DOI QR코드

DOI QR Code

Interplay between Epigenetics and Genetics in Cancer

  • Choi, Jae Duk (Department of Life Science, College of Natural Sciences, Ajou University) ;
  • Lee, Jong-Soo (Department of Life Science, College of Natural Sciences, Ajou University)
  • 투고 : 2013.10.20
  • 심사 : 2013.11.19
  • 발행 : 2013.12.31

초록

Genomic instability, which occurs through both genetic mechanisms (underlying inheritable phenotypic variations caused by DNA sequence-dependent alterations, such as mutation, deletion, insertion, inversion, translocation, and chromosomal aneuploidy) and epigenomic aberrations (underlying inheritable phenotypic variations caused by DNA sequence-independent alterations caused by a change of chromatin structure, such as DNA methylation and histone modifications), is known to promote tumorigenesis and tumor progression. Mechanisms involve both genomic instability and epigenomic aberrations that lose or gain the function of genes that impinge on tumor suppression/prevention or oncogenesis. Growing evidence points to an epigenome-wide disruption that involves large-scale DNA hypomethylation but specific hyper-methylation of tumor suppressor genes, large blocks of aberrant histone modifications, and abnormal miRNA expression profile. Emerging molecular details regarding the modulation of these epigenetic events in cancer are used to illustrate the alterations of epigenetic molecules, and their consequent malfunctions could contribute to cancer biology. More recently, intriguing evidence supporting that genetic and epigenetic mechanisms are not separate events in cancer has been emerging; they intertwine and take advantage of each other during tumorigenesis. In addition, we discuss the collusion between epigenetics and genetics mediated by heterochromatin protein 1, a major component of heterochromatin, in order to maintain genome integrity.

키워드

참고문헌

  1. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011;144:646-674. https://doi.org/10.1016/j.cell.2011.02.013
  2. Waddington CH. Towards a theoretical biology. Nature 1968;218:525-527. https://doi.org/10.1038/218525a0
  3. Waddington CH. The epigenotype. 1942. Int J Epidemiol 2012; 41:10-13. https://doi.org/10.1093/ije/dyr184
  4. Wu C, Morris JR. Genes, genetics, and epigenetics: a correspondence. Science 2001;293:1103-1105. https://doi.org/10.1126/science.293.5532.1103
  5. Baylin SB, Jones PA. A decade of exploring the cancer epigenome: biological and translational implications. Nat Rev Cancer 2011;11:726-734. https://doi.org/10.1038/nrc3130
  6. Sandoval J, Esteller M. Cancer epigenomics: beyond genomics. Curr Opin Genet Dev 2012;22:50-55. https://doi.org/10.1016/j.gde.2012.02.008
  7. Feinberg AP, Ohlsson R, Henikoff S. The epigenetic progenitor origin of human cancer. Nat Rev Genet 2006;7:21-33. https://doi.org/10.1038/nrg1748
  8. Sharma S, Kelly TK, Jones PA. Epigenetics in cancer. Carcinogenesis 2010;31:27-36. https://doi.org/10.1093/carcin/bgp220
  9. Luger K, Mäder AW, Richmond RK, Sargent DF, Richmond TJ. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 1997;389:251-260. https://doi.org/10.1038/38444
  10. Bonasio R, Tu S, Reinberg D. Molecular signals of epigenetic states. Science 2010;330:612-616. https://doi.org/10.1126/science.1191078
  11. Hawkins RD, Hon GC, Yang C, Antosiewicz-Bourget JE, Lee LK, Ngo QM, et al. Dynamic chromatin states in human ES cells reveal potential regulatory sequences and genes involved in pluripotency. Cell Res 2011;21:1393-1409. https://doi.org/10.1038/cr.2011.146
  12. Hon GC, Hawkins RD, Ren B. Predictive chromatin signatures in the mammalian genome. Hum Mol Genet 2009;18:R195- R201. https://doi.org/10.1093/hmg/ddp409
  13. Mills AA. Throwing the cancer switch: reciprocal roles of polycomb and trithorax proteins. Nat Rev Cancer 2010;10:669-682. https://doi.org/10.1038/nrc2931
  14. Fraga MF, Ballestar E, Villar-Garea A, Boix-Chornet M, Espada J, Schotta G, et al. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet 2005;37:391-400. https://doi.org/10.1038/ng1531
  15. Jones PA, Liang G. Rethinking how DNA methylation patterns are maintained. Nat Rev Genet 2009;10:805-811. https://doi.org/10.1038/nrg2651
  16. De Carvalho DD, You JS, Jones PA. DNA methylation and cellular reprogramming. Trends Cell Biol 2010;20:609-617. https://doi.org/10.1016/j.tcb.2010.08.003
  17. Meissner A. Epigenetic modifications in pluripotent and differentiated cells. Nat Biotechnol 2010;28:1079-1088. https://doi.org/10.1038/nbt.1684
  18. Robertson KD. DNA methylation and human disease. Nat Rev Genet 2005;6:597-610.
  19. Bogdanović O, Veenstra GJ. DNA methylation and methyl- CpG binding proteins: developmental requirements and function. Chromosoma 2009;118:549-565. https://doi.org/10.1007/s00412-009-0221-9
  20. Irizarry RA, Ladd-Acosta C, Wen B, Wu Z, Montano C, Onyango P, et al. The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet 2009;41:178-186. https://doi.org/10.1038/ng.298
  21. Jones PA, Baylin SB. The epigenomics of cancer. Cell 2007; 128:683-692. https://doi.org/10.1016/j.cell.2007.01.029
  22. Ryan BM, Robles AI, Harris CC. Genetic variation in microRNA networks: the implications for cancer research. Nat Rev Cancer 2010;10:389-402. https://doi.org/10.1038/nrc2867
  23. Kasinski AL, Slack FJ. Epigenetics and genetics. MicroRNAs en route to the clinic: progress in validating and targeting microRNAs for cancer therapy. Nat Rev Cancer 2011;11: 849-864. https://doi.org/10.1038/nrc3166
  24. Friedman JM, Liang G, Liu CC, Wolff EM, Tsai YC, Ye W, et al. The putative tumor suppressor microRNA-101 modulates the cancer epigenome by repressing the polycomb group protein EZH2. Cancer Res 2009;69:2623-2629. https://doi.org/10.1158/0008-5472.CAN-08-3114
  25. Varambally S, Cao Q, Mani RS, Shankar S, Wang X, Ateeq B, et al. Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science 2008;322: 1695-1699. https://doi.org/10.1126/science.1165395
  26. Fabbri M, Garzon R, Cimmino A, Liu Z, Zanesi N, Callegari E, et al. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci U S A 2007;104:15805-15810. https://doi.org/10.1073/pnas.0707628104
  27. Fabbri M, Calin GA. Epigenetics and miRNAs in human cancer. Adv Genet 2010;70:87-99. https://doi.org/10.1016/B978-0-12-380866-0.60004-6
  28. Saito Y, Liang G, Egger G, Friedman JM, Chuang JC, Coetzee GA, et al. Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell 2006;9:435-443. https://doi.org/10.1016/j.ccr.2006.04.020
  29. Kelly TK, De Carvalho DD, Jones PA. Epigenetic modifications as therapeutic targets. Nat Biotechnol 2010;28: 1069-1078. https://doi.org/10.1038/nbt.1678
  30. De Carvalho DD, Sharma S, You JS, Su SF, Taberlay PC, Kelly TK, et al. DNA methylation screening identifies driver epigenetic events of cancer cell survival. Cancer Cell 2012;21: 655-667. https://doi.org/10.1016/j.ccr.2012.03.045
  31. Kalari S, Pfeifer GP. Identification of driver and passenger DNA methylation in cancer by epigenomic analysis. Adv Genet 2010;70:277-308. https://doi.org/10.1016/B978-0-12-380866-0.60010-1
  32. Rodríguez-Paredes M, Esteller M. Cancer epigenetics reaches mainstream oncology. Nat Med 2011;17:330-339.
  33. James TC, Elgin SC. Identification of a nonhistone chromosomal protein associated with heterochromatin in Drosophila melanogaster and its gene. Mol Cell Biol 1986;6:3862-3872. https://doi.org/10.1128/MCB.6.11.3862
  34. Lomberk G, Wallrath L, Urrutia R. The heterochromatin protein 1 family. Genome Biol 2006;7:228. https://doi.org/10.1186/gb-2006-7-7-228
  35. Bannister AJ, Zegerman P, Partridge JF, Miska EA, Thomas JO, Allshire RC, et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 2001; 410:120-124. https://doi.org/10.1038/35065138
  36. Lachner M, O'Carroll D, Rea S, Mechtler K, Jenuwein T. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 2001;410:116-120. https://doi.org/10.1038/35065132
  37. Sims RJ 3rd, Nishioka K, Reinberg D. Histone lysine methylation: a signature for chromatin function. Trends Genet 2003; 19:629-639. https://doi.org/10.1016/j.tig.2003.09.007
  38. Fanti L, Pimpinelli S. HP1: a functionally multifaceted protein. Curr Opin Genet Dev 2008;18:169-174. https://doi.org/10.1016/j.gde.2008.01.009
  39. Maison C, Almouzni G. HP1 and the dynamics of heterochromatin maintenance. Nat Rev Mol Cell Biol 2004;5:296-304. https://doi.org/10.1038/nrm1355
  40. Fanti L, Berloco M, Piacentini L, Pimpinelli S. Chromosomal distribution of heterochromatin protein 1 (HP1) in Drosophila: a cytological map of euchromatic HP1 binding sites. Genetica 2003;117:135-147. https://doi.org/10.1023/A:1022971407290
  41. James TC, Eissenberg JC, Craig C, Dietrich V, Hobson A, Elgin SC. Distribution patterns of HP1, a heterochromatin- associated nonhistone chromosomal protein of Drosophila. Eur J Cell Biol 1989;50:170-180.
  42. Jacobs SA, Taverna SD, Zhang Y, Briggs SD, Li J, Eissenberg JC, et al. Specificity of the HP1 chromo domain for the methylated N-terminus of histone H3. EMBO J 2001;20:5232-5241. https://doi.org/10.1093/emboj/20.18.5232
  43. Aagaard L, Laible G, Selenko P, Schmid M, Dorn R, Schotta G, et al. Functional mammalian homologues of the Drosophila PEV-modifier Su(var)3-9 encode centromere-associated proteins which complex with the heterochromatin component M31. EMBO J 1999;18:1923-1938. https://doi.org/10.1093/emboj/18.7.1923
  44. Tschiersch B, Hofmann A, Krauss V, Dorn R, Korge G, Reuter G. The protein encoded by the Drosophila position-effect variegation suppressor gene Su(var)3-9 combines domains of antagonistic regulators of homeotic gene complexes. EMBO J 1994;13:3822-3831.
  45. Zofall M, Grewal SI. RNAi-mediated heterochromatin assembly in fission yeast. Cold Spring Harb Symp Quant Biol 2006; 71:487-496. https://doi.org/10.1101/sqb.2006.71.059
  46. Thiru A, Nietlispach D, Mott HR, Okuwaki M, Lyon D, Nielsen PR, et al. Structural basis of HP1/PXVXL motif peptide interactions and HP1 localisation to heterochromatin. EMBO J 2004;23:489-499. https://doi.org/10.1038/sj.emboj.7600088
  47. Piacentini L, Fanti L, Berloco M, Perrini B, Pimpinelli S. Heterochromatin protein 1 (HP1) is associated with induced gene expression in Drosophila euchromatin. J Cell Biol 2003; 161:707-714. https://doi.org/10.1083/jcb.200303012
  48. Maison C, Bailly D, Roche D, Montes de Oca R, Probst AV, Vassias I, et al. SUMOylation promotes de novo targeting of HP1alpha to pericentric heterochromatin. Nat Genet 2011; 43:220-227. https://doi.org/10.1038/ng.765
  49. Perrini B, Piacentini L, Fanti L, Altieri F, Chichiarelli S, Berloco M, et al. HP1 controls telomere capping, telomere elongation, and telomere silencing by two different mechanisms in Drosophila. Mol Cell 2004;15:467-476. https://doi.org/10.1016/j.molcel.2004.06.036
  50. Garcia-Cao M, O'Sullivan R, Peters AH, Jenuwein T, Blasco MA. Epigenetic regulation of telomere length in mammalian cells by the Suv39h1 and Suv39h2 histone methyltransferases. Nat Genet 2004;36:94-99. https://doi.org/10.1038/ng1278
  51. Gonzalo S, Blasco MA. Role of Rb family in the epigenetic definition of chromatin. Cell Cycle 2005;4:752-755. https://doi.org/10.4161/cc.4.6.1720
  52. Gonzalo S, Jaco I, Fraga MF, Chen T, Li E, Esteller M, et al. DNA methyltransferases control telomere length and telomere recombination in mammalian cells. Nat Cell Biol 2006; 8:416-424. https://doi.org/10.1038/ncb1386
  53. Koering CE, Pollice A, Zibella MP, Bauwens S, Puisieux A, Brunori M, et al. Human telomeric position effect is determined by chromosomal context and telomeric chromatin integrity. EMBO Rep 2002;3:1055-1061. https://doi.org/10.1093/embo-reports/kvf215
  54. Lomberk G, Bensi D, Fernandez-Zapico ME, Urrutia R. Evidence for the existence of an HP1-mediated subcode within the histone code. Nat Cell Biol 2006;8:407-415. https://doi.org/10.1038/ncb1383
  55. Obuse C, Iwasaki O, Kiyomitsu T, Goshima G, Toyoda Y, Yanagida M. A conserved Mis12 centromere complex is linked to heterochromatic HP1 and outer kinetochore protein Zwint-1. Nat Cell Biol 2004;6:1135-1141. https://doi.org/10.1038/ncb1187
  56. Yamagishi Y, Sakuno T, Shimura M, Watanabe Y. Heterochromatin links to centromeric protection by recruiting shugoshin. Nature 2008;455:251-255. https://doi.org/10.1038/nature07217
  57. Baldeyron C, Soria G, Roche D, Cook AJ, Almouzni G. HP1alpha recruitment to DNA damage by p150CAF-1 promotes homologous recombination repair. J Cell Biol 2011;193:81-95. https://doi.org/10.1083/jcb.201101030
  58. Dinant C, Luijsterburg MS. The emerging role of HP1 in the DNA damage response. Mol Cell Biol 2009;29:6335-6340. https://doi.org/10.1128/MCB.01048-09
  59. Luijsterburg MS, Dinant C, Lans H, Stap J, Wiernasz E, Lagerwerf S, et al. Heterochromatin protein 1 is recruited to various types of DNA damage. J Cell Biol 2009;185:577-586. https://doi.org/10.1083/jcb.200810035
  60. Choi JD, Park MA, Lee JS. Suppression and recovery of BRCA1-mediated transcription by HP1gamma via modulation of promoter occupancy. Nucleic Acids Res 2012;40: 11321-11338. https://doi.org/10.1093/nar/gks947
  61. De Lucia F, Ni JQ, Vaillant C, Sun FL. HP1 modulates the transcription of cell-cycle regulators in Drosophila melanogaster. Nucleic Acids Res 2005;33:2852-2858. https://doi.org/10.1093/nar/gki584
  62. Kwon SH, Florens L, Swanson SK, Washburn MP, Abmayr SM, Workman JL. Heterochromatin protein 1 (HP1) connects the FACT histone chaperone complex to the phosphorylated CTD of RNA polymerase II. Genes Dev 2010;24:2133-2145. https://doi.org/10.1101/gad.1959110
  63. Fischer T, Cui B, Dhakshnamoorthy J, Zhou M, Rubin C, Zofall M, et al. Diverse roles of HP1 proteins in heterochromatin assembly and functions in fission yeast. Proc Natl Acad Sci U S A 2009;106:8998-9003. https://doi.org/10.1073/pnas.0813063106
  64. Nielsen AL, Sanchez C, Ichinose H, Cerviño M, Lerouge T, Chambon P, et al. Selective interaction between the chromatin- remodeling factor BRG1 and the heterochromatin-associated protein HP1alpha. EMBO J 2002;21:5797-5806. https://doi.org/10.1093/emboj/cdf560
  65. Ayoub N, Jeyasekharan AD, Bernal JA, Venkitaraman AR. HP1-beta mobilization promotes chromatin changes that initiate the DNA damage response. Nature 2008;453:682-686. https://doi.org/10.1038/nature06875
  66. Goodarzi AA, Noon AT, Deckbar D, Ziv Y, Shiloh Y, Löbrich M, et al. ATM signaling facilitates repair of DNA double-strand breaks associated with heterochromatin. Mol Cell 2008;31: 167-177. https://doi.org/10.1016/j.molcel.2008.05.017
  67. Lee YH, Kuo CY, Stark JM, Shih HM, Ann DK. HP1 promotes tumor suppressor BRCA1 functions during the DNA damage response. Nucleic Acids Res 2013;41:5784-5798. https://doi.org/10.1093/nar/gkt231
  68. Al-Sady B, Madhani HD, Narlikar GJ. Division of labor between the chromodomains of HP1 and Suv39 methylase enables coordination of heterochromatin spread. Mol Cell 2013;51:80-91. https://doi.org/10.1016/j.molcel.2013.06.013
  69. Canudas S, Houghtaling BR, Bhanot M, Sasa G, Savage SA, Bertuch AA, et al. A role for heterochromatin protein 1gamma at human telomeres. Genes Dev 2011;25:1807-1819. https://doi.org/10.1101/gad.17325211
  70. Ryan RF, Schultz DC, Ayyanathan K, Singh PB, Friedman JR, Fredericks WJ, et al. KAP-1 corepressor protein interacts and colocalizes with heterochromatic and euchromatic HP1 proteins: a potential role for Krüppel-associated box-zinc finger proteins in heterochromatin-mediated gene silencing. Mol Cell Biol 1999;19:4366-4378. https://doi.org/10.1128/MCB.19.6.4366
  71. Sripathy SP, Stevens J, Schultz DC. The KAP1 corepressor functions to coordinate the assembly of de novo HP1-demarcated microenvironments of heterochromatin required for KRAB zinc finger protein-mediated transcriptional repression. Mol Cell Biol 2006;26:8623-8638. https://doi.org/10.1128/MCB.00487-06
  72. de Wit E, Greil F, van Steensel B. High-resolution mapping reveals links of HP1 with active and inactive chromatin components. PLoS Genet 2007;3:e38. https://doi.org/10.1371/journal.pgen.0030038
  73. Seeler JS, Marchio A, Sitterlin D, Transy C, Dejean A. Interaction of SP100 with HP1 proteins: a link between the promyelocytic leukemia-associated nuclear bodies and the chromatin compartment. Proc Natl Acad Sci U S A 1998;95: 7316-7321. https://doi.org/10.1073/pnas.95.13.7316
  74. Smallwood A, Black JC, Tanese N, Pradhan S, Carey M. HP1-mediated silencing targets Pol II coactivator complexes. Nat Struct Mol Biol 2008;15:318-320. https://doi.org/10.1038/nsmb.1385
  75. Smallwood A, Esteve PO, Pradhan S, Carey M. Functional cooperation between HP1 and DNMT1 mediates gene silencing. Genes Dev 2007;21:1169-1178. https://doi.org/10.1101/gad.1536807
  76. Hayashi MT, Takahashi TS, Nakagawa T, Nakayama J, Masukata H. The heterochromatin protein Swi6/HP1 activates replication origins at the pericentromeric region and silent mating-type locus. Nat Cell Biol 2009;11:357-362. https://doi.org/10.1038/ncb1845
  77. Murzina N, Verreault A, Laue E, Stillman B. Heterochromatin dynamics in mouse cells: interaction between chromatin assembly factor 1 and HP1 proteins. Mol Cell 1999;4:529-540. https://doi.org/10.1016/S1097-2765(00)80204-X
  78. Quivy JP, Gerard A, Cook AJ, Roche D, Almouzni G. The HP1-p150/CAF-1 interaction is required for pericentric heterochromatin replication and S-phase progression in mouse cells. Nat Struct Mol Biol 2008;15:972-979. https://doi.org/10.1038/nsmb.1470
  79. White D, Rafalska-Metcalf IU, Ivanov AV, Corsinotti A, Peng H, Lee SC, et al. The ATM substrate KAP1 controls DNA repair in heterochromatin: regulation by HP1 proteins and serine 473/824 phosphorylation. Mol Cancer Res 2012;10:401-414. https://doi.org/10.1158/1541-7786.MCR-11-0134
  80. Nozawa RS, Nagao K, Masuda HT, Iwasaki O, Hirota T, Nozaki N, et al. Human POGZ modulates dissociation of HP1alpha from mitotic chromosome arms through Aurora B activation. Nat Cell Biol 2010;12:719-727. https://doi.org/10.1038/ncb2075
  81. Slezak J, Truong M, Huang W, Jarrard D. HP1gamma expression is elevated in prostate cancer and is superior to Gleason score as a predictor of biochemical recurrence after radical prostatectomy. BMC Cancer 2013;13:148. https://doi.org/10.1186/1471-2407-13-148

피인용 문헌

  1. Upregulation of microRNA-492 induced by epigenetic drug treatment inhibits the malignant phenotype of clear cell renal cell carcinoma in vitro vol.12, pp.1, 2012, https://doi.org/10.3892/mmr.2015.3550
  2. SWI/SNF chromatin remodeling complexes and cancer vol.166, pp.3, 2014, https://doi.org/10.1002/ajmg.c.31410
  3. TES was epigenetically silenced and suppressed the epithelial–mesenchymal transition in breast cancer vol.35, pp.11, 2014, https://doi.org/10.1007/s13277-014-2472-1
  4. Regulation of the 2-oxoglutarate-dependent dioxygenases and implications for cancer vol.42, pp.4, 2014, https://doi.org/10.1042/BST20140118
  5. , a candidate tumor suppressor inactivated by promoter hypermethylation, impairs the malignance of oral squamous cell carcinoma cells. vol.44, pp.8, 2014, https://doi.org/10.1111/jop.12279
  6. DNA Methylation Biomarkers: Cancer and Beyond vol.5, pp.3, 2014, https://doi.org/10.3390/genes5030821
  7. Diet-Induced Obesity Modulates Epigenetic Responses to Ionizing Radiation in Mice vol.9, pp.8, 2014, https://doi.org/10.1371/journal.pone.0106277
  8. TESTIN was commonly hypermethylated and involved in the epithelial-mesenchymal transition of endometrial cancer vol.123, pp.5, 2015, https://doi.org/10.1111/apm.12361
  9. Body mass index associated with genome-wide methylation in breast tissue vol.151, pp.2, 2015, https://doi.org/10.1007/s10549-015-3401-8
  10. Low expression of secreted frizzled-related protein 4 in aggressive pituitary adenoma vol.18, pp.3, 2015, https://doi.org/10.1007/s11102-014-0579-4
  11. L.) Exerts Induction of Senescence Driven Growth Arrest in the MDA-MB231 Human Breast Cancer Cell Line vol.2015, pp.1942-0994, 2015, https://doi.org/10.1155/2015/363827
  12. The Effect of an Obesogenic Maternal Environment on Expression of Fetal Umbilical Cord Blood miRNA vol.22, pp.7, 2015, https://doi.org/10.1177/1933719114565032
  13. (−)-Epigallocatechin-3-gallate reverses the expression of various tumor-suppressor genes by inhibiting DNA methyltransferases and histone deacetylases in human cervical cancer cells vol.33, pp.4, 2015, https://doi.org/10.3892/or.2015.3802
  14. IκB kinase α functions as a tumor suppressor in epithelial-derived tumors through an NF-κB-independent pathway (Review) vol.34, pp.5, 2015, https://doi.org/10.3892/or.2015.4229
  15. ATM may be a protective factor in endometrial carcinogenesis with the progesterone pathway vol.36, pp.3, 2015, https://doi.org/10.1007/s13277-014-2712-4
  16. Artificial light at night: melatonin as a mediator between the environment and epigenome vol.370, pp.1667, 2015, https://doi.org/10.1098/rstb.2014.0121
  17. Epigenetics and DNA methylation in cancer vol.4, pp.1, 2015, https://doi.org/10.5528/wjtm.v4.i1.11
  18. The role of piRNA and its potential clinical implications in cancer vol.7, pp.6, 2015, https://doi.org/10.2217/epi.15.37
  19. Epigenetic and genetic changes in soft tissue sarcomas: a review vol.124, pp.11, 2016, https://doi.org/10.1111/apm.12600
  20. Polyphenols as Modulator of Oxidative Stress in Cancer Disease: New Therapeutic Strategies vol.2016, pp.1942-0994, 2016, https://doi.org/10.1155/2016/6475624
  21. Epigenetic modulation of a miR-296-5p:HMGA1 axis regulates Sox2 expression and glioblastoma stem cells vol.35, pp.37, 2016, https://doi.org/10.1038/onc.2016.22
  22. Assessment of sFRP4 as a bio-marker for predicting aggressiveness and recurrence of growth hormone-secreting pituitary adenomas vol.35, pp.5, 2016, https://doi.org/10.3892/or.2016.4650
  23. Early Environments, Stress, and the Epigenetics of Human Health vol.45, pp.1, 2016, https://doi.org/10.1146/annurev-anthro-102215-095954
  24. DNA methylation: conducting the orchestra from exposure to phenotype? vol.8, pp.1, 2016, https://doi.org/10.1186/s13148-016-0256-8
  25. Tumor suppressor microRNA-34a inhibits cell migration and invasion by targeting MMP-2/MMP-9/FNDC3B in esophageal squamous cell carcinoma vol.51, pp.1, 2017, https://doi.org/10.3892/ijo.2017.4015
  26. Impact of Phytochemicals and Dietary Patterns on Epigenome and Cancer vol.69, pp.2, 2017, https://doi.org/10.1080/01635581.2017.1263746
  27. Modeling the process of human tumorigenesis vol.8, pp.2041-1723, 2017, https://doi.org/10.1038/ncomms15422
  28. Melatonin, Noncoding RNAs, Messenger RNA Stability and Epigenetics—Evidence, Hints, Gaps and Perspectives vol.15, pp.10, 2014, https://doi.org/10.3390/ijms151018221
  29. Epigenetic alterations in cancer and personalized cancer treatment vol.11, pp.2, 2015, https://doi.org/10.2217/fon.14.237
  30. Demethylation effects of elemene on the GSTP1 gene in HCC cell line QGY7703 vol.11, pp.4, 2016, https://doi.org/10.3892/ol.2016.4243
  31. –111 (G>A) Polymorphism on Cancer Risk: A Meta-Analysis vol.20, pp.7, 2016, https://doi.org/10.1089/gtmb.2015.0320
  32. Promising Antineoplastic Actions of Melatonin vol.9, pp.1663-9812, 2018, https://doi.org/10.3389/fphar.2018.01086
  33. in breast tissue of healthy women and obesity pp.1724-6008, 2018, https://doi.org/10.1177/1724600818762258
  34. Contribution of KCTD12 to esophageal squamous cell carcinoma vol.18, pp.1, 2018, https://doi.org/10.1186/s12885-018-4765-z
  35. Epigenomics-Guided Drug Development: Recent Advances in Solving the Cancer Treatment “jigsaw puzzle” vol.23, pp.2, 2019, https://doi.org/10.1089/omi.2018.0206