawkins, R.D., Hon, G.C., Lee, L.K., Ngo, Q., Lister, R., Pelizzola, M., Edsall, L.E., Kuan, S., Luu, Y., Klugman, S., Antosiewicz-Bourget, J., Ye, Z., Espinoza, C., Agarwahl, S., Shen, L., Ruotti, V., Wang, W., Stewart, R., Thomson, J.A., Ecker, J.R. and Ren, B. (2010) Distinct epigenomic landscapes of pluripotent and lineage-committed human cells. Cell Stem Cell, 6, 479-491.   DOI   ScienceOn
51 Heyn, H., Carmona, F.J., Gomez, A., Ferreira, H.J., Bell, J.T., Sayols, S., Ward, K., Stefansson, O.A., Moran, S., Sandoval, J., Eyfjord, J.E., Spector, T.D. and Esteller, M. (2013) DNA methylation profiling in breast cancer discordant identical twins identifies DOK7 as novel epigenetic biomarker. Carcinogenesis, 34, 102-108.   DOI
52 Choudhuri, S., Cui, Y. and Klaassen, C.D. (2010) Molecular targets of epigenetic regulation and effectors of environmental influences. Toxicol. Appl. Pharmacol., 245, 378-393.   DOI   ScienceOn
53 Kozomara, A. and Griffiths-Jones, S. (2011) miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res., 39, D152-157.   DOI
54 Mendell, J.T. and Olson, E.N. (2012) MicroRNAs in stress signaling and human disease. Cell, 148, 1172-1187.   DOI   ScienceOn
55 Cheng, T.F., Choudhuri, S. and Muldoon-Jacobs, K. (2012) Epigenetic targets of some toxicologically relevant metals: a review of the literature. J. Appl. Toxicol., 32, 643-653.   DOI   ScienceOn
56 Sengupta, S., McArthur, J.M., Sarkar, A., Leng, M.J., Ravenscroft, P., Howarth, R.J. and Banerjee, D.M. (2008) Do ponds cause arsenic-pollution of groundwater in the Bengal basin? An answer from West Bengal. Environ. Sci. Technol., 42, 5156-5164.   DOI   ScienceOn
57 Zhou, L. Hou, J., Fu, W., Wang, D., Yuan, Z. and Jiang, H. (2008) Arsenic trioxide and 2-methoxyestradiol reduce betacatenin accumulation after proteasome inhibition and enhance the sensitivity of myeloma cells to Bortezomib. Leuk. Res., 32, 1674-1683.   DOI   ScienceOn
58 Zhong, C.X. and Mass, M.J. (2001) Both hypomethylation and hypermethylation of DNA associated with arsenite exposure in cultures of human cells identified by methylation-sensitive arbitrarily-primed PCR. Toxicol. Lett., 122, 223-234.   DOI   ScienceOn
59 Salnikow, K. and Zhitkovich, A. (2008) Genetic and epigenetic mechanisms in metal carcinogenesis and cocarcinogenesis: nickel, arsenic, and chromium. Chem. Res. Toxicol., 21, 28-44.   DOI   ScienceOn
60 Zhou, J., Ye, J., Zhao, X., Li, A. and Zhou, J. (2008) JWA is required for arsenic trioxide induced apoptosis in HeLa and MCF-7 cells via reactive oxygen species and mitochondria linked signal pathway. Toxicol. Appl. Pharmacol., 230, 33-40.   DOI   ScienceOn
61 Benton, M.A., Rager, J.E., Smeester, L. and Fry, R.C. (2011) Comparative genomic analyses identify common molecular pathways modulated upon exposure to low doses of arsenic and cadmium. BMC Genomics, 12, 173.   DOI   ScienceOn
62 Chervona, Y. Hall, M.N., Arita, A., Wu, F., Sun, H., Tseng, H.C., Ali, E., Uddin, M.N., Liu, X., Zoroddu, M.A., Gamble, M.V. and Costa, M. (2012) Associations between arsenic exposure and global posttranslational histone modifications among adults in Bangladesh. Cancer Epidemiol. Biomarkers Prev., 21, 2252-2260.   DOI   ScienceOn
63 Cantone, L. Nordio, F., Hou, L., Apostoli, P., Bonzin, M., Tarantini, L., Angelici, L., Bollati, V., Zanobetti, A., Schwartz, J., Bertazzi, P.A. and Baccarelli, A. (2011) Inhalable metalrich air particles and histone H3K4 dimethylation and H3K9 acetylation in a cross-sectional study of steel workers. Environ. Health Perspect., 119, 964-969.   DOI   ScienceOn
64 Zhou, X., Sun, H., Ellen, T.P., Chen, H. and Costa, M. (2008) Arsenite alters global histone H3 methylation. Carcinogenesis, 29, 1831-1836.   DOI   ScienceOn
65 Li, J., Gorospe, M., Barnes, J. and Liu, Y. (2003) Tumor promoter arsenite stimulates histone H3 phosphoacetylation of proto-oncogenes c-fos and c-jun chromatin in human diploid fibroblasts. J. Biol. Chem., 278, 13183-13191.   DOI   ScienceOn
66 Huang, B.W., Ray, P.D., Iwasaki, K. and Tsuji, Y. (2013) Transcriptional regulation of the human ferritin gene by coordinated regulation of Nrf2 and protein arginine methyltransferases PRMT1 and PRMT4. FASEB J., 27, 3763-3774.   DOI   ScienceOn
67 Ramirez, T., Brocher, J., Stopper, H. and Hock, R. (2008) Sodium arsenite modulates histone acetylation, histone deacetylase activity and HMGN protein dynamics in human cells. Chromosoma, 117, 147-157.   DOI   ScienceOn
68 Marsit, C.J., Eddy, K. and Kelsey, K.T. (2006) MicroRNA responses to cellular stress. Cancer Res., 66, 10843-10848.   DOI   ScienceOn
69 Wang, Z., Zhao, Y., Smith, E., Goodall, G.J., Drew, P.A., Brabletz, T. and Yang, C. (2011) Reversal and prevention of arsenic-induced human bronchial epithelial cell malignant transformation by microRNA-200b. Toxicol. Sci., 121, 110-122.   DOI   ScienceOn
70 Tellez-Plaza, M., Navas-Acien, A., Menke, A., Crainiceanu, C.M., Pastor-Barriuso, R. and Guallar, E. (2012) Cadmium exposure and all-cause and cardiovascular mortality in the U.S. general population. Environ. Health Perspect., 120, 1017-1022.   DOI
71 Jarup, L. and Akesson, A. (2009) Current status of cadmium as an environmental health problem. Toxicol. Appl. Pharmacol., 238, 201-208.   DOI   ScienceOn
72 Barcia-Sanjurjo, I., Vazquez-Cedeira, M., Barcia, R. and Lazo, P.A. (2013) Sensitivity of the kinase activity of human vaccinia-related kinase proteins to toxic metals. J. Biol. Inorg. Chem., 18, 473-482.   DOI   ScienceOn
73 Takiguchi, M., Achanzar, W.E., Qu, W., Li, G. and Waalkes, M.P. (2003) Effects of cadmium on DNA-(Cytosine-5) methyltransferase activity and DNA methylation status during cadmium-induced cellular transformation. Exp. Cell Res., 286, 355-365.   DOI   ScienceOn
74 Benbrahim-Tallaa, L., Waterland, R.A., Dill, A.L., Webber, M.M. and Waalkes, M.P. (2007) Tumor suppressor gene inactivation during cadmium-induced malignant transformation of human prostate cells correlates with overexpression of de novo DNA methyltransferase. Environ. Health Perspect., 115, 1454-1459.
75 Somji, S., Garrett, S.H., Toni, C., Zhou, X.D., Zheng, Y., Ajjimaporn, A., Sens, M.A. and Sens, D.A. (2011) Differences in the epigenetic regulation of MT-3 gene expression between parental and Cd+2 or As+3 transformed human urothelial cells. Cancer Cell Int., 11, 2.   DOI   ScienceOn
76 Hassan, F., Nuovo, G.J., Crawford, M., Boyaka, P.N., Kirkby, S., Nana-Sinkam, S.P. and Cormet-Boyaka, E. (2012) MiR-101 and miR-144 regulate the expression of the CFTR chloride channel in the lung. PloS One, 7, e50837.   DOI
77 Langavdrd, S. (1990) One hundred years of chromium and cancer: a review of epidemiological evidence and selected case reports. Am. J. Ind. Med., 17, 189-215.   DOI   ScienceOn
78 Nickens, K.P., Patierno, S.R. and Ceryak, S. (2010) Chromium genotoxicity: A double-edged sword. Chem. Biol. Interact., 188, 276-288.   DOI   ScienceOn
79 Zhitkovich, A. (2005) Importance of chromium-DNA adducts in mutagenicity and toxicity of chromium(VI). Chem. Res. Toxicol., 18, 3-11.   DOI   ScienceOn
80 Shi, X., Mao, Y., Knapton, A.D., Ding, M., Rojanasakul, Y., Gannett, P.M., Dalal, N. and Liu, K. (1994) Reaction of Cr(VI) with ascorbate and hydrogen peroxide generates hydroxyl radicals and causes DNA damage: role of a Cr(IV)-mediated Fenton-like reaction. Carcinogenesis, 15, 2475-2478.   DOI   ScienceOn
81 Kondo, K., Takahashi, Y., Hirose, Y., Nagao, T., Tsuyuguchi, M., Hashimoto, M., Ochiai, A., Monden, Y. and Tangoku, A. (2006) The reduced expression and aberrant methylation of p16(INK4a) in chromate workers with lung cancer. Lung Cancer, 53, 295-302.   DOI   ScienceOn
82 Ali, A.H., Kondo, K., Namura, T., Senba, Y., Takizawa, H., Nakagawa, Y., Toba, H., Kenzaki, K., Sakiyama, S. and Tangoku, A. (2011) Aberrant DNA methylation of some tumor suppressor genes in lung cancers from workers with chromate exposure. Mol. Carcinog., 50, 89-99.   DOI   ScienceOn
83 Schnekenburger, M., Peng, L. and Puga, A. (2007) HDAC1 bound to the Cyp1a1 promoter blocks histone acetylation associated with Ah receptor-mediated trans-activation. Biochim. Biophys. Acta, 1769, 569-578.   DOI   ScienceOn
84 Schnekenburger, M., Talaska, G. and Puga, A. (2007) Chromium cross-links histone deacetylase 1-DNA methyltransferase 1 complexes to chromatin, inhibiting histone-remodeling marks critical for transcriptional activation. Mol. Cell. Biol., 27, 7089-7101.   DOI   ScienceOn
85 Levina, A., Harris, H.H. and Lay, P.A. (2006) Binding of chromium(VI) to histones: implications for chromium(VI)-induced genotoxicity. J. Biol. Inorg. Chem., 11, 225-234.   DOI
86 Fan, J., Sun, Y., Wang, J. and Fan, M. (2009) An organicreagent-free method for determination of chromium(VI) in steel alloys, sewage sludge and wastewater. Anal. Chim. Acta, 640, 58-62.   DOI   ScienceOn