DOI QR코드

DOI QR Code

Epigenetic biomarkers: a step forward for understanding periodontitis

  • Lindroth, Anders M. (Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ)) ;
  • Park, Yoon Jung (Department of Nutritional Science and Food Management, College of Health Science, Ewha Womans University)
  • Received : 2013.04.17
  • Accepted : 2013.05.10
  • Published : 2013.06.30

Abstract

Periodontitis is a common oral disease that is characterized by infection and inflammation of the tooth supporting tissues. While its incidence is highly associated with outgrowth of the pathogenic microbiome, some patients show signs of predisposition and quickly fall into recurrence after treatment. Recent research using genetic associations of candidates as well as genome-wide analysis highlights that variations in genes related to the inflammatory response are associated with an increased risk of periodontitis. Intriguingly, some of the genes are regulated by epigenetic modifications, supposedly established and reprogrammed in response to environmental stimuli. In addition, the treatment with epigenetic drugs improves treatment of periodontitis in a mouse model. In this review, we highlight some of the recent progress identifying genetic factors associated with periodontitis and point to promising approaches in epigenetic research that may contribute to the understanding of molecular mechanisms involving different responses in individuals and the early detection of predispositions that may guide in future oral treatment and disease prevention.

Keywords

References

  1. Petersen PE, Ogawa H. The global burden of periodontal disease: towards integration with chronic disease prevention and control. Periodontol 2000 2012;60:15-39. https://doi.org/10.1111/j.1600-0757.2011.00425.x
  2. Petersen PE, Ogawa H. Strengthening the prevention of periodontal disease: the WHO approach. J Periodontol 2005;76:2187-93. https://doi.org/10.1902/jop.2005.76.12.2187
  3. Genco RJ, Van Dyke TE. Prevention: reducing the risk of CVD in patients with periodontitis. Nat Rev Cardiol 2010;7:479-80. https://doi.org/10.1038/nrcardio.2010.120
  4. Tonetti MS. Periodontitis and risk for atherosclerosis: an update on intervention trials. J Clin Periodontol 2009;36 Suppl 10:15-9. https://doi.org/10.1111/j.1600-051X.2009.01417.x
  5. Lalla E, Papapanou PN. Diabetes mellitus and periodontitis: a tale of two common interrelated diseases. Nat Rev Endocrinol 2011;7:738-48. https://doi.org/10.1038/nrendo.2011.106
  6. Nibali L, Tatarakis N, Needleman I, Tu YK, D'Aiuto F, Rizzo M, et al. Clinical review: Association between metabolic syndrome and periodontitis: a systematic review and meta-analysis. J Clin Endocrinol Metab 2013;98:913-20. https://doi.org/10.1210/jc.2012-3552
  7. Han DH, Lim SY, Sun BC, Paek D, Kim HD. The association of metabolic syndrome with periodontal disease is confounded by age and smoking in a Korean population: the Shiwha-Banwol Environmental Health Study. J Clin Periodontol 2010;37:609-16. https://doi.org/10.1111/j.1600-051X.2010.01580.x
  8. Kwon YE, Ha JE, Paik DI, Jin BH, Bae KH. The relationship between periodontitis and metabolic syndrome among a Korean nationally representative sample of adults. J Clin Periodontol 2011;38:781-6. https://doi.org/10.1111/j.1600-051X.2011.01756.x
  9. Awano S, Ansai T, Takata Y, Soh I, Akifusa S, Hamasaki T, et al. Oral health and mortality risk from pneumonia in the elderly. J Dent Res 2008;87:334-9. https://doi.org/10.1177/154405910808700418
  10. Paju S, Scannapieco FA. Oral biofilms, periodontitis, and pulmonary infections. Oral Dis 2007;13:508-12. https://doi.org/10.1111/j.1601-0825.2007.01410a.x
  11. Lundberg K, Wegner N, Yucel-Lindberg T, Venables PJ. Periodontitis in RA-the citrullinated enolase connection. Nat Rev Rheumatol 2010;6:727-30. https://doi.org/10.1038/nrrheum.2010.139
  12. Socransky SS, Haffajee AD. Periodontal microbial ecology. Periodontol 2000 2005;38:135-87. https://doi.org/10.1111/j.1600-0757.2005.00107.x
  13. Hajishengallis G, Lambris JD. Complement and dysbiosis in periodontal disease. Immunobiology 2012;217:1111-6. https://doi.org/10.1016/j.imbio.2012.07.007
  14. Darveau RP, Hajishengallis G, Curtis MA. Porphyromonas gingivalis as a potential community activist for disease. J Dent Res 2012;91:816-20. https://doi.org/10.1177/0022034512453589
  15. Van Dyke TE, Sheilesh D. Risk factors for periodontitis. J Int Acad Periodontol 2005;7:3-7.
  16. Van der Velden U, Abbas F, Armand S, Loos BG, Timmerman MF, Van der Weijden GA, et al. Java project on periodontal diseases. The natural development of periodontitis: risk factors, risk predictors and risk determinants. J Clin Periodontol 2006;33:540-8. https://doi.org/10.1111/j.1600-051X.2006.00953.x
  17. Yamamoto K, Kobayashi T, Grossi S, Ho AW, Genco RJ, Yoshie H, et al. Association of Fcgamma receptor IIa genotype with chronic periodontitis in Caucasians. J Periodontol 2004;75:517-22. https://doi.org/10.1902/jop.2004.75.4.517
  18. Fu Y, Korostoff JM, Fine DH, Wilson ME. Fc gamma receptor genes as risk markers for localized aggressive periodontitis in African-Americans. J Periodontol 2002;73:517-23. https://doi.org/10.1902/jop.2002.73.5.517
  19. Yoshihara A, Sugita N, Yamamoto K, Kobayashi T, Miyazaki H, Yoshi H. Analysis of vitamin D and Fcgamma receptor polymorphisms in Japanese patients with generalized early-onset periodontitis. J Dent Res 2001;80:2051-4. https://doi.org/10.1177/00220345010800120501
  20. Chai L, Song YQ, Zee KY, Leung WK. SNPs of Fc-gamma receptor genes and chronic periodontitis. J Dent Res 2010;89:705-10. https://doi.org/10.1177/0022034510365444
  21. Maria de Freitas N, Imbronito AV, Neves AC, Nunes FD, Pustiglioni FE, Lotufo RF. Analysis of IL-1A(-889) and TNFA(-308) gene polymorphism in Brazilian patients with generalized aggressive periodontitis. Eur Cytokine Netw 2007;18:142-7.
  22. Komatsu Y, Galicia JC, Kobayashi T, Yamazaki K, Yoshie H. Association of interleukin-1 receptor antagonist +2018 gene polymorphism with Japanese chronic periodontitis patients using a novel genotyping method. Int J Immunogenet 2008;35:165-70. https://doi.org/10.1111/j.1744-313X.2008.00757.x
  23. Kang BY, Choi YK, Choi WH, Kim KT, Choi SS, Kim K, et al. Two polymorphisms of interleukin-4 gene in Korean adult periodontitis. Arch Pharm Res 2003;26:482-6. https://doi.org/10.1007/BF02976867
  24. Michel J, Gonzales JR, Wunderlich D, Diete A, Herrmann JM, Meyle J. Interleukin-4 polymorphisms in early onset periodontitis. J Clin Periodontol 2001;28:483-8. https://doi.org/10.1034/j.1600-051x.2001.028005483.x
  25. Aoyagi T, Sugawara-Aoyagi M, Yamazaki K, Hara K. Interleukin 4 (IL-4) and IL-6-producing memory T-cells in peripheral blood and gingival tissue in periodontitis patients with high serum antibody titers to Porphyromonas gingivalis. Oral Microbiol Immunol 1995;10:304-10. https://doi.org/10.1111/j.1399-302X.1995.tb00159.x
  26. Stefani FA, Viana MB, Dupim AC, Brito JA, Gomez RS, da Costa JE, et al. Expression, polymorphism and methylation pattern of interleukin-6 in periodontal tissues. Immunobiology 2013;218:1012-7. https://doi.org/10.1016/j.imbio.2012.12.001
  27. Mellati E, Arab HR, Tavakkol-Afshari J, Ebadian AR, Radvar M. Analysis of -1082 IL-10 gene polymorphism in Iranian patients with generalized aggressive periodontitis. Med Sci Monit 2007;13:CR510-4.
  28. Babel N, Cherepnev G, Babel D, Tropmann A, Hammer M, Volk HD, et al. Analysis of tumor necrosis factor-alpha, transforming growth factor-beta, interleukin-10, IL-6, and interferon-gamma gene polymorphisms in patients with chronic periodontitis. J Periodontol 2006;77:1978-83. https://doi.org/10.1902/jop.2006.050315
  29. Noack B, Gorgens H, Lorenz K, Ziegler A, Hoffmann T, Schackert HK. TLR4 and IL-18 gene variants in aggressive periodontitis. J Clin Periodontol 2008;35:1020-6. https://doi.org/10.1111/j.1600-051X.2008.01334.x
  30. Noack B, Gorgens H, Lorenz K, Schackert HK, Hoffmann T. TLR4 and IL-18 gene variants in chronic periodontitis: impact on disease susceptibility and severity. Immunol Invest 2009;38:297-310. https://doi.org/10.1080/08820130902846290
  31. Fassmann A, Holla LI, Buckova D, Vasku A, Znojil V, Vanek J. Polymorphisms in the +252(A/G) lymphotoxin-alpha and the -308(A/G) tumor necrosis factor-alpha genes and susceptibility to chronic periodontitis in a Czech population. J Periodontal Res 2003;38:394-9. https://doi.org/10.1034/j.1600-0765.2003.00661.x
  32. Garlet GP, Trombone AP, Menezes R, Letra A, Repeke CE, Vieira AE, et al. The use of chronic gingivitis as reference status increases the power and odds of periodontitis genetic studies: a proposal based in the exposure concept and clearer resistance and susceptibility phenotypes definition. J Clin Periodontol 2012;39:323-32. https://doi.org/10.1111/j.1600-051X.2012.01859.x
  33. Deng H, Liu F, Pan Y, Jin X, Wang H, Cao J. BsmI, TaqI, ApaI, and FokI polymorphisms in the vitamin D receptor gene and periodontitis: a meta-analysis of 15 studies including 1338 cases and 1302 controls. J Clin Periodontol 2011;38:199-207. https://doi.org/10.1111/j.1600-051X.2010.01685.x
  34. Park KS, Nam JH, Choi J. The short vitamin D receptor is associated with increased risk for generalized aggressive periodontitis. J Clin Periodontol 2006;33:524-8. https://doi.org/10.1111/j.1600-051X.2006.00944.x
  35. Sun JL, Meng HX, Cao CF, Tachi Y, Shinohara M, Ueda M, et al. Relationship between vitamin D receptor gene polymorphism and periodontitis. J Periodontal Res 2002;37:263-7. https://doi.org/10.1034/j.1600-0765.2002.01605.x
  36. Nicu EA, Laine ML, Morre SA, Van der Velden U, Loos BG. Soluble CD14 in periodontitis. Innate Immun 2009;15:121-8. https://doi.org/10.1177/1753425908101577
  37. Laine ML, Morre SA, Murillo LS, van Winkelhoff AJ, Pena AS. CD14 and TLR4 gene polymorphisms in adult periodontitis. J Dent Res 2005;84:1042-6. https://doi.org/10.1177/154405910508401114
  38. James JA, Poulton KV, Haworth SE, Payne D, McKay IJ, Clarke FM, et al. Polymorphisms of TLR4 but not CD14 are associated with a decreased risk of aggressive periodontitis. J Clin Periodontol 2007;34:111-7.
  39. Holla LI, Jurajda M, Fassmann A, Dvorakova N, Znojil V, Vacha J. Genetic variations in the matrix metalloproteinase-1 promoter and risk of susceptibility and/or severity of chronic periodontitis in the Czech population. J Clin Periodontol 2004;31:685-90. https://doi.org/10.1111/j.1600-051X.2004.00547.x
  40. Li D, Cai Q, Ma L, Wang M, Ma J, Zhang W, et al. Association between MMP-1 g.-1607dupG polymorphism and periodontitis susceptibility: a meta-analysis. PLoS One 2013;8:e59513. https://doi.org/10.1371/journal.pone.0059513
  41. Emingil G, Berdeli A, Baylas H, Saygan BH, Gurkan A, Kose T, et al. Toll-like receptor 2 and 4 gene polymorphisms in generalized aggressive periodontitis. J Periodontol 2007;78:1968-77. https://doi.org/10.1902/jop.2007.060360
  42. Berdeli A, Emingil G, Han Saygan B, Gurkan A, Atilla G, Kose T, et al. TLR2 Arg753Gly, TLR4 Asp299Gly and Thr399Ile gene polymorphisms are not associated with chronic periodontitis in a Turkish population. J Clin Periodontol 2007;34:551-7. https://doi.org/10.1111/j.1600-051X.2007.01092.x
  43. Daing A, Singh SV, Saimbi CS, Khan MA, Rath SK. Cyclooxygenase 2 gene polymorphisms and chronic periodontitis in a North Indian population: a pilot study. J Periodontal Implant Sci 2012;42:151-7. https://doi.org/10.5051/jpis.2012.42.5.151
  44. Li Y, Xu L, Hasturk H, Kantarci A, DePalma SR, Van Dyke TE. Localized aggressive periodontitis is linked to human chromosome 1q25. Hum Genet 2004;114:291-7. https://doi.org/10.1007/s00439-003-1065-7
  45. Chai L, Song YQ, Leung WK. Genetic polymorphism studies in periodontitis and $Fc{\gamma}$ receptors. J Periodontal Res 2012;47:273-85. https://doi.org/10.1111/j.1600-0765.2011.01437.x
  46. Laine ML, Crielaard W, Loos BG. Genetic susceptibility to periodontitis. Periodontol 2000 2012;58:37-68. https://doi.org/10.1111/j.1600-0757.2011.00415.x
  47. Grant MM. What do 'omic technologies have to offer periodontal clinical practice in the future? J Periodontal Res 2012;47:2-14. https://doi.org/10.1111/j.1600-0765.2011.01387.x
  48. Schaefer AS, Richter GM, Nothnagel M, Manke T, Dommisch H, Jacobs G, et al. A genome-wide association study identifies GLT6D1 as a susceptibility locus for periodontitis. Hum Mol Genet 2010;19:553-62. https://doi.org/10.1093/hmg/ddp508
  49. Divaris K, Monda KL, North KE, Olshan AF, Reynolds LM, Hsueh WC, et al. Exploring the genetic basis of chronic periodontitis: a genome-wide association study. Hum Mol Genet 2013;22:2312-24. https://doi.org/10.1093/hmg/ddt065
  50. Demmer RT, Behle JH, Wolf DL, Handfield M, Kebschull M, Celenti R, et al. Transcriptomes in healthy and diseased gingival tissues. J Periodontol 2008;79:2112-24. https://doi.org/10.1902/jop.2008.080139
  51. Papapanou PN, Behle JH, Kebschull M, Celenti R, Wolf DL, Handfield M, et al. Subgingival bacterial colonization profiles correlate with gingival tissue gene expression. BMC Microbiol 2009;9:221. https://doi.org/10.1186/1471-2180-9-221
  52. Papapanou PN, Sedaghatfar MH, Demmer RT, Wolf DL, Yang J, Roth GA, et al. Periodontal therapy alters gene expression of peripheral blood monocytes. J Clin Periodontol 2007;34:736-47. https://doi.org/10.1111/j.1600-051X.2007.01113.x
  53. Kojima T, Andersen E, Sanchez JC, Wilkins MR, Hochstrasser DF, Pralong WF, et al. Human gingival crevicular fluid contains MRP8 (S100A8) and MRP14 (S100A9), two calcium-binding proteins of the S100 family. J Dent Res 2000;79:740-7. https://doi.org/10.1177/00220345000790020701
  54. Wu Y, Shu R, Luo LJ, Ge LH, Xie YF. Initial comparison of proteomic profiles of whole unstimulated saliva obtained from generalized aggressive periodontitis patients and healthy control subjects. J Periodontal Res 2009;44:636-44. https://doi.org/10.1111/j.1600-0765.2008.01172.x
  55. Barnes VM, Teles R, Trivedi HM, Devizio W, Xu T, Mitchell MW, et al. Acceleration of purine degradation by periodontal diseases. J Dent Res 2009;88:851-5. https://doi.org/10.1177/0022034509341967
  56. Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res 2011;21:381-95. https://doi.org/10.1038/cr.2011.22
  57. Wei G, Hu G, Cui K, Zhao K. Genome-wide mapping of nucleosome occupancy, histone modifications, and gene expression using next-generation sequencing technology. Methods Enzymol 2012;513:297-313. https://doi.org/10.1016/B978-0-12-391938-0.00013-6
  58. Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, et al. High-resolution profiling of histone methylations in the human genome. Cell 2007;129:823-37. https://doi.org/10.1016/j.cell.2007.05.009
  59. Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 2012;13:484-92. https://doi.org/10.1038/nrg3230
  60. Tan L, Shi YG. Tet family proteins and 5-hydroxymethylcytosine in development and disease. Development 2012;139:1895-902. https://doi.org/10.1242/dev.070771
  61. Gal-Yam EN, Egger G, Iniguez L, Holster H, Einarsson S, Zhang X, et al. Frequent switching of Polycomb repressive marks and DNA hypermethylation in the PC3 prostate cancer cell line. Proc Natl Acad Sci U S A 2008;105:12979-84. https://doi.org/10.1073/pnas.0806437105
  62. Lindroth AM, Park YJ, McLean CM, Dokshin GA, Persson JM, Herman H, et al. Antagonism between DNA and H3K27 methylation at the imprinted Rasgrf1 locus. PLoS Genet 2008;4:e1000145. https://doi.org/10.1371/journal.pgen.1000145
  63. Cortessis VK, Thomas DC, Levine AJ, Breton CV, Mack TM, Siegmund KD, et al. Environmental epigenetics: prospects for studying epigenetic mediation of exposure-response relationships. Hum Genet 2012;131:1565-89. https://doi.org/10.1007/s00439-012-1189-8
  64. Kilpinen H, Dermitzakis ET. Genetic and epigenetic contribution to complex traits. Hum Mol Genet 2012;21:R24-8. https://doi.org/10.1093/hmg/dds383
  65. Bonasio R, Tu S, Reinberg D. Molecular signals of epigenetic states. Science 2010;330:612-6. https://doi.org/10.1126/science.1191078
  66. Tsai PC, Spector TD, Bell JT. Using epigenome-wide association scans of DNA methylation in age-related complex human traits. Epigenomics 2012;4:511-26. https://doi.org/10.2217/epi.12.45
  67. Li H, Deng H. Systems genetics, bioinformatics and eQTL mapping. Genetica 2010;138:915-24. https://doi.org/10.1007/s10709-010-9480-x
  68. Baranzini SE, Mudge J, van Velkinburgh JC, Khankhanian P, Khrebtukova I, Miller NA, et al. Genome, epigenome and RNA sequences of monozygotic twins discordant for multiple sclerosis. Nature 2010;464:1351-6. https://doi.org/10.1038/nature08990
  69. Williams SC. Genetics: searching for answers. Nature 2012;491:S4-6. https://doi.org/10.1038/491S4a
  70. How Kit A, Nielsen HM, Tost J. DNA methylation based biomarkers: practical considerations and applications. Biochimie 2012;94:2314-37. https://doi.org/10.1016/j.biochi.2012.07.014
  71. Mendenhall EM, Bernstein BE. Chromatin state maps: new technologies, new insights. Curr Opin Genet Dev 2008;18:109-15. https://doi.org/10.1016/j.gde.2008.01.010
  72. Smith ZD, Meissner A. DNA methylation: roles in mammalian development. Nat Rev Genet 2013;14:204-20.
  73. Meissner A. Epigenetic modifications in pluripotent and differentiated cells. Nat Biotechnol 2010;28:1079-88. https://doi.org/10.1038/nbt.1684
  74. McDonald OG, Wu H, Timp W, Doi A, Feinberg AP. Genome-scale epigenetic reprogramming during epithelial-to-mesenchymal transition. Nat Struct Mol Biol 2011;18:867-74. https://doi.org/10.1038/nsmb.2084
  75. Kellermayer R. Epigenetics and the developmental origins of inflammatory bowel diseases. Can J Gastroenterol 2012;26:909-15. https://doi.org/10.1155/2012/526408
  76. Barros SP, Offenbacher S. Epigenetics: connecting environment and genotype to phenotype and disease. J Dent Res 2009;88:400-8. https://doi.org/10.1177/0022034509335868
  77. Alegria-Torres JA, Baccarelli A, Bollati V. Epigenetics and lifestyle. Epigenomics 2011;3:267-77. https://doi.org/10.2217/epi.11.22
  78. Wen H, Schaller MA, Dou Y, Hogaboam CM, Kunkel SL. Dendritic cells at the interface of innate and acquired immunity: the role for epigenetic changes. J Leukoc Biol 2008;83:439-46. https://doi.org/10.1189/jlb.0607357
  79. Fitzpatrick DR, Wilson CB. Methylation and demethylation in the regulation of genes, cells, and responses in the immune system. Clin Immunol 2003;109:37-45. https://doi.org/10.1016/S1521-6616(03)00205-5
  80. O'Shea JJ, Lahesmaa R, Vahedi G, Laurence A, Kanno Y. Genomic views of STAT function in CD4+ T helper cell differentiation. Nat Rev Immunol 2011;11:239-50. https://doi.org/10.1038/nri2958
  81. Nielsen HM, Tost J. Epigenetic changes in inflammatory and autoimmune diseases. Subcell Biochem 2012;61:455-78.
  82. Villagra A, Sotomayor EM, Seto E. Histone deacetylases and the immunological network: implications in cancer and inflammation. Oncogene 2010;29:157-73. https://doi.org/10.1038/onc.2009.334
  83. Barnes PJ. Targeting the epigenome in the treatment of asthma and chronic obstructive pulmonary disease. Proc Am Thorac Soc 2009;6:693-6. https://doi.org/10.1513/pats.200907-071DP
  84. Sullivan KE, Reddy AB, Dietzmann K, Suriano AR, Kocieda VP, Stewart M, et al. Epigenetic regulation of tumor necrosis factor alpha. Mol Cell Biol 2007;27:5147-60. https://doi.org/10.1128/MCB.02429-06
  85. White GP, Watt PM, Holt BJ, Holt PG. Differential patterns of methylation of the IFN-gamma promoter at CpG and non-CpG sites underlie differences in IFN-gamma gene expression between human neonatal and adult CD45RO- T cells. J Immunol 2002;168:2820-7. https://doi.org/10.4049/jimmunol.168.6.2820
  86. Adcock IM, Tsaprouni L, Bhavsar P, Ito K. Epigenetic regulation of airway inflammation. Curr Opin Immunol 2007;19:694-700. https://doi.org/10.1016/j.coi.2007.07.016
  87. Shuto T, Furuta T, Oba M, Xu H, Li JD, Cheung J, et al. Promoter hypomethylation of Toll-like receptor-2 gene is associated with increased proinflammatory response toward bacterial peptidoglycan in cystic fibrosis bronchial epithelial cells. FASEB J 2006;20:782-4.
  88. Takahashi K, Sugi Y, Hosono A, Kaminogawa S. Epigenetic regulation of TLR4 gene expression in intestinal epithelial cells for the maintenance of intestinal homeostasis. J Immunol 2009;183:6522-9. https://doi.org/10.4049/jimmunol.0901271
  89. Kanzler H, Barrat FJ, Hessel EM, Coffman RL. Therapeutic targeting of innate immunity with Toll-like receptor agonists and antagonists. Nat Med 2007;13:552-9. https://doi.org/10.1038/nm1589
  90. Hodge DR, Xiao W, Clausen PA, Heidecker G, Szyf M, Farrar WL. Interleukin-6 regulation of the human DNA methyltransferase (HDNMT) gene in human erythroleukemia cells. J Biol Chem 2001;276:39508-11. https://doi.org/10.1074/jbc.C100343200
  91. Hmadcha A, Bedoya FJ, Sobrino F, Pintado E. Methylation-dependent gene silencing induced by interleukin 1beta via nitric oxide production. J Exp Med 1999;190:1595-604. https://doi.org/10.1084/jem.190.11.1595
  92. Bayarsaihan D. Epigenetic mechanisms in inflammation. J Dent Res 2011;90:9-17. https://doi.org/10.1177/0022034510378683
  93. Zhang S, Crivello A, Offenbacher S, Moretti A, Paquette DW, Barros SP. Interferon-gamma promoter hypomethylation and increased expression in chronic periodontitis. J Clin Periodontol 2010;37:953-61. https://doi.org/10.1111/j.1600-051X.2010.01616.x
  94. Zhang S, Barros SP, Moretti AJ, Yu N, Zhou J, Preisser JS, et al. Epigenetic regulation of TNFA expression in periodontal disease. J Periodontol 2013 Jan 31 [Epub]. http://dx.doi.org/10.1902/jop.2013.120294.
  95. Gorska R, Gregorek H, Kowalski J, Laskus-Perendyk A, Syczewska M, Madalinski K. Relationship between clinical parameters and cytokine profiles in inflamed gingival tissue and serum samples from patients with chronic periodontitis. J Clin Periodontol 2003;30:1046-52. https://doi.org/10.1046/j.0303-6979.2003.00425.x
  96. Salvi GE, Brown CE, Fujihashi K, Kiyono H, Smith FW, Beck JD, et al. Inflammatory mediators of the terminal dentition in adult and early onset periodontitis. J Periodontal Res 1998;33:212-25. https://doi.org/10.1111/j.1600-0765.1998.tb02193.x
  97. Pinho Mde N, Pereira LB, de Souza SL, Palioto DB, Grisi MF, Novaes AB Jr, et al. Short-term effect of COX-2 selective inhibitor as an adjunct for the treatment of periodontal disease: a clinical double-blind study in humans. Braz Dent J 2008;19:323-8. https://doi.org/10.1590/S0103-64402008000400007
  98. Zhang S, Barros SP, Niculescu MD, Moretti AJ, Preisser JS, Offenbacher S. Alteration of PTGS2 promoter methylation in chronic periodontitis. J Dent Res 2010;89:133-7. https://doi.org/10.1177/0022034509356512
  99. Loo WT, Jin L, Cheung MN, Wang M, Chow LW. Epigenetic change in E-cadherin and COX-2 to predict chronic periodontitis. J Transl Med 2010;8:110. https://doi.org/10.1186/1479-5876-8-110
  100. Cantley MD, Bartold PM, Marino V, Fairlie DP, Le GT, Lucke AJ, et al. Histone deacetylase inhibitors and periodontal bone loss. J Periodontal Res 2011;46:697-703. https://doi.org/10.1111/j.1600-0765.2011.01392.x

Cited by

  1. The inflammophilic character of the periodontitis‐associated microbiota vol.29, pp.6, 2013, https://doi.org/10.1111/omi.12065
  2. Epigenetics: general characteristics and implications for oral health vol.40, pp.1, 2013, https://doi.org/10.5395/rde.2015.40.1.14
  3. Role of epigenetics in modulation of immune response at the junction of host–pathogen interaction and danger molecule signaling vol.74, pp.7, 2016, https://doi.org/10.1093/femspd/ftw082
  4. Epigenetic regulation in dental pulp inflammation vol.23, pp.1, 2013, https://doi.org/10.1111/odi.12464
  5. Epigenetic regulation of inflammation in localized aggressive periodontitis vol.9, pp.None, 2017, https://doi.org/10.1186/s13148-017-0385-8
  6. Oral health in geroscience: animal models and the aging oral cavity vol.40, pp.1, 2013, https://doi.org/10.1007/s11357-017-0004-9
  7. Association of Global DNA Methylation to Titanium and Peri-Implantitis: A Case-Control Study vol.4, pp.3, 2019, https://doi.org/10.1177/2380084418822831
  8. The role of inflammation and genetics in periodontal disease vol.83, pp.1, 2013, https://doi.org/10.1111/prd.12297
  9. Decitabine Inhibits Bone Resorption in Periodontitis by Upregulating Anti-Inflammatory Cytokines and Suppressing Osteoclastogenesis vol.9, pp.2, 2013, https://doi.org/10.3390/biomedicines9020199