DOI QR코드

DOI QR Code

Epigenetics: A key paradigm in reproductive health

  • Bunkar, Neha (Translational Research Laboratory, School of Biological Sciences, Dr. Hari Singh Central University) ;
  • Pathak, Neelam (Translational Research Laboratory, School of Biological Sciences, Dr. Hari Singh Central University) ;
  • Lohiya, Nirmal Kumar (Reproductive Physiology Laboratory, Centre for Advanced Studies, University of Rajasthan) ;
  • Mishra, Pradyumna Kumar (Translational Research Laboratory, School of Biological Sciences, Dr. Hari Singh Central University)
  • Received : 2016.01.03
  • Accepted : 2016.03.16
  • Published : 2016.06.23

Abstract

It is well established that there is a heritable element of susceptibility to chronic human ailments, yet there is compelling evidence that some components of such heritability are transmitted through non-genetic factors. Due to the complexity of reproductive processes, identifying the inheritance patterns of these factors is not easy. But little doubt exists that besides the genomic backbone, a range of epigenetic cues affect our genetic programme. The inter-generational transmission of epigenetic marks is believed to operate via four principal means that dramatically differ in their information content: DNA methylation, histone modifications, microRNAs and nucleosome positioning. These epigenetic signatures influence the cellular machinery through positive and negative feedback mechanisms either alone or interactively. Understanding how these mechanisms work to activate or deactivate parts of our genetic programme not only on a day-to-day basis but also over generations is an important area of reproductive health research.

Keywords

References

  1. Tollervey JR, Lunyak VV. Epigenetics: judge, jury and executioner of stem cell fate. Epigenetics 2012;7:823-40. https://doi.org/10.4161/epi.21141
  2. Jones PA, Liang G. Rethinking how DNA methylation patterns are maintained. Nat Rev Genet 2009;10:805-11.
  3. Uysal F, Akkoyunlu G, Ozturk S. Dynamic expression of DNA methyltransferases (DNMTs) in oocytes and early embryos. Biochimie 2015;116:103-13. https://doi.org/10.1016/j.biochi.2015.06.019
  4. Baylin SB, Jones PA. A decade of exploring the cancer epigenome:biological and translational implications. Nat Rev Cancer 2011;11:726-34. https://doi.org/10.1038/nrc3130
  5. Wu H, Zhang Y. Mechanisms and functions of Tet protein-mediated 5-methylcytosine oxidation. Genes Dev 2011;25:2436-52. https://doi.org/10.1101/gad.179184.111
  6. Bogdanovic O, Veenstra GJ. DNA methylation and methyl-CpG binding proteins: developmental requirements and function. Chromosoma 2009;118:549-65. https://doi.org/10.1007/s00412-009-0221-9
  7. Geiman TM, Robertson KD. Chromatin remodeling, histone modifications, and DNA methylation. How does it all fit together? J Cell Biochem 2002;87:117-25. https://doi.org/10.1002/jcb.10286
  8. Newell-Price J, Clark AJ, King P. DNA methylation and silencing of gene expression. Trends Endocrinol Metab 2000;11:142-8. https://doi.org/10.1016/S1043-2760(00)00248-4
  9. Wu SC, Zhang Y. Active DNA demethylation: many roads lead to Rome. Nat Rev Mol Cell Biol 2010;11:607-20.
  10. Hajkova P, Jeffries SJ, Lee C, Miller N, Jackson SP, Surani MA. Genome-wide reprogramming in the mouse germ line entails the base excision repair pathway. Science 2010;329:78-82. https://doi.org/10.1126/science.1187945
  11. Chen CC, Wang KY, Shen CK. DNA 5-methylcytosine demethylation activities of the mammalian DNA methyltransferases. J Biol Chem 2013;288:9084-91. https://doi.org/10.1074/jbc.M112.445585
  12. Rothbart SB, Strahl BD. Interpreting the language of histone and DNA modifications. Biochim Biophys Acta 2014;1839:627-43. https://doi.org/10.1016/j.bbagrm.2014.03.001
  13. De Gobbi M, Garrick D, Lynch M, Vernimmen D, Hughes JR, Goardon N, et al. Generation of bivalent chromatin domains during cell fate decisions. Epigenetics Chromatin 2011;4:9. https://doi.org/10.1186/1756-8935-4-9
  14. Vakoc CR, Sachdeva MM, Wang H, Blobel GA. Profile of histone lysine methylation across transcribed mammalian chromatin. Mol Cell Biol 2006;26:9185-95. https://doi.org/10.1128/MCB.01529-06
  15. Esteller M. Non-coding RNAs in human disease. Nat Rev Genet 2011;12:861-74.
  16. Knowling S, Morris KV. Non-coding RNA and antisense RNA. Nature's trash or treasure? Biochimie 2011;93:1922-7. https://doi.org/10.1016/j.biochi.2011.07.031
  17. Kelly TK, Miranda TB, Liang G, Berman BP, Lin JC, Tanay A, et al. H2A.Z maintenance during mitosis reveals nucleosome shifting on mitotically silenced genes. Mol Cell 2010;39:901-11. https://doi.org/10.1016/j.molcel.2010.08.026
  18. Hogg K, Western PS. Refurbishing the germline epigenome: out with the old, in with the new. Semin Cell Dev Biol 2015;45:104-13. https://doi.org/10.1016/j.semcdb.2015.09.012
  19. Dean W. DNA methylation and demethylation: a pathway to gametogenesis and development. Mol Reprod Dev 2014;81:113-25. https://doi.org/10.1002/mrd.22280
  20. Casas E, Vavouri T. Sperm epigenomics: challenges and opportunities. Front Genet 2014;5:330.
  21. Yao C, Liu Y, Sun M, Niu M, Yuan Q, Hai Y, et al. MicroRNAs and DNA methylation as epigenetic regulators of mitosis, meiosis and spermiogenesis. Reproduction 2015;150:R25-34. https://doi.org/10.1530/REP-14-0643
  22. Jodar M, Selvaraju S, Sendler E, Diamond MP, Krawetz SA; Reproductive Medicine Network. The presence, role and clinical use of spermatozoal RNAs. Hum Reprod Update 2013;19:604-24. https://doi.org/10.1093/humupd/dmt031
  23. Hackett JA, Zylicz JJ, Surani MA. Parallel mechanisms of epigenetic reprogramming in the germline. Trends Genet 2012;28:164-74. https://doi.org/10.1016/j.tig.2012.01.005
  24. Hackett JA, Reddington JP, Nestor CE, Dunican DS, Branco MR, Reichmann J, et al. Promoter DNA methylation couples genome- defence mechanisms to epigenetic reprogramming in the mouse germline. Development 2012;139:3623-32. https://doi.org/10.1242/dev.081661
  25. Yadav RP, Kotaja N. Small RNAs in spermatogenesis. Mol Cell Endocrinol 2014;382:498-508. https://doi.org/10.1016/j.mce.2013.04.015
  26. Greenlee AR, Shiao MS, Snyder E, Buaas FW, Gu T, Stearns TM, et al. Deregulated sex chromosome gene expression with male germ cell-specific loss of Dicer1. PLoS One 2012;7:e46359. https://doi.org/10.1371/journal.pone.0046359
  27. Wu Q, Song R, Ortogero N, Zheng H, Evanoff R, Small CL, et al. The RNase III enzyme DROSHA is essential for microRNA production and spermatogenesis. J Biol Chem 2012;287:25173-90. https://doi.org/10.1074/jbc.M112.362053
  28. Bui HT, Van Thuan N, Kishigami S, Wakayama S, Hikichi T, Ohta H, et al. Regulation of chromatin and chromosome morphology by histone H3 modifications in pig oocytes. Reproduction 2007;133:371-82. https://doi.org/10.1530/REP-06-0099
  29. Tachibana M, Nozaki M, Takeda N, Shinkai Y. Functional dynamics of H3K9 methylation during meiotic prophase progression. EMBO J 2007;26:3346-59. https://doi.org/10.1038/sj.emboj.7601767
  30. Seneda MM, Godmann M, Murphy BD, Kimmins S, Bordignon V. Developmental regulation of histone H3 methylation at lysine 4 in the porcine ovary. Reproduction 2008;135:829-38. https://doi.org/10.1530/REP-07-0448
  31. Monk D. Germline-derived DNA methylation and early embryo epigenetic reprogramming: the selected survival of imprints. Int J Biochem Cell Biol 2015;67:128-38. https://doi.org/10.1016/j.biocel.2015.04.014
  32. Hales BF, Grenier L, Lalancette C, Robaire B. Epigenetic programming: from gametes to blastocyst. Birth Defects Res A Clin Mol Teratol 2011;91:652-65. https://doi.org/10.1002/bdra.20781
  33. Rivera RM, Ross JW. Epigenetics in fertilization and preimplantation embryo development. Prog Biophys Mol Biol 2013;113:423-32. https://doi.org/10.1016/j.pbiomolbio.2013.02.001
  34. Meissner A. Epigenetic modifications in pluripotent and differentiated cells. Nat Biotechnol 2010;28:1079-88. https://doi.org/10.1038/nbt.1684
  35. Kar S, Parbin S, Deb M, Shilpi A, Sengupta D, Rath SK, et al. Epigenetic choreography of stem cells: the DNA demethylation episode of development. Cell Mol Life Sci 2014;71:1017-32. https://doi.org/10.1007/s00018-013-1482-2
  36. Cedar H, Bergman Y. Programming of DNA methylation patterns. Annu Rev Biochem 2012;81:97-117. https://doi.org/10.1146/annurev-biochem-052610-091920
  37. Yamauchi Y, Shaman JA, Ward WS. Non-genetic contributions of the sperm nucleus to embryonic development. Asian J Androl 2011;13:31-5. https://doi.org/10.1038/aja.2010.75
  38. Wossidlo M, Nakamura T, Lepikhov K, Marques CJ, Zakhartchenko V, Boiani M, et al. 5-Hydroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming. Nat Commun 2011;2:241. https://doi.org/10.1038/ncomms1240
  39. Tiedemann RL, Putiri EL, Lee JH, Hlady RA, Kashiwagi K, Ordog T, et al. Acute depletion redefines the division of labor among DNA methyltransferases in methylating the human genome. Cell Rep 2014;9:1554-66. https://doi.org/10.1016/j.celrep.2014.10.013
  40. Senner CE. The role of DNA methylation in mammalian development. Reprod Biomed Online 2011;22:529-35. https://doi.org/10.1016/j.rbmo.2011.02.016
  41. Messerschmidt DM, Knowles BB, Solter D. DNA methylation dynamics during epigenetic reprogramming in the germline and preimplantation embryos. Genes Dev 2014;28:812-28. https://doi.org/10.1101/gad.234294.113
  42. Seisenberger S, Peat JR, Hore TA, Santos F, Dean W, Reik W. Reprogramming DNA methylation in the mammalian life cycle: building and breaking epigenetic barriers. Philos Trans R Soc Lond B Biol Sci 2013;368:20110330.
  43. Hajkova P. Epigenetic reprogramming in the germline: towards the ground state of the epigenome. Philos Trans R Soc Lond B Biol Sci 2011;366:2266-73. https://doi.org/10.1098/rstb.2011.0042
  44. Seisenberger S, Peat JR, Reik W. Conceptual links between DNA methylation reprogramming in the early embryo and primordial germ cells. Curr Opin Cell Biol 2013;25:281-8. https://doi.org/10.1016/j.ceb.2013.02.013
  45. Hemberger M, Dean W, Reik W. Epigenetic dynamics of stem cells and cell lineage commitment: digging Waddington’s canal. Nat Rev Mol Cell Biol 2009;10:526-37. https://doi.org/10.1038/nrm2727
  46. Cantone I, Fisher AG. Epigenetic programming and reprogramming during development. Nat Struct Mol Biol 2013;20:282-9. https://doi.org/10.1038/nsmb.2489
  47. Burton A, Torres-Padilla ME. Chromatin dynamics in the regulation of cell fate allocation during early embryogenesis. Nat Rev Mol Cell Biol 2014;15:723-34. https://doi.org/10.1038/nrm3885
  48. Burton A, Torres-Padilla ME. Epigenetic reprogramming and development: a unique heterochromatin organization in the preimplantation mouse embryo. Brief Funct Genomics 2010;9:444-54. https://doi.org/10.1093/bfgp/elq027
  49. Deb M, Kar S, Sengupta D, Shilpi A, Parbin S, Rath SK, et al. Chromatin dynamics: H3K4 methylation and H3 variant replacement during development and in cancer. Cell Mol Life Sci 2014;71:3439-63. https://doi.org/10.1007/s00018-014-1605-4
  50. Fisher CL, Fisher AG. Chromatin states in pluripotent, differentiated, and reprogrammed cells. Curr Opin Genet Dev 2011;21:140-6. https://doi.org/10.1016/j.gde.2011.01.015
  51. Santenard A, Ziegler-Birling C, Koch M, Tora L, Bannister AJ, Torres-Padilla ME. Heterochromatin formation in the mouse embryo requires critical residues of the histone variant H3.3. Nat Cell Biol 2010;12:853-62. https://doi.org/10.1038/ncb2089
  52. Gu SG, Pak J, Guang S, Maniar JM, Kennedy S, Fire A. Amplification of siRNA in Caenorhabditis elegans generates a transgenerational sequence-targeted histone H3 lysine 9 methylation footprint. Nat Genet 2012;44:157-64. https://doi.org/10.1038/ng.1039
  53. Sendler E, Johnson GD, Mao S, Goodrich RJ, Diamond MP, Hauser R, et al. Stability, delivery and functions of human sperm RNAs at fertilization. Nucleic Acids Res 2013;41:4104-17. https://doi.org/10.1093/nar/gkt132
  54. Sanli I, Feil R. Chromatin mechanisms in the developmental control of imprinted gene expression. Int J Biochem Cell Biol 2015;67:139-47. https://doi.org/10.1016/j.biocel.2015.04.004
  55. MacDonald WA, Mann MR. Epigenetic regulation of genomic imprinting from germ line to preimplantation. Mol Reprod Dev 2014;81:126-40. https://doi.org/10.1002/mrd.22220
  56. Kaneda M, Okano M, Hata K, Sado T, Tsujimoto N, Li E, et al. Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting. Nature 2004;429:900-3. https://doi.org/10.1038/nature02633
  57. Jenkins TG, Carrell DT. The sperm epigenome and potential implications for the developing embryo. Reproduction 2012;143:727-34. https://doi.org/10.1530/REP-11-0450
  58. Klaver R, Gromoll J. Bringing epigenetics into the diagnostics of the andrology laboratory: challenges and perspectives. Asian J Androl 2014;16:669-74. https://doi.org/10.4103/1008-682X.125412
  59. Mishra PK, Bunkar N, Raghuram GV, Khare NK, Pathak N, Bhargava A. Epigenetic dimension of oxygen radical injury in spermatogonial epithelial cells. Reprod Toxicol 2015;52:40-56. https://doi.org/10.1016/j.reprotox.2015.02.006
  60. Papaioannou MD, Pitetti JL, Ro S, Park C, Aubry F, Schaad O, et al. Sertoli cell Dicer is essential for spermatogenesis in mice. Dev Biol 2009;326:250-9. https://doi.org/10.1016/j.ydbio.2008.11.011
  61. Stringer JM, Barrand S, Western P. Fine-tuning evolution: germline epigenetics and inheritance. Reproduction 2013;146:R37-48. https://doi.org/10.1530/REP-12-0526
  62. Raghuram GV, Mishra PK. Stress induced premature senescence: a new culprit in ovarian tumorigenesis? Indian J Med Res 2014;140 Suppl:S120-9.
  63. Han SJ, O’Malley BW. The dynamics of nuclear receptors and nuclear receptor coregulators in the pathogenesis of endometriosis. Hum Reprod Update 2014;20:467-84. https://doi.org/10.1093/humupd/dmu002
  64. Baranov VS, Ivaschenko TE, Liehr T, Yarmolinskaya MI. Systems genetics view of endometriosis: a common complex disorder. Eur J Obstet Gynecol Reprod Biol 2015;185:59-65. https://doi.org/10.1016/j.ejogrb.2014.11.036
  65. Liang X, Ma J, Schatten H, Sun Q. Epigenetic changes associated with oocyte aging. Sci China Life Sci 2012;55:670-6. https://doi.org/10.1007/s11427-012-4354-3
  66. Ge ZJ, Schatten H, Zhang CL, Sun QY. Oocyte ageing and epigenetics. Reproduction 2015;149:R103-14. https://doi.org/10.1530/REP-14-0242
  67. Tahmasbpour E, Balasubramanian D, Agarwal A. A multi-faceted approach to understanding male infertility: gene mutations, molecular defects and assisted reproductive techniques (ART). J Assist Reprod Genet 2014;31:1115-37. https://doi.org/10.1007/s10815-014-0280-6
  68. El Hajj N, Haaf T. Epigenetic disturbances in in vitro cultured gametes and embryos: implications for human assisted reproduction. Fertil Steril 2013;99:632-41. https://doi.org/10.1016/j.fertnstert.2012.12.044
  69. Kohda T. Effects of embryonic manipulation and epigenetics. J Hum Genet 2013;58:416-20. https://doi.org/10.1038/jhg.2013.61
  70. Eroglu A, Layman LC. Role of ART in imprinting disorders. Semin Reprod Med 2012;30:92-104. https://doi.org/10.1055/s-0032-1307417
  71. van Montfoort AP, Hanssen LL, de Sutter P, Viville S, Geraedts JP, de Boer P. Assisted reproduction treatment and epigenetic inheritance. Hum Reprod Update 2012;18:171-97. https://doi.org/10.1093/humupd/dmr047
  72. de Waal E, McCarrey JR. Effects of exogenous endocrine stimulation on epigenetic programming of the female germline genome. Anim Reprod 2010;7:154-64.
  73. Denomme MM, Mann MR. Genomic imprints as a model for the analysis of epigenetic stability during assisted reproductive technologies. Reproduction 2012;144:393-409. https://doi.org/10.1530/REP-12-0237
  74. Song S, Ghosh J, Mainigi M, Turan N, Weinerman R, Truongcao M, et al. DNA methylation differences between in vitro- and in vivoconceived children are associated with ART procedures rather than infertility. Clin Epigenetics 2015;7:41. https://doi.org/10.1186/s13148-015-0071-7
  75. Lucas E. Epigenetic effects on the embryo as a result of periconceptional environment and assisted reproduction technology. Reprod Biomed Online 2013;27:477-85. https://doi.org/10.1016/j.rbmo.2013.06.003
  76. Kumar M, Kumar K, Jain S, Hassan T, Dada R. Novel insights into the genetic and epigenetic paternal contribution to the human embryo. Clinics (Sao Paulo) 2013;68 Suppl 1:5-14.
  77. Kurinczuk JJ, Bhattacharya S. Rare chromosomal, genetic, and epigenetic-related risks associated with infertility treatment. Semin Fetal Neonatal Med 2014;19:250-3. https://doi.org/10.1016/j.siny.2014.04.005
  78. McGraw S, Oakes CC, Martel J, Cirio MC, de Zeeuw P, Mak W, et al. Loss of DNMT1o disrupts imprinted X chromosome inactivation and accentuates placental defects in females. PLoS Genet 2013;9:e1003873. https://doi.org/10.1371/journal.pgen.1003873
  79. Skinner MK. Role of epigenetics in developmental biology and transgenerational inheritance. Birth Defects Res C Embryo Today 2011;93:51-5. https://doi.org/10.1002/bdrc.20199
  80. Nilsson E, Larsen G, Manikkam M, Guerrero-Bosagna C, Savenkova MI, Skinner MK. Environmentally induced epigenetic transgenerational inheritance of ovarian disease. PLoS One 2012;7:e36129. https://doi.org/10.1371/journal.pone.0036129
  81. Fernandez AF, Torano EG, Urdinguio RG, Lana AG, Fernandez IA, Fraga MF. The epigenetic basis of adaptation and responses to environmental change: perspective on human reproduction. Adv Exp Med Biol 2014;753:97-117.
  82. Lange UC, Schneider R. What an epigenome remembers. Bioessays 2010;32:659-68. https://doi.org/10.1002/bies.201000030
  83. Kuramochi-Miyagawa S, Watanabe T, Gotoh K, Totoki Y, Toyoda A, Ikawa M, et al. DNA methylation of retrotransposon genes is regulated by Piwi family members MILI and MIWI2 in murine fetal testes. Genes Dev 2008;22:908-17. https://doi.org/10.1101/gad.1640708
  84. Daxinger L, Whitelaw E. Understanding transgenerational epigenetic inheritance via the gametes in mammals. Nat Rev Genet 2012;13:153-62. https://doi.org/10.1038/nrm3288
  85. Skinner MK, Manikkam M, Guerrero-Bosagna C. Epigenetic transgenerational actions of environmental factors in disease etiology. Trends Endocrinol Metab 2010;21:214-22. https://doi.org/10.1016/j.tem.2009.12.007
  86. Heard E, Martienssen RA. Transgenerational epigenetic inheritance: myths and mechanisms. Cell 2014;157:95-109. https://doi.org/10.1016/j.cell.2014.02.045
  87. Mishra PK. A pragmatic & translational approach of human biomonitoring to methyl isocyanate exposure in Bhopal. Indian J Med Res 2012;135:479-84.
  88. Mishra PK, Raghuram GV, Bunkar N, Bhargava A, Khare NK. Molecular bio-dosimetry for carcinogenic risk assessment in survivors of Bhopal gas tragedy. Int J Occup Med Environ Health 2015;28:921-39. https://doi.org/10.13075/ijomeh.1896.00313
  89. Bunkar N, Bhargava A, Khare NK, Mishra PK. Mitochondrial anomalies: driver to age associated degenerative human ailments. Front Biosci (Landmark Ed) 2016;21:769-93. https://doi.org/10.2741/4420
  90. Mishra PK, Lohiya NK. Prioritizing reproductive health: can it be the real game changer for India? J Reprod Health Med 2016;2:1-3. https://doi.org/10.1016/j.jrhm.2015.08.001
  91. Skinner MK. Environmental epigenetic transgenerational inheritance and somatic epigenetic mitotic stability. Epigenetics 2011;6:838-42. https://doi.org/10.4161/epi.6.7.16537
  92. Yao Y, Robinson AM, Zucchi FC, Robbins JC, Babenko O, Kovalchuk O, et al. Ancestral exposure to stress epigenetically programs preterm birth risk and adverse maternal and newborn outcomes. BMC Med 2014;12:121. https://doi.org/10.1186/s12916-014-0121-6
  93. Skinner MK, Manikkam M, Tracey R, Guerrero-Bosagna C, Haque M, Nilsson EE. Ancestral dichlorodiphenyltrichloroethane (DDT) exposure promotes epigenetic transgenerational inheritance of obesity. BMC Med 2013;11:228. https://doi.org/10.1186/1741-7015-11-228
  94. Guerrero-Bosagna C, Skinner MK. Environmentally induced epigenetic transgenerational inheritance of male infertility. Curr Opin Genet Dev 2014;26:79-88. https://doi.org/10.1016/j.gde.2014.06.005
  95. Wei Y, Schatten H, Sun QY. Environmental epigenetic inheritance through gametes and implications for human reproduction. Hum Reprod Update 2015;21:194-208. https://doi.org/10.1093/humupd/dmu061
  96. Calicchio R, Doridot L, Miralles F, Mehats C, Vaiman D. DNA methylation, an epigenetic mode of gene expression regulation in reproductive science. Curr Pharm Des 2014;20:1726-50. https://doi.org/10.2174/13816128113199990517
  97. Hammoud SS, Low DH, Yi C, Carrell DT, Guccione E, Cairns BR. Chromatin and transcription transitions of mammalian adult germline stem cells and spermatogenesis. Cell Stem Cell 2014;15:239-53. https://doi.org/10.1016/j.stem.2014.04.006
  98. Liu J, Jia G. Methylation modifications in eukaryotic messenger RNA. J Genet Genomics 2014;41:21-33. https://doi.org/10.1016/j.jgg.2013.10.002
  99. Denomme MM, Mann MR. Maternal control of genomic imprint maintenance. Reprod Biomed Online 2013;27:629-36. https://doi.org/10.1016/j.rbmo.2013.06.004
  100. Barzideh J, Scott RJ, Aitken RJ. Analysis of the global methylation status of human spermatozoa and its association with the tendency of these cells to enter apoptosis. Andrologia 2013;45:424-9. https://doi.org/10.1111/and.12033
  101. Adiga SK, Ehmcke J, Schlatt S, Kliesch S, Westernstroer B, Luetjens CM, et al. Reduced expression of DNMT3B in the germ cells of patients with bilateral spermatogenic arrest does not lead to changes in the global methylation status. Mol Hum Reprod 2011;17:545-9. https://doi.org/10.1093/molehr/gar023
  102. Zhang A, Skaar DA, Li Y, Huang D, Price TM, Murphy SK, et al. Novel retrotransposed imprinted locus identified at human 6p25. Nucleic Acids Res 2011;39:5388-400. https://doi.org/10.1093/nar/gkr108
  103. Navarro-Costa P, Nogueira P, Carvalho M, Leal F, Cordeiro I, Calhaz- Jorge C, et al. Incorrect DNA methylation of the DAZL promoter CpG island associates with defective human sperm. Hum Reprod 2010;25:2647-54. https://doi.org/10.1093/humrep/deq200
  104. Dottermusch-Heidel C, Klaus ES, Gonzalez NH, Bhushan S, Meinhardt A, Bergmann M, et al. H3K79 methylation directly precedes the histone-to-protamine transition in mammalian spermatids and is sensitive to bacterial infections. Andrology 2014;2:655-65. https://doi.org/10.1111/j.2047-2927.2014.00248.x
  105. Sheng K, Liang X, Huang S, Xu W. The role of histone ubiquitination during spermatogenesis. Biomed Res Int 2014;2014:870695.
  106. Shirakata Y, Hiradate Y, Inoue H, Sato E, Tanemura K. Histone h4 modification during mouse spermatogenesis. J Reprod Dev 2014;60:383-7. https://doi.org/10.1262/jrd.2014-018
  107. Rathke C, Baarends WM, Awe S, Renkawitz-Pohl R. Chromatin dynamics during spermiogenesis. Biochim Biophys Acta 2014;1839:155-68. https://doi.org/10.1016/j.bbagrm.2013.08.004
  108. Hisano M, Erkek S, Dessus-Babus S, Ramos L, Stadler MB, Peters AH. Genome-wide chromatin analysis in mature mouse and human spermatozoa. Nat Protoc 2013;8:2449-70. https://doi.org/10.1038/nprot.2013.145
  109. Samson M, Jow MM, Wong CC, Fitzpatrick C, Aslanian A, Saucedo I, et al. The specification and global reprogramming of histone epigenetic marks during gamete formation and early embryo development in C. elegans. PLoS Genet 2014;10:e1004588. https://doi.org/10.1371/journal.pgen.1004588
  110. Zhuang T, Hess RA, Kolla V, Higashi M, Raabe TD, Brodeur GM. CHD5 is required for spermiogenesis and chromatin condensation. Mech Dev 2014;131:35-46. https://doi.org/10.1016/j.mod.2013.10.005
  111. Kasioulis I, Syred HM, Tate P, Finch A, Shaw J, Seawright A, et al. Kdm3a lysine demethylase is an Hsp90 client required for cytoskeletal rearrangements during spermatogenesis. Mol Biol Cell 2014;25:1216-33. https://doi.org/10.1091/mbc.E13-08-0471
  112. Zhang Z, Kang X, Mu S. Histone phosphorylation and spermatogenesis. Yi Chuan 2014;36:220-7.
  113. Bose R, Manku G, Culty M, Wing SS. Ubiquitin-proteasome system in spermatogenesis. Adv Exp Med Biol 2014;759:181-213.
  114. Hennig W, Weyrich A. Histone modifications in the male germ line of Drosophila. BMC Dev Biol 2013;13:7. https://doi.org/10.1186/1471-213X-13-7
  115. Kuroki S, Akiyoshi M, Tokura M, Miyachi H, Nakai Y, Kimura H, et al. JMJD1C, a JmjC domain-containing protein, is required for long-term maintenance of male germ cells in mice. Biol Reprod 2013;89:93.
  116. Qian MX, Pang Y, Liu CH, Haratake K, Du BY, Ji DY, et al. Acetylation-mediated proteasomal degradation of core histones during DNA repair and spermatogenesis. Cell 2013;153:1012-24. https://doi.org/10.1016/j.cell.2013.04.032
  117. Song N, Liu J, An S, Nishino T, Hishikawa Y, Koji T. Immunohistochemical analysis of histone H3 modifications in germ cells during mouse spermatogenesis. Acta Histochem Cytochem 2011;44:183-90. https://doi.org/10.1267/ahc.11027
  118. Steilmann C, Paradowska A, Bartkuhn M, Vieweg M, Schuppe HC, Bergmann M, et al. Presence of histone H3 acetylated at lysine 9 in male germ cells and its distribution pattern in the genome of human spermatozoa. Reprod Fertil Dev 2011;23:997-1011. https://doi.org/10.1071/RD10197
  119. Ma T, Keller JA, Yu X. RNF8-dependent histone ubiquitination during DNA damage response and spermatogenesis. Acta Biochim Biophys Sin (Shanghai) 2011;43:339-45. https://doi.org/10.1093/abbs/gmr016
  120. Bak CW, Yoon TK, Choi Y. Functions of PIWI proteins in spermatogenesis. Clin Exp Reprod Med 2011;38:61-7. https://doi.org/10.5653/cerm.2011.38.2.61
  121. Taguchi YH. Apparent microRNA-Target-specific histone modification in mammalian spermatogenesis. Evol Bioinform Online 2015;11(Suppl 1):13-26.
  122. Salas-Huetos A, Blanco J, Vidal F, Godo A, Grossmann M, Pons MC, et al. Spermatozoa from patients with seminal alterations exhibit a differential micro-ribonucleic acid profile. Fertil Steril 2015;104:591-601. https://doi.org/10.1016/j.fertnstert.2015.06.015
  123. de Mateo S, Sassone-Corsi P. Regulation of spermatogenesis by small non-coding RNAs: role of the germ granule. Semin Cell Dev Biol 2014;29:84-92. https://doi.org/10.1016/j.semcdb.2014.04.021
  124. Kotaja N. MicroRNAs and spermatogenesis. Fertil Steril 2014;101:1552-62. https://doi.org/10.1016/j.fertnstert.2014.04.025
  125. van den Driesche S, Sharpe RM, Saunders PT, Mitchell RT. Regulation of the germ stem cell niche as the foundation for adult spermatogenesis: a role for miRNAs? Semin Cell Dev Biol 2014;29:76-83. https://doi.org/10.1016/j.semcdb.2014.04.006
  126. Salas-Huetos A, Blanco J, Vidal F, Mercader JM, Garrido N, Anton E. New insights into the expression profile and function of microribonucleic acid in human spermatozoa. Fertil Steril 2014;102:213-22.e4. https://doi.org/10.1016/j.fertnstert.2014.03.040
  127. Yang Q, Hua J, Wang L, Xu B, Zhang H, Ye N, et al. MicroRNA and piRNA profiles in normal human testis detected by next generation sequencing. PLoS One 2013;8:e66809. https://doi.org/10.1371/journal.pone.0066809
  128. Huszar JM, Payne CJ. MicroRNA 146 (Mir146) modulates spermatogonial differentiation by retinoic acid in mice. Biol Reprod 2013;88:15.
  129. McIver SC, Roman SD, Nixon B, McLaughlin EA. miRNA and mammalian male germ cells. Hum Reprod Update 2012;18:44-59. https://doi.org/10.1093/humupd/dmr041
  130. Bao J, Li D, Wang L, Wu J, Hu Y, Wang Z, et al. MicroRNA-449 and microRNA-34b/c function redundantly in murine testes by targeting E2F transcription factor-retinoblastoma protein (E2FpRb) pathway. J Biol Chem 2012;287:21686-98. https://doi.org/10.1074/jbc.M111.328054
  131. Hara S, Takano T, Fujikawa T, Yamada M, Wakai T, Kono T, et al. Forced expression of DNA methyltransferases during oocyte growth accelerates the establishment of methylation imprints but not functional genomic imprinting. Hum Mol Genet 2014;23:3853-64. https://doi.org/10.1093/hmg/ddu100
  132. Russo V, Bernabo N, Di Giacinto O, Martelli A, Mauro A, Berardinelli P, et al. H3K9 trimethylation precedes DNA methylation during sheep oogenesis: HDAC1, SUV39H1, G9a, HP1, and Dnmts are involved in these epigenetic events. J Histochem Cytochem 2013;61:75-89. https://doi.org/10.1369/0022155412463923
  133. Ko YG, Yun J, Park HJ, Tanaka S, Shiota K, Cho JH. Dynamic methylation pattern of the ethyltransferase1o (Dnmt1o) 5’-flanking region during mouse oogenesis and spermatogenesis. Mol Reprod Dev 2013;80:212-22. https://doi.org/10.1002/mrd.22153
  134. McConnell KH, Dixon M, Calvi BR. The histone acetyltransferases CBP and Chameau integrate developmental and DNA replication programs in Drosophila ovarian follicle cells. Development 2012;139:3880-90. https://doi.org/10.1242/dev.083576
  135. Tomizawa S, Nowacka-Woszuk J, Kelsey G. DNA methylation establishment during oocyte growth: mechanisms and significance. Int J Dev Biol 2012;56:867-75. https://doi.org/10.1387/ijdb.120152gk
  136. Yang F, Baumann C, Viveiros MM, De La Fuente R. Histone hyperacetylation during meiosis interferes with large-scale chromatin remodeling, axial chromatid condensation and sister chromatid separation in the mammalian oocyte. Int J Dev Biol 2012;56:889-99. https://doi.org/10.1387/ijdb.120246rd
  137. Hoffmann S, Tomasik G, Polanski Z. DNA methylation, histone modifications and behaviour of AKAP95 during mouse oocyte growth and upon nuclear transfer of foreign chromatin into fully grown prophase oocytes. Folia Biol (Krakow) 2012;60:163-70. https://doi.org/10.3409/fb60_3-4.163-170
  138. Wilczek C, Chitta R, Woo E, Shabanowitz J, Chait BT, Hunt DF, et al. Protein arginine methyltransferase Prmt5-Mep50 methylates histones H2A and H4 and the histone chaperone nucleoplasmin in Xenopus laevis eggs. J Biol Chem 2011;286:42221-31. https://doi.org/10.1074/jbc.M111.303677
  139. Milroy C, Liu L, Hammoud S, Hammoud A, Peterson CM, Carrell DT. Differential methylation of pluripotency gene promoters in in vitro matured and vitrified, in vivo-matured mouse oocytes. Fertil Steril 2011;95:2094-9. https://doi.org/10.1016/j.fertnstert.2011.02.011
  140. Mukai M, Hira S, Nakamura K, Nakamura S, Kimura H, Sato M, et al. H3K36 trimethylation-mediated epigenetic regulation is activated by bam and promotes germ cell differentiation during early oogenesis in drosophila. Biol Open 2015;4:119-24. https://doi.org/10.1242/bio.201410850
  141. Di Emidio G, Falone S, Vitti M, D’Alessandro AM, Vento M, Di Pietro C, et al. SIRT1 signalling protects mouse oocytes against oxidative stress and is deregulated during aging. Hum Reprod 2014;29:2006-17. https://doi.org/10.1093/humrep/deu160
  142. Luciano AM, Franciosi F, Dieci C, Lodde V. Changes in large-scale chromatin structure and function during oogenesis: a journey in company with follicular cells. Anim Reprod Sci 2014;149:3-10. https://doi.org/10.1016/j.anireprosci.2014.06.026
  143. Saadeh H, Schulz R. Protection of CpG islands against de novo DNA methylation during oogenesis is associated with the recognition site of E2f1 and E2f2. Epigenetics Chromatin 2014;7:26. https://doi.org/10.1186/1756-8935-7-26
  144. Ma P, Pan H, Montgomery RL, Olson EN, Schultz RM. Compensatory functions of histone deacetylase 1 (HDAC1) and HDAC2 regulate transcription and apoptosis during mouse oocyte development. Proc Natl Acad Sci U S A 2012;109:E481-9. https://doi.org/10.1073/pnas.1118403109
  145. Zhang LJ, Pan B, Chen B, Zhang XF, Liang GJ, Feng YN, et al. Expression and epigenetic dynamics of transcription regulator Lhx8 during mouse oogenesis. Gene 2012;506:1-9. https://doi.org/10.1016/j.gene.2012.06.093
  146. Andreu-Vieyra CV, Chen R, Agno JE, Glaser S, Anastassiadis K, Stewart AF, et al. MLL2 is required in oocytes for bulk histone 3 lysine 4 trimethylation and transcriptional silencing. PLoS Biol 2010;8.
  147. Ge W, Deng Q, Guo T, Hong X, Kugler JM, Yang X, et al. Regulation of pattern formation and gene amplification during Drosophila oogenesis by the miR-318 microRNA. Genetics 2015;200:255-65. https://doi.org/10.1534/genetics.115.174748
  148. Stein P, Rozhkov NV, Li F, Cardenas FL, Davydenko O, Vandivier LE, et al. Essential role for endogenous siRNAs during meiosis in mouse oocytes. PLoS Genet 2015;11:e1005013. https://doi.org/10.1371/journal.pgen.1005013
  149. Suh N, Blelloch R. Small RNAs in early mammalian development: from gametes to gastrulation. Development 2011;138:1653-61. https://doi.org/10.1242/dev.056234
  150. Pan B, Toms D, Shen W, Li J. MicroRNA-378 regulates oocyte maturation via the suppression of aromatase in porcine cumulus cells. Am J Physiol Endocrinol Metab 2015;308:E525-34. https://doi.org/10.1152/ajpendo.00480.2014
  151. Stratoulias V, Heino TI, Michon F. Lin-28 regulates oogenesis and muscle formation in Drosophila melanogaster. PLoS One 2014;9:e101141. https://doi.org/10.1371/journal.pone.0101141
  152. Minakhina S, Changela N, Steward R. Zfrp8/PDCD2 is required in ovarian stem cells and interacts with the piRNA pathway machinery. Development 2014;141:259-68. https://doi.org/10.1242/dev.101410
  153. Imbar T, Eisenberg I. Regulatory role of microRNAs in ovarian function. Fertil Steril 2014;101:1524-30. https://doi.org/10.1016/j.fertnstert.2014.04.024
  154. Real FM, Sekido R, Lupianez DG, Lovell-Badge R, Jimenez R, Burgos M. A microRNA (mmu-miR-124) prevents Sox9 expression in developing mouse ovarian cells. Biol Reprod 2013;89:78.
  155. Kugler JM, Verma P, Chen YW, Weng R, Cohen SM. miR-989 is required for border cell migration in the Drosophila ovary. PLoS One 2013;8:e67075. https://doi.org/10.1371/journal.pone.0067075
  156. Huang YC, Smith L, Poulton J, Deng WM. The microRNA miR-7 regulates Tramtrack69 in a developmental switch in Drosophila follicle cells. Development 2013;140:897-905. https://doi.org/10.1242/dev.080192
  157. Tanaka ED, Piulachs MD. Dicer-1 is a key enzyme in the regulation of oogenesis in panoistic ovaries. Biol Cell 2012;104:452-61. https://doi.org/10.1111/boc.201100044
  158. Beshore EL, McEwen TJ, Jud MC, Marshall JK, Schisa JA, Bennett KL. C. elegans Dicer interacts with the P-granule component GLH-1 and both regulate germline RNPs. Dev Biol 2011;350:370-81. https://doi.org/10.1016/j.ydbio.2010.12.005
  159. Liu HC, Tang Y, He Z, Rosenwaks Z. Dicer is a key player in oocyte maturation. J Assist Reprod Genet 2010;27:571-80. https://doi.org/10.1007/s10815-010-9456-x
  160. Iovino N, Pane A, Gaul U. miR-184 has multiple roles in Drosophila female germline development. Dev Cell 2009;17:123-33. https://doi.org/10.1016/j.devcel.2009.06.008
  161. Tesfaye D, Worku D, Rings F, Phatsara C, Tholen E, Schellander K, et al. Identification and expression profiling of microRNAs during bovine oocyte maturation using heterologous approach. Mol Reprod Dev 2009;76:665-77. https://doi.org/10.1002/mrd.21005
  162. O’Doherty AM, Magee DA, O’Shea LC, Forde N, Beltman ME, Mamo S, et al. DNA methylation dynamics at imprinted genes during bovine pre-implantation embryo development. BMC Dev Biol 2015;15:13. https://doi.org/10.1186/s12861-015-0060-2
  163. Marcho C, Bevilacqua A, Tremblay KD, Mager J. Tissue-specific regulation of Igf2r/Airn imprinting during gastrulation. Epigenetics Chromatin 2015;8:10. https://doi.org/10.1186/s13072-015-0003-y
  164. McGraw S, Zhang JX, Farag M, Chan D, Caron M, Konermann C, et al. Transient DNMT1 suppression reveals hidden heritable marks in the genome. Nucleic Acids Res 2015;43:1485-97. https://doi.org/10.1093/nar/gku1386
  165. Guo X, Wang L, Li J, Ding Z, Xiao J, Yin X, et al. Structural insight into autoinhibition and histone H3-induced activation of DNMT3A. Nature 2015;517:640-4. https://doi.org/10.1038/nature13899
  166. Kelsey G, Feil R. New insights into establishment and maintenance of DNA methylation imprints in mammals. Philos Trans R Soc Lond B Biol Sci 2013;368:20110336.
  167. Lee K, Hamm J, Whitworth K, Spate L, Park KW, Murphy CN, et al. Dynamics of TET family expression in porcine preimplantation embryos is related to zygotic genome activation and required for the maintenance of NANOG. Dev Biol 2014;386:86-95. https://doi.org/10.1016/j.ydbio.2013.11.024
  168. Tanaka S, Nakanishi MO, Shiota K. DNA methylation and its role in the trophoblast cell lineage. Int J Dev Biol 2014;58:231-8. https://doi.org/10.1387/ijdb.140053st
  169. Smith ZD, Chan MM, Humm KC, Karnik R, Mekhoubad S, Regev A, et al. DNA methylation dynamics of the human preimplantation embryo. Nature 2014;511:611-5. https://doi.org/10.1038/nature13581
  170. Huntriss JD, Hemmings KE, Hinkins M, Rutherford AJ, Sturmey RG, Elder K, et al. Variable imprinting of the MEST gene in human preimplantation embryos. Eur J Hum Genet 2013;21:40-7. https://doi.org/10.1038/ejhg.2012.102
  171. Canovas S, Cibelli JB, Ross PJ. Jumonji domain-containing protein 3 regulates histone 3 lysine 27 methylation during bovine preimplantation development. Proc Natl Acad Sci U S A 2012;109:2400-5. https://doi.org/10.1073/pnas.1119112109
  172. Aoshima K, Inoue E, Sawa H, Okada Y. Paternal H3K4 methylation is required for minor zygotic gene activation and early mouse embryonic development. EMBO Rep 2015;16:803-12. https://doi.org/10.15252/embr.201439700
  173. Wu BJ, Dong FL, Ma XS, Wang XG, Lin F, Liu HL. Localization and expression of histone H2A variants during mouse oogenesis and preimplantation embryo development. Genet Mol Res 2014;13:5929-39. https://doi.org/10.4238/2014.August.7.8
  174. van de Werken C, van der Heijden GW, Eleveld C, Teeuwssen M, Albert M, Baarends WM, et al. Paternal heterochromatin formation in human embryos is H3K9/HP1 directed and primed by sperm-derived histone modifications. Nat Commun 2014;5:5868. https://doi.org/10.1038/ncomms6868
  175. Shao GB, Chen JC, Zhang LP, Huang P, Lu HY, Jin J, et al. Dynamic patterns of histone H3 lysine 4 methyltransferases and demethylases during mouse preimplantation development. In Vitro Cell Dev Biol Anim 2014;50:603-13. https://doi.org/10.1007/s11626-014-9741-6
  176. Paul S, Knott JG. Epigenetic control of cell fate in mouse blastocysts:the role of covalent histone modifications and chromatin remodeling. Mol Reprod Dev 2014;81:171-82. https://doi.org/10.1002/mrd.22219
  177. Brahmajosyula M, Miyake M. Localization and expression of peptidylarginine deiminase 4 (PAD4) in mammalian oocytes and preimplantation embryos. Zygote 2013;21:314-24. https://doi.org/10.1017/S0967199411000633
  178. Yue HM, Li Z, Wu N, Liu Z, Wang Y, Gui JF. Oocyte-specific H2A variant H2af1o is required for cell synchrony before midblastula transition in early zebrafish embryos. Biol Reprod 2013;89:82.
  179. Montellier E, Boussouar F, Rousseaux S, Zhang K, Buchou T, Fenaille F, et al. Chromatin-to-nucleoprotamine transition is controlled by the histone H2B variant TH2B. Genes Dev 2013;27:1680-92. https://doi.org/10.1101/gad.220095.113
  180. Welstead GG, Creyghton MP, Bilodeau S, Cheng AW, Markoulaki S, Young RA, et al. X-linked H3K27me3 demethylase Utx is required for embryonic development in a sex-specific manner. Proc Natl Acad Sci U S A 2012;109:13004-9. https://doi.org/10.1073/pnas.1210787109
  181. Vastenhouw NL, Schier AF. Bivalent histone modifications in early embryogenesis. Curr Opin Cell Biol 2012;24:374-86. https://doi.org/10.1016/j.ceb.2012.03.009
  182. Jenkins TG, Carrell DT. The paternal epigenome and embryogenesis: poising mechanisms for development. Asian J Androl 2011;13:76-80. https://doi.org/10.1038/aja.2010.61
  183. Akiyama T, Suzuki O, Matsuda J, Aoki F. Dynamic replacement of histone H3 variants reprograms epigenetic marks in early mouse embryos. PLoS Genet 2011;7:e1002279. https://doi.org/10.1371/journal.pgen.1002279
  184. Wongtawan T, Taylor JE, Lawson KA, Wilmut I, Pennings S. Histone H4K20me3 and $HP1{\alpha}$ are late heterochromatin markers in development, but present in undifferentiated embryonic stem cells. J Cell Sci 2011;124:1878-90. https://doi.org/10.1242/jcs.080721
  185. Zhang C, Shi YR, Liu XR, Cao YC, Zhen D, Jia ZY, et al. The antiapoptotic role of berberine in preimplantation embryo in vitro development through regulation of miRNA-21. PLoS One 2015;10:e0129527. https://doi.org/10.1371/journal.pone.0129527
  186. Zhang J, Wang Y, Liu X, Jiang S, Zhao C, Shen R, et al. Expression and potential role of microRNA-29b in mouse early embryo development. Cell Physiol Biochem 2015;35:1178-87. https://doi.org/10.1159/000373942
  187. Cheong AW, Pang RT, Liu WM, Kottawatta KS, Lee KF, Yeung WS. MicroRNA Let-7a and dicer are important in the activation and implantation of delayed implanting mouse embryos. Hum Reprod 2014;29:750-62. https://doi.org/10.1093/humrep/det462
  188. Wang P, Cui J, Zhao C, Zhou L, Guo X, Shen R, et al. Differential expression of microRNAs in 2-cell and 4-cell mouse embryos. Zygote 2014;22:455-61. https://doi.org/10.1017/S0967199413000117
  189. Kawano M, Kawaji H, Grandjean V, Kiani J, Rassoulzadegan M. Novel small noncoding RNAs in mouse spermatozoa, zygotes and early embryos. PLoS One 2012;7:e44542. https://doi.org/10.1371/journal.pone.0044542
  190. Rosenbluth EM, Shelton DN, Sparks AE, Devor E, Christenson L, Van Voorhis BJ. MicroRNA expression in the human blastocyst. Fertil Steril 2013;99:855-61.e3. https://doi.org/10.1016/j.fertnstert.2012.11.001
  191. Hossain MM, Salilew-Wondim D, Schellander K, Tesfaye D. The role of microRNAs in mammalian oocytes and embryos. Anim Reprod Sci 2012;134:36-44. https://doi.org/10.1016/j.anireprosci.2012.08.009
  192. Lu YC, Chen H, Fok KL, Tsang LL, Yu MK, Zhang XH, et al. CFTR mediates bicarbonate-dependent activation of miR-125b in preimplantation embryo development. Cell Res 2012;22:1453-66. https://doi.org/10.1038/cr.2012.88
  193. Mondou E, Dufort I, Gohin M, Fournier E, Sirard MA. Analysis of microRNAs and their precursors in bovine early embryonic development. Mol Hum Reprod 2012;18:425-34. https://doi.org/10.1093/molehr/gas015
  194. Garcia-Lopez J, del Mazo J. Expression dynamics of microRNA biogenesis during preimplantation mouse development. Biochim Biophys Acta 2012;1819:847-54. https://doi.org/10.1016/j.bbagrm.2012.03.007
  195. Liu X, Ning G, Meng A, Wang Q. MicroRNA-206 regulates cell movements during zebrafish gastrulation by targeting prickle1a and regulating c-Jun N-terminal kinase 2 phosphorylation. Mol Cell Biol 2012;32:2934-42. https://doi.org/10.1128/MCB.00134-12
  196. Pang RT, Liu WM, Leung CO, Ye TM, Kwan PC, Lee KF, et al. miR-135A regulates preimplantation embryo development through down-regulation of E3 Ubiquitin Ligase Seven In Absentia Homolog 1A (SIAH1A) expression. PLoS One 2011;6:e27878. https://doi.org/10.1371/journal.pone.0027878
  197. Richardson ME, Bleiziffer A, Tuttelmann F, Gromoll J, Wilkinson MF. Epigenetic regulation of the RHOX homeobox gene cluster and its association with human male infertility. Hum Mol Genet 2014;23:12-23. https://doi.org/10.1093/hmg/ddt392
  198. Friemel C, Ammerpohl O, Gutwein J, Schmutzler AG, Caliebe A, Kautza M, et al. Array-based DNA methylation profiling in male infertility reveals allele-specific DNA methylation in PIWIL1 and PIWIL2. Fertil Steril 2014;101:1097-103.e1. https://doi.org/10.1016/j.fertnstert.2013.12.054
  199. Ramasamy R, Ridgeway A, Lipshultz LI, Lamb DJ. Integrative DNA methylation and gene expression analysis identifies discoidin domain receptor 1 association with idiopathic nonobstructive azoospermia. Fertil Steril 2014;102:968-73.e3. https://doi.org/10.1016/j.fertnstert.2014.06.028
  200. Sugimoto K, Koh E, Iijima M, Taya M, Maeda Y, Namiki M. Aberrant methylation of the TDMR of the GTF2A1L promoter does not affect fertilisation rates via TESE in patients with hypospermatogenesis. Asian J Androl 2013;15:634-9. https://doi.org/10.1038/aja.2013.56
  201. Klaver R, Tuttelmann F, Bleiziffer A, Haaf T, Kliesch S, Gromoll J. DNA methylation in spermatozoa as a prospective marker in andrology. Andrology 2013;1:731-40. https://doi.org/10.1111/j.2047-2927.2013.00118.x
  202. Schutte B, El Hajj N, Kuhtz J, Nanda I, Gromoll J, Hahn T, et al. Broad DNA methylation changes of spermatogenesis, inflammation and immune response-related genes in a subgroup of sperm samples for assisted reproduction. Andrology 2013;1:822-9. https://doi.org/10.1111/j.2047-2927.2013.00122.x
  203. Wu C, Ding X, Li H, Zhu C, Xiong C. Genome-wide promoter methylation profile of human testis and epididymis: identified from cell-free seminal DNA. BMC Genomics 2013;14:288. https://doi.org/10.1186/1471-2164-14-288
  204. El Hajj N, Zechner U, Schneider E, Tresch A, Gromoll J, Hahn T, et al. Methylation status of imprinted genes and repetitive elements in sperm DNA from infertile males. Sex Dev 2011;5:60-9. https://doi.org/10.1159/000323806
  205. Wu W, Shen O, Qin Y, Niu X, Lu C, Xia Y, et al. Idiopathic male infertility is strongly associated with aberrant promoter methylation of methylenetetrahydrofolate reductase (MTHFR). PLoS One 2010;5:e13884. https://doi.org/10.1371/journal.pone.0013884
  206. Boissonnas CC, Jouannet P, Jammes H. Epigenetic disorders and male subfertility. Fertil Steril 2013;99:624-31. https://doi.org/10.1016/j.fertnstert.2013.01.124
  207. Carrell DT. Epigenetics of the male gamete. Fertil Steril 2012;97:267-74. https://doi.org/10.1016/j.fertnstert.2011.12.036
  208. Hammoud SS, Nix DA, Hammoud AO, Gibson M, Cairns BR, Carrell DT. Genome-wide analysis identifies changes in histone retention and epigenetic modifications at developmental and imprinted gene loci in the sperm of infertile men. Hum Reprod 2011;26:2558-69. https://doi.org/10.1093/humrep/der192
  209. Liu Z, Zhou S, Liao L, Chen X, Meistrich M, Xu J. Jmjd1a demethylase- regulated histone modification is essential for cAMP-response element modulator-regulated gene expression and spermatogenesis. J Biol Chem 2010;285:2758-70. https://doi.org/10.1074/jbc.M109.066845
  210. Yuan S, Tang C, Zhang Y, Wu J, Bao J, Zheng H, et al. mir-34b/c and mir-449a/b/c are required for spermatogenesis, but not for the first cleavage division in mice. Biol Open 2015;4:212-23. https://doi.org/10.1242/bio.201410959
  211. Tscherner A, Gilchrist G, Smith N, Blondin P, Gillis D, LaMarre J. MicroRNA-34 family expression in bovine gametes and preimplantation embryos. Reprod Biol Endocrinol 2014;12:85. https://doi.org/10.1186/1477-7827-12-85
  212. Abu-Halima M, Hammadeh M, Backes C, Fischer U, Leidinger P, Lubbad AM, et al. Panel of five microRNAs as potential biomarkers for the diagnosis and assessment of male infertility. Fertil Steril 2014;102:989-97.e1. https://doi.org/10.1016/j.fertnstert.2014.07.001
  213. Abu-Halima M, Backes C, Leidinger P, Keller A, Lubbad AM, Hammadeh M, et al. MicroRNA expression profiles in human testicular tissues of infertile men with different histopathologic patterns. Fertil Steril 2014;101:78-86.e2. https://doi.org/10.1016/j.fertnstert.2013.09.009
  214. Conine CC, Moresco JJ, Gu W, Shirayama M, Conte D Jr, Yates JR 3rd, et al. Argonautes promote male fertility and provide a paternal memory of germline gene expression in C. elegans. Cell 2013;155:1532-44. https://doi.org/10.1016/j.cell.2013.11.032
  215. Zheng G, Dahl JA, Niu Y, Fu Y, Klungland A, Yang YG, et al. Sprouts of RNA epigenetics: the discovery of mammalian RNA demethylases. RNA Biol 2013;10:915-8. https://doi.org/10.4161/rna.24711
  216. Abu-Halima M, Hammadeh M, Schmitt J, Leidinger P, Keller A, Meese E, et al. Altered microRNA expression profiles of human spermatozoa in patients with different spermatogenic impairments. Fertil Steril 2013;99:1249-55.e16. https://doi.org/10.1016/j.fertnstert.2012.11.054
  217. Wang C, Yang C, Chen X, Yao B, Yang C, Zhu C, et al. Altered profile of seminal plasma microRNAs in the molecular diagnosis of male infertility. Clin Chem 2011;57:1722-31. https://doi.org/10.1373/clinchem.2011.169714
  218. Forte A, Cipollaro M, Galderisi U. Genetic, epigenetic and stem cell alterations in endometriosis: new insights and potential therapeutic perspectives. Clin Sci (Lond) 2014;126:123-38. https://doi.org/10.1042/CS20130099
  219. Dyson MT, Roqueiro D, Monsivais D, Ercan CM, Pavone ME, Brooks DC, et al. Genome-wide DNA methylation analysis predicts an epigenetic switch for GATA factor expression in endometriosis. PLoS Genet 2014;10:e1004158. https://doi.org/10.1371/journal.pgen.1004158
  220. Fambrini M, Sorbi F, Bussani C, Cioni R, Sisti G, Andersson KL. Hypermethylation of HOXA10 gene in mid-luteal endometrium from women with ovarian endometriomas. Acta Obstet Gynecol Scand 2013;92:1331-4. https://doi.org/10.1111/aogs.12236
  221. Szczepanska M, Wirstlein P, Skrzypczak J, Jagodzinski PP. Expression of HOXA11 in the mid-luteal endometrium from women with endometriosis-associated infertility. Reprod Biol Endocrinol 2012;10:1. https://doi.org/10.1186/1477-7827-10-1
  222. Borghese B, Santulli P, Hequet D, Pierre G, de Ziegler D, Vaiman D, et al. Genetic polymorphisms of DNMT3L involved in hypermethylation of chromosomal ends are associated with greater risk of developing ovarian endometriosis. Am J Pathol 2012;180:1781-6. https://doi.org/10.1016/j.ajpath.2012.01.009
  223. Hale BJ, Keating AF, Yang CX, Ross JW. Small RNAs: their possible roles in reproductive failure. Adv Exp Med Biol 2015;868:49-79.
  224. Jefferson WN, Chevalier DM, Phelps JY, Cantor AM, Padilla-Banks E, Newbold RR, et al. Persistently altered epigenetic marks in the mouse uterus after neonatal estrogen exposure. Mol Endocrinol 2013;27:1666-77. https://doi.org/10.1210/me.2013-1211
  225. Manosalva I, Gonzalez A. Aging changes the chromatin configuration and histone methylation of mouse oocytes at germinal vesicle stage. Theriogenology 2010;74:1539-47. https://doi.org/10.1016/j.theriogenology.2010.06.024
  226. Zhang H, Jiang X, Zhang Y, Xu B, Hua J, Ma T, et al. MicroRNA 376a regulates follicle assembly by targeting Pcna in fetal and neonatal mouse ovaries. Reproduction 2014;148:43-54. https://doi.org/10.1530/REP-13-0508
  227. Ball CB, Rodriguez KF, Stumpo DJ, Ribeiro-Neto F, Korach KS, Blackshear PJ, et al. The RNA-binding protein, ZFP36L2, influences ovulation and oocyte maturation. PLoS One 2014;9:e97324. https://doi.org/10.1371/journal.pone.0097324
  228. Yuan S, Ortogero N, Wu Q, Zheng H, Yan W. Murine follicular development requires oocyte DICER, but not DROSHA. Biol Reprod 2014;91:39.
  229. Xiao G, Xia C, Yang J, Liu J, Du H, Kang X, et al. MiR-133b regulates the expression of the Actin protein TAGLN2 during oocyte growth and maturation: a potential target for infertility therapy. PLoS One 2014;9:e100751. https://doi.org/10.1371/journal.pone.0100751
  230. Dong F, Zhang Y, Xia F, Yang Y, Xiong S, Jin L, et al. Genome-wide miRNA profiling of villus and decidua of recurrent spontaneous abortion patients. Reproduction 2014;148:33-41. https://doi.org/10.1530/REP-14-0095
  231. Szczepanska M, Mostowska A, Wirstlein P, Malejczyk J, Ploski R, Skrzypczak J, et al. Polymorphic variants of DNMT3A and the risk of endometriosis. Eur J Obstet Gynecol Reprod Biol 2013;166:81-5. https://doi.org/10.1016/j.ejogrb.2012.09.003
  232. Nothnick WB. The role of micro-RNAs in the female reproductive tract. Reproduction 2012;143:559-76. https://doi.org/10.1530/REP-11-0240
  233. Zhao ZZ, Croft L, Nyholt DR, Chapman B, Treloar SA, Hull ML, et al. Evaluation of polymorphisms in predicted target sites for micro RNAs differentially expressed in endometriosis. Mol Hum Reprod 2011;17:92-103. https://doi.org/10.1093/molehr/gaq084
  234. Laudanski P, Charkiewicz R, Kuzmicki M, Szamatowicz J, Charkiewicz A, Niklinski J. MicroRNAs expression profiling of eutopic proliferative endometrium in women with ovarian endometriosis. Reprod Biol Endocrinol 2013;11:78. https://doi.org/10.1186/1477-7827-11-78
  235. Anckaert E, Fair T. DNA methylation reprogramming during oogenesis and interference by reproductive technologies: studies in mouse and bovine models. Reprod Fertil Dev 2015;27:739-54. https://doi.org/10.1071/RD14333
  236. Petrussa L, Van de Velde H, De Rycke M. Dynamic regulation of DNA methyltransferases in human oocytes and preimplantation embryos after assisted reproductive technologies. Mol Hum Reprod 2014;20:861-74. https://doi.org/10.1093/molehr/gau049
  237. Rosenbluth EM, Shelton DN, Wells LM, Sparks AE, Van Voorhis BJ. Human embryos secrete microRNAs into culture media: a potential biomarker for implantation. Fertil Steril 2014;101:1493-500. https://doi.org/10.1016/j.fertnstert.2014.01.058
  238. Whitelaw N, Bhattacharya S, Hoad G, Horgan GW, Hamilton M, Haggarty P. Epigenetic status in the offspring of spontaneous and assisted conception. Hum Reprod 2014;29:1452-8. https://doi.org/10.1093/humrep/deu094
  239. Fortier AL, McGraw S, Lopes FL, Niles KM, Landry M, Trasler JM. Modulation of imprinted gene expression following superovulation. Mol Cell Endocrinol 2014;388:51-7. https://doi.org/10.1016/j.mce.2014.03.003
  240. Dimitriadou E, Noutsopoulos D, Markopoulos G, Vlaikou AM, Mantziou S, Traeger-Synodinos J, et al. Abnormal DLK1/MEG3 imprinting correlates with decreased HERV-K methylation after assisted reproduction and preimplantation genetic diagnosis. Stress 2013;16:689-97. https://doi.org/10.3109/10253890.2013.817554
  241. Diaz-Garcia C, Estella C, Perales-Puchalt A, Simon C. Reproductive medicine and inheritance of infertility by offspring: the role of fetal programming. Fertil Steril 2011;96:536-45. https://doi.org/10.1016/j.fertnstert.2011.06.066
  242. Grace KS, Sinclair KD. Assisted reproductive technology, epigenetics, and long-term health: a developmental time bomb still ticking. Semin Reprod Med 2009;27:409-16. https://doi.org/10.1055/s-0029-1237429
  243. Turan N, Katari S, Gerson LF, Chalian R, Foster MW, Gaughan JP, et al. Inter- and intra-individual variation in allele-specific DNA methylation and gene expression in children conceived using assisted reproductive technology. PLoS Genet 2010;6:e1001033. https://doi.org/10.1371/journal.pgen.1001033
  244. Kochanski A, Merritt TA, Gadzinowski J, Jopek A. The impact of assisted reproductive technologies on the genome and epigenome of the newborn. J Neonatal Perinatal Med 2013;6:101-8.
  245. Deshmukh RS, Ostrup O, Strejcek F, Vejlsted M, Lucas-Hahn A, Petersen B, et al. Early aberrations in chromatin dynamics in embryos produced under in vitro conditions. Cell Reprogram 2012;14:225-34. https://doi.org/10.1089/cell.2011.0069
  246. Wu X, Li Y, Xue L, Wang L, Yue Y, Li K, et al. Multiple histone site epigenetic modifications in nuclear transfer and in vitro fertilized bovine embryos. Zygote 2011;19:31-45. https://doi.org/10.1017/S0967199410000328
  247. Breton A, LE Bourhis D, Audouard C, Vignon X, Lelievre JM. Nuclear profiles of H3 histones trimethylated on Lys27 in bovine (Bos taurus) embryos obtained after in vitro fertilization or somatic cell nuclear transfer. J Reprod Dev 2010;56:379-88. https://doi.org/10.1262/jrd.09-182A
  248. Santos F, Hyslop L, Stojkovic P, Leary C, Murdoch A, Reik W, et al. Evaluation of epigenetic marks in human embryos derived from IVF and ICSI. Hum Reprod 2010;25:2387-95. https://doi.org/10.1093/humrep/deq151
  249. Siristatidis C, Vogiatzi P, Brachnis N, Liassidou A, Iliodromiti Z, Bettocchi S, et al. Review: microRNAs in assisted reproduction and their potential role in IVF failure. In Vivo 2015;29:169-75.
  250. Feng R, Sang Q, Zhu Y, Fu W, Liu M, Xu Y, et al. MiRNA-320 in the human follicular fluid is associated with embryo quality in vivo and affects mouse embryonic development in vitro. Sci Rep 2015;5:8689. https://doi.org/10.1038/srep08689
  251. Karakaya C, Guzeloglu-Kayisli O, Uyar A, Kallen AN, Babayev E, Bozkurt N, et al. Poor ovarian response in women undergoing in vitro fertilization is associated with altered microRNA expression in cumulus cells. Fertil Steril 2015;103:1469-76.e1-3. https://doi.org/10.1016/j.fertnstert.2015.02.035
  252. Galliano D, Pellicer A. MicroRNA and implantation. Fertil Steril 2014;101:1531-44. https://doi.org/10.1016/j.fertnstert.2014.04.023
  253. Zhao Y, Zacur H, Cheadle C, Ning N, Fan J, Vlahos NF. Effect of luteal-phase support on endometrial microRNA expression following controlled ovarian stimulation. Reprod Biol Endocrinol 2012;10:72. https://doi.org/10.1186/1477-7827-10-72

Cited by

  1. Keeping up with the Red Queen: the pace of aging as an adaptation vol.18, pp.4, 2016, https://doi.org/10.1007/s10522-016-9674-4
  2. The placental gateway of maternal transgenerational epigenetic inheritance vol.96, pp.3, 2016, https://doi.org/10.1007/s12041-017-0788-5
  3. In Utero Alcohol Exposure and the Alteration of Histone Marks in the Developing Fetus: An Epigenetic Phenomenon of Maternal Drinking vol.13, pp.9, 2017, https://doi.org/10.7150/ijbs.21047
  4. Recent developments in genetics and medically-assisted reproduction: from research to clinical applications †‡ vol.2017, pp.3, 2016, https://doi.org/10.1093/hropen/hox015
  5. Recent developments in genetics and medically assisted reproduction: from research to clinical applications vol.26, pp.1, 2016, https://doi.org/10.1038/s41431-017-0016-z
  6. Intracytoplasmic sperm injection for male infertility and consequences for offspring vol.15, pp.9, 2016, https://doi.org/10.1038/s41585-018-0051-8
  7. AMPK: An Epigenetic Landscape Modulator vol.19, pp.10, 2016, https://doi.org/10.3390/ijms19103238
  8. Acute Hypoxia and Chronic Ischemia Induce Differential Total Changes in Placental Epigenetic Modifications vol.26, pp.6, 2016, https://doi.org/10.1177/1933719118799193
  9. Effects of vitrification on the imprinted gene Snrpn in neonatal placental tissue vol.4, pp.1, 2020, https://doi.org/10.4103/2096-2924.281851
  10. Comparative profiling of epigenetic modifications among individuals living in different high and low air pollution zones: A pilot study from India vol.4, pp.None, 2016, https://doi.org/10.1016/j.envadv.2021.100052