Browse > Article
http://dx.doi.org/10.5483/BMBRep.2010.43.10.649

Epigenetic modification is linked to Alzheimer's disease: is it a maker or a marker?  

Lee, Jung-Hee (Department of Neurology, Boston University School of Medicine)
Ryu, Hoon (Department of Neurology, Boston University School of Medicine)
Publication Information
BMB Reports / v.43, no.10, 2010 , pp. 649-655 More about this Journal
Abstract
Alzheimer's disease (AD) is the most common age-dependent neurodegenerative disorder and shows progressive memory loss and cognitive decline. Intraneuronal filaments composed of aggregated hyperphosphorylated tau protein, called neurofibrillary tangles, along with extracellular accumulations of amyloid $\beta$ protein (A$\beta$), called senile plaques, are known to be the neuropathological hallmarks of AD. In light of recent studies, epigenetic modification has emerged as one of the pathogenic mechanisms of AD. Epigenetic changes encompass an array of molecular modifications to both DNA and chromatin, including transcription factors and cofactors. In this review, we summarize how DNA methylation and changes to DNA chromatin packaging by post-translational histone modification are involved in AD. In addition, we describe the role of SIRTs, histone deacetylases, and the effect of SIRT-modulating drugs on AD. Lastly, we discuss how amyloid precursor protein (APP) intracellular domain (AICD) regulates neuronal transcription. Our understanding of the epigenomes and transcriptomes of AD may warrant future identification of novel biological markers and beneficial therapeutic targets for AD.
Keywords
Alzheimer's disease; Chromatin remodeling; DNA methylation; Epigenetic modification;
Citations & Related Records

Times Cited By Web Of Science : 10  (Related Records In Web of Science)
Times Cited By SCOPUS : 9
연도 인용수 순위
1 Abdolmaleky, H. M., Smith, C. L., Faraone, S. V., Shafa, R., Stone, W., Glatt, S. J. and Tsuang, M. T. (2004) Methylomics in psychiatry: modulation of gene-environment interactions may be through DNA methylation. Am. J. Med. Genet. B. Neuropsychiatr. Genet. 127B, 51-59.   DOI   ScienceOn
2 Ryu, H., Lee, J., Hagerty, S. W., Soh, B. Y., McAlpin, S. E., Cormier, K. A., Smith, K, M. and Ferrante, R. J. (2006) ESET/SETDB1 gene expression and histone H3 (K9) trimethylation in Huntington's disease. Proc. Natl. Acad. Sci. U.S.A. 103, 19176-19181.   DOI   ScienceOn
3 Karuppagounder, S. S., Pinto, J. T., Xu, H., Chen, H. L., Beal, M. F. and Gibson, G. E. (2009) Dietary supplementation with resveratrol reduces plaque pathology in a transgenic model of Alzheimer’s disease. Neurochem. Int. 54, 111-118.   DOI   ScienceOn
4 Markus, M. A. and Morris, B. J. (2008) Resveratrol in prevention and treatment of common clinical conditions of aging. Clin. Interv. Aging. 3, 331-339.
5 Ryan, K. A. and Pimplikar, S. W. (2005). Activation of GSK-3 and phosphorylation of CRMP2 in transgenic mice expressing APP intracellular domain. J. Cell Biol. 171, 327-335.   DOI   ScienceOn
6 Munoz, D. G., Wang, D. and Greenberg, B. D. (1993) Hirano bodies accumulate C-terminal sequences of beta- amyloid precursor protein (beta-APP) epitopes. J. Neuropathol. Exp. Neurol. 52, 14-21.   DOI
7 Artavanis-Tsakonas, S., Rand, M. D. and Lake, R. J. (1999) Notch signaling: cell fate control and signal integration in development. Science 284, 770-776.   DOI   ScienceOn
8 McLoughlin, D. M. and Miller, C. C. (1996) The intracellular cytoplasmic domain of the Alzheimer’s disease amyloid precursor protein interacts with phosphotyrosine-binding domain proteins in the yeast two-hybrid system. FEBS Lett. 397, 197-200.   DOI   ScienceOn
9 Baek, S. H., Ohgi, K. A., Rose, D. W., Koo, E. H., Glass, C. K. and Rosenfeld, M. G. (2002) Exchange of N-CoR corepressor and Tip60 coactivator complexes links gene expression by NF-kappa B and beta-amyloid precursor protein. Cell 110, 55-67.   DOI   ScienceOn
10 Cao, X. and Sudhof, T. C. (2001) A transcriptionally [correction of transcriptively] active complex of APP with Fe65 and histone acetyltransferase Tip60. Science 293, 115-120.   DOI   ScienceOn
11 Siegmund, K. D., Connor, C. M., Campan, M., Long, T. I., Weisenberger, D. J., Biniszkiewicz, D., Jaenisch, R., Laird, P. W. and Akbarian, S. (2007) DNA methylation in the human cerebral cortex is dynamically regulated throughout the life span and involves differentiated neurons. PLoS One 2, e895.   DOI
12 Hahnen, E., Hauke, J., Trankle, C., Eyupoglu, I. Y., Wirth, B. and Blumcke, I. (2008) Histone deacetylase inhibitors: possible implications for neurodegenerative disorders. Expert. Opin. Investig. Drugs. 17, 169-184.   DOI   ScienceOn
13 Guan, J. S., Haggarty, S. J., Giacometti, E., Dannenberg, J. H., Joseph, N., Gao, J., Nieland, T. J., Zhou, Y., Wang, X., Mazitschek, R., Bradner, J. E., DePinho, R. A., Jaenisch, R. and Tsai, L. H. (2009) HDAC2 negatively regulates memory formation and synaptic plasticity. Nature 7, 55-60.
14 Julien, C., Tremblay, C., Emond, V., Lebbadi, M., Salem, N. Jr., Bennett, D. A. and Calon, F. (2009) Sirtuin 1 reduction parallels the accumulation of tau in Alzheimer disease. J. Neuropathol. Exp. Neurol. 68, 48-58.   DOI   ScienceOn
15 Donmez, G., Wang, D., Cohen, D. E. and Guarente, L. (2010) SIRT1 suppresses beta-amyloid production by activating the alpha-secretase gene ADAM10. Cell 142, 320-332.   DOI   ScienceOn
16 Wolfe, M. S. and Selkoe, D. J. (2010) Giving Alzheimer's the old one-two. Cell 142, 194-196.   DOI   ScienceOn
17 Luo, J., Nikolaev, A. Y., Imai, S., Chen, D., Su, F., Shiloh, A., Guarente, L. and Gu, W. (2001) Negative control of p53 by Sir2 alphapromotes cell survival under stress. Cell 107, 137-148.   DOI   ScienceOn
18 Albani, D., Polito, L. and Forlon, I. G. (2010) Sirtuins as novel targets for Alzheimer's disease and other neurodegenerative disorders: experimental and genetic evidence. J. Alzheimers. Dis. 19, 11-26.   DOI
19 De Oliveira, R. M., Pais, T. F. and Outeiro, T. F. (2010) Sirtuins: common targets in aging and in neurodegeneration. Curr. Drug. Targets. 11, 1270-1280.   DOI   ScienceOn
20 Green, K. N., Steffan, J. S., Martinez-Coria, H., Sun, X., Schreiber, S. S., Thompson, L. M. and LaFerla, F. M. (2008) Nicotinamide restores cognition in Alzheimer's disease transgenic mice via a mechanism involving sirtuin inhibition and selective reduction of Thr231-phosphotau. J. Neurosci. 28, 11500-11510.   DOI   ScienceOn
21 Papp, B. and Muller, J. (2006) Histone trimethylation and the maintainence of transcriptional ON and OFF states by trxG and PcG proteins. Genes Dev. 20, 2041-2054.   DOI   ScienceOn
22 Ferrante, R. J., Kubilus, J. K., Lee, J., Ryu, H., Beesen, A., Zucker, B., Smith, K., Kowall, N. W., Ratan, R. R., Luthi- Carter, R. and Hersch, S. M. (2003) Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntington’s disease mice. J. Neurosci. 23, 9418-9427.
23 Gardian, G., Browne, S. E., Choi, D. K., Klivenyi, P., Gregorio, J., Kubilus, J. K., Ryu, H., Langley, B., Ratan, R. R., Ferrante, R. J. and Beal, M. F. (2005) Neuroprotective effects of phenylbutyrate in the N171-82Q transgenic mouse model of Huntington’s disease. J. Biol. Chem. 280, 556-563.   DOI
24 McCampbell, A., Taye, A. A., Whitty, L., Penney, E., Steffan, J. S. and Fischbeck, K. H. (2001) Histone deacetylase inhibitors reduce polyglutamine toxicity. Proc. Natl Acad. Sci. U.S.A. 98, 15179-15184.   DOI   ScienceOn
25 Mattson, M. P. and Sherman, M. (2003) Perturbed signal transduction in neurodegenerative disorders involving aberrant protein aggregation. Neuromolecular. Med. 4, 109-132.   DOI   ScienceOn
26 Ryu, H., Smith, K., Camelo, S. I., Carreras, I., Lee, J., Iglesias, A. H., Dangond, F., Cormier, K. A., Cudkowicz, M. E., Brown, R. H. Jr. and Ferrante, R. J. (2005) Sodium phenylbutyrate prolongs survival and regulates expression of anti-apoptotic genes in transgenic amyotrophic lateral sclerosis mice. J. Neurochem. 93, 1087-1098.   DOI   ScienceOn
27 Steffan, J. S., Bodai, L., Pallos, J., Poelman, M., McCampbell, A., Apostol, B. L., Kazantsev, A., Schmidt, E., Zhu, Y. Z., Greenwald, M., Kurokawa, R., Housman, D. E., Jackson, G. R., Marsh, J. L. and Thompson, L. M. (2001) Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature 413, 739-743.   DOI   ScienceOn
28 Hockly, E., Richon, M. V., Woodman, B., Smith, D. L., Zhou, X., Rosa, E., Sathasivam, K, Ghazi-Noori, S., Mahal, A., Lowden, P. A., Steffan, J. S., Marsh, J. L., Thompson, L. M., Lewis, C. M., Marks, P. A. and Bates, G. P. (2003) Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington’s disease. Proc. Natl. Acad. Sci. U.S.A. 100, 2041-2046.   DOI   ScienceOn
29 Robakis, N. K. (2003) An Alzheimer's disease hypothesis based on transcriptional dysregulation. Amyloid. 10, 80-85.   DOI
30 Kilgore, M., Miller, C. A., Fass, D. M., Hennig, K. M., Haggarty, S. J., Sweatt, J. D. and Rumbaugh, G. (2010) Inhibitors of class 1 histone deacetylases reverse contextual memory deficits in a mouse model of Alzheimer's disease. Neuropsychopharmacology 35, 870-880.   DOI   ScienceOn
31 Ogawa, O., Zhu, X., Lee, H. G., Raina, A., Obrenovich, M. E., Bowser, R., Ghanbari, H. A., Castellani, R. J., Perry, G. and Smith, M. A. (2003) Ectopic localization of phosphorylated histone H3 in Alzheimer's disease: a mitotic catastrophe? Acta. Neuropathol. 105, 524-528.
32 Strahl, B. D. and Allis, C. D. (2000) The language of covalent histone modifications. Nature 403, 41-45.   DOI   ScienceOn
33 Alarcon, J. M., Malleret, G., Touzani, K., Vronskaya, S., Ishii, S., Kandel, E. R. and Barco, A. (2004) Chromatin acetylation, memory, and LTP are impaired in $CBP^{+/-}$ mice: a model for the cognitive deficit in Rubinstein-Taybi syndrome and its amelioration. Neuron 42, 947-959.   DOI   ScienceOn
34 Korzus, E., Rosenfeld, M. G. and Mayford, M. (2004) CBP histone acetyltransferase activity is a critical component of memory consolidation. Neuron 42, 961-972.   DOI   ScienceOn
35 Oliveira, A. M., Wood, M. A., McDonough, C. B. and Abel, T. (2007) Transgenic mice expressing an inhibitory truncated form of p300 exhibit long-term memory deficits. Learn. Mem. 14, 564-572.   DOI   ScienceOn
36 Hake, S. B. and Allis, C. D. (2006) Histone H3 variants and their potential role in indexing mammalian genomes: the ‘H3 barcode hypothesis’. Proc. Natl. Acad. Sci. U.S.A. 103, 6428-6435.   DOI   ScienceOn
37 Wang, S. C., Oelze, B. and Schumacher, A. (2008) Agespecific epigenetic drift in late onset Alzheimer’s disease. PLoS ONE 3, e2698.   DOI   ScienceOn
38 Poulsen, P., Esteller, M., Vaag, A. and Fraga, M. F. (2007) The epigenetic basis of twin discordance in age-related diseases. Pediatr. Res. 61, 38R-42R.   DOI   ScienceOn
39 Mastroeni, D., McKee, A., Rogers, J. and Coleman, P. D. (2009) Epigenetic differences in cortical neurons from a pair of monozygotic twins discordant for Alzheimer's disease. PLoS One 4, e6617.   DOI   ScienceOn
40 Silva, P. N., Gigek, C. O., Leal, M. F., Bertolucci, P. H., de Labio, R. W., Payao, S. L. and Smith Mde, A. (2008) Promoter methylation analysis of SIRT3, SMARCA5, HTERT and CDH1 genes in aging and Alzheimer's disease. J. Alzheimers. Dis. 13, 173-176.   DOI
41 Hake, S. B., Xiao, A. and Allis, C. D. (2004) Linking the epigenetic ‘language’ of covalent histone modifications to cancer. Br. J. Cancer 90, 761-769.   DOI   ScienceOn
42 Akiyama, H., Barger, S., Barnum, S., Bradt, B., Bauer, J., Cole, G. M., Cooper, N. R., Eikelenboom, P., Emmerling, M., Fiebich, B. L., Finch, C. E., Frautschy, S., Griffin, W. S., Hampel, H., Hull, M., Landreth, G., Lue, L., Mrak, R., Mackenzie, I. R., McGeer, P. L., O'Banion, M. K., Pachter J, Pasinetti, G., Plata-Salaman, C., Rogers, J., Rydel, R., Shen, Y., Streit, W., Strohmeyer, R., Tooyoma, I., Van Muiswinkel, F. L., Veerhuis, R., Walker, D., Webster, S., Wegrzyniak, B., Wenk, G. and Wyss-Coray, T. (2000) Inflammation and Alzheimer’s disease. Neurobiol. Aging 21, 383-421.   DOI   ScienceOn
43 Bannister, A. J., Schneider, R. and Kouzarides, T. (2002) Histone methylation: dynamic or static? Cell 109, 801-806.   DOI   ScienceOn
44 Felsenfeld, G., and Groudine, M. (2003) Controlling the double helix. Nature 421, 448-453.   DOI   ScienceOn
45 Jenuwein, T. and Allis, C. D. (2001) Translating the histone code. Science 293, 1074-1080.   DOI   ScienceOn
46 Sadri-Vakili, G. and Cha, J. H. (2006) Mechanisms of disease: histone modifications in Huntington’s disease. Nat. Clin. Pract. Neurol. 2, 330-338.   DOI   ScienceOn
47 Tohgi, H., Utsugisawa, K., Nagane, Y., Yoshimura, M., Genda, Y. and Ukitsu, M. (1999) Reduction with age in methylcytosine in the promoter region -224 approximately -101 of the amyloid precursor protein gene in autopsy human cortex. Brain Res. Mol. Brain Res. 70, 288-292.   DOI   ScienceOn
48 Marques, S. C., Oliveira, C. R., Outeiro, T. F. and Pereira, C. M. (2010) Alzheimer's disease: the quest to understand complexity. J. Alzheimers. Dis. 21, 373-383.   DOI
49 Chouliaras, L., Rutten, B. P., Kenis, G., Peerbooms, O., Visser, P. J., Verhey, F., van Os, J., Steinbusch, H. W. and van den Hove, D. L. (2010) Epigenetic regulation in the pathophysiology of Alzheimer's disease. Prog. Neurobiol. 90, 498-510.   DOI   ScienceOn
50 Suzuki, M. M. and Bird, A. (2008) DNA methylation landscapes: provocative insights from epigenomics. Nat. Rev. Genet. 9, 465-476.
51 West, R. L., Lee, J. M. and Maroun, L. E. (1995) Hypomethylation of the amyloid precursor protein gene in the brain of an Alzheimer’s disease patient. J. Mol. Neurosci. 6, 141-146.   DOI