DOI QR코드

DOI QR Code

Current status and prospects of epigenetic information in sexual reproductive processes of plants

식물 유성 생식과정에서 후성유전학적 정보해석 및 연구현황

  • Jung, Yu Jin (Department of Horticultural Life Science, Hankyong National University) ;
  • Cho, Yong-Gu (Department of Crop Science, Chungbuk National University) ;
  • Kang, Kwon Kyoo (Institute of Genetic Engineering, Hankyong National University)
  • 정유진 (국립한경대학교 원예생명과학과) ;
  • 조용구 (충북대학교 식물자원학과) ;
  • 강권규 (국립한경대학교 유전공학연구소)
  • Received : 2017.03.25
  • Accepted : 2017.03.27
  • Published : 2017.03.31

Abstract

Rapid progress in epigenetic studies has resulted in genome wide information of genetic functions, other than DNA sequence information. However, insufficient understanding and unclear research direction in epigenetics has failed to attract many researchers. Here, we review the sexual reproduction processes that are particularly related to epigenetics in plants. We aim to elucidate the roles of epigenetic information and molecular mechanisms involved in the complex sexual reproduction process of plants, and examine their biological significance.

Keywords

References

  1. Bjorn TA, Anne CFS (2014) Epigenetic Control of the Genome-Lessons from Genomic Imprinting. Genes 5:635-655 https://doi.org/10.3390/genes5030635
  2. Bourc'his D, Voinnet O (2010) A small-RNA perspective on gametogenesis, fertilization, and early zygotic development. Science 330:617-622 https://doi.org/10.1126/science.1194776
  3. Calarco JP, Borges F, Donoghue MT et al. (2012) Reprogramming of DNA methylation in pollen guides epigenetic inheritance via small RNA. Cell 151:194-205 https://doi.org/10.1016/j.cell.2012.09.001
  4. Cao X and Jacobsen SE (2002) Role of the A rabidopsis DRM methyltransferases in de novo DNA methylation and gene silencing. Curr Biol 12:1138-1144 https://doi.org/10.1016/S0960-9822(02)00925-9
  5. Chen HM, Chen LT, Patel K. et al. (2010) 22-Nucleotide RNAs trigger secondary siRNA biogenesis in plants. Proc Natl Acad Sci USA 107:15269-15274 https://doi.org/10.1073/pnas.1001738107
  6. Choi JS, Lee IH, Cho YG, Jung YJ, Kang KK (2016) Overexpression of NtROS2a gene encoding cytosine DNA demethylation enhances drought tolerance in transgenic rice. J Plant Biotechnol 43:376-382 https://doi.org/10.5010/JPB.2016.43.3.376
  7. Choi Y, Gehring M, Johnson L et al. (2002) DEMETER, a DNA glycosylase domain protein, is required for endosperm gene imprinting and seed viability in Arabidopsis Cell 110:33-42 https://doi.org/10.1016/S0092-8674(02)00807-3
  8. Feng S, Jacobsen SE, Reik W (2010) Epigenetic reprogramming in plant and animal development. Science 330:622-627 https://doi.org/10.1126/science.1190614
  9. Formosa T (2012) The role of FACT in making and breaking nucleosomes. Biochim Biophys Acta 1819:247-255 https://doi.org/10.1016/j.bbagrm.2011.07.009
  10. Gehring M, Huh JH, Hsieh TF et al. (2006) DEMETER DNA glycosylase establishes MEDEA polycomb gene self-imprinting by allele-specific demethylation. Cell 124:495-506 https://doi.org/10.1016/j.cell.2005.12.034
  11. Grossniklaus U, Vielle-Calzada JP, Hoeppner MA et al. (1998) Maternal control of embryogenesis by MEDEA, a polycomb group gene in Arabidopsis. Science 280:446-450 https://doi.org/10.1126/science.280.5362.446
  12. Haig D, Westoby M (1991) Genomic imprinting in endosperm: its effect on seed development in crosses between species, and between different ploidies of the same species, and its implications for the evolution of apomixis. Phil Trans R Soc Lond B 333:1-14 https://doi.org/10.1098/rstb.1991.0057
  13. He YF, Li BZ, Li Z, Liu P, Wang Y, Tang Q, Ding J, Jia Y, Chen Z, Li L, Sun Y, Li X Dai Q, Song CX, Zhang K, He C, Xu GL (2011) Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333:1303-1307 https://doi.org/10.1126/science.1210944
  14. Hsieh TF, Ibarra CA, Silva P et al (2009) Genome-wide demethylation of Arabidopsis endosperm. Science 324:1451-1454 https://doi.org/10.1126/science.1172417
  15. Ibarra CA, Feng X, Schoft VK et al. (2012) Active DNA demethylation in plant companion cells reinforces transposon methylation in gametes. Science 337:1360-1364 https://doi.org/10.1126/science.1224839
  16. Ikeda Y (2012) Plant imprinted genes identified by genome-wide approaches and their regulatory mechanisms. Plant Cell Physiol 53:809-816 https://doi.org/10.1093/pcp/pcs049
  17. Ikeda Y and Kinoshita T (2009) DNA demethylation: a lesson from the garden. Chromosoma, 118:37-41 https://doi.org/10.1007/s00412-008-0183-3
  18. Ikeda Y, Kinoshita Y, Susaki, D et al. (2011) HMG domain containing SSRP1 is required for DNA demethylation and genomic imprinting in Arabidopsis . Dev Cell 21:589-596 https://doi.org/10.1016/j.devcel.2011.08.013
  19. Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA, He C, Zhang Y (2011) Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333:1300-1303 https://doi.org/10.1126/science.1210597
  20. Jullien PE, Susaki D, Yelagandula R et al. (2012) DNA methylation dynamics during sexual reproduction in Arabidopsis thaliana. Curr Biol 22:1825-1830 https://doi.org/10.1016/j.cub.2012.07.061
  21. Kakutani T (2002) Epi-alleles in plants: Inheritance of epigenetic information over generations. Plant Cell Physiol 43:106-1111
  22. Kinoshita T, Ikeda Y, Ishikawa R (2008) Genomic imprinting: a balance between antagonistic roles of parental chromosomes. Semin. Cell Dev Biol 19:574-579 https://doi.org/10.1016/j.semcdb.2008.07.018
  23. Kinoshita T, Miura A, Choi Y et al. (2004) One-way control of FWA imprinting in Arabidopsis endosperm by DNA methylation. Science 303:521-523 https://doi.org/10.1126/science.1089835
  24. Kinoshita T, Yadegari R, Harada JJ et al. (1999) Imprinting of the MEDEA polycomb gene in the Arabidopsis endosperm. Plant Cell 11:1945-1952 https://doi.org/10.1105/tpc.11.10.1945
  25. Lauria M, Rupe M, Guo M et al. (2004) Extensive maternal DNA hypomethylation in the endosperm of Zea mays. Plant Cell 16:510-522 https://doi.org/10.1105/tpc.017780
  26. Lee IH, Choi JS, Marjohn N, Cho YG, Kang KK, Jung YJ (2015) Regulation of Abiotic Stress Response Through NtROS2amediated Demethylation in Tobacco. Plant Breed Biotech 3(2):108-118 https://doi.org/10.9787/PBB.2015.3.2.108
  27. Martinez-Macias MI, Qian W, Miki D et al. (2012) A DNA 3' phosphatase functions in active DNA demethylation in Arabidopsis. Mol Cell 45:357-370 https://doi.org/10.1016/j.molcel.2011.11.034
  28. Mok YG, Uzawa R, Lee J et al. (2010) Domain structure of the DEMETER 5-methylcytosine DNA glycosylase. Proc Natl Acad Sci USA 107:19225-19230 https://doi.org/10.1073/pnas.1014348107
  29. Moore T, Haig D (1991) Genomic imprinting in mammalian development: a parental tug-of-war. Trends Genet 7:45-49 https://doi.org/10.1016/0168-9525(91)90230-N
  30. Mosher RA, Melnyk CW, Kelly KA et al. (2009) Uniparental expression of PolIV-dependent siRNAs in developing endosperm of Arabidopsis. Nature 460:283-286 https://doi.org/10.1038/nature08084
  31. Nathan RR, Robert JK (2014) Understanding the relationship between DNA methylation and histone lysine methylation. Biochimica et Biophysica Acta 1839:1362-1372 https://doi.org/10.1016/j.bbagrm.2014.02.007
  32. Oakeley EJ, Podesta A, Jost JP (1997) Developmental changes in DNA methylation of the two tobacco pollen nuclei during maturation. Proc Natl Acad Sci USA 94:11721-11725 https://doi.org/10.1073/pnas.94.21.11721
  33. Ono A, Yamaguchi K, Fukada-Tanaka S et al. (2012) A null mutation of ROS1a for DNA demethylation in rice is not transmittable to progeny. Plant J 71:564-574 https://doi.org/10.1111/j.1365-313X.2012.05009.x
  34. Penterman J, Zilberman D, Huh JH et al. (2007) DNA demethylation in the Arabidopsis genome. Proc Natl Acad Sci USA 104: 6752-6757 https://doi.org/10.1073/pnas.0701861104
  35. Qian W, Miki D, Zhang H et al. (2012) A histone acetyltransferase regulates active DNA demethylation in Arabido psis. Science 336:1445-1448 https://doi.org/10.1126/science.1219416
  36. Saze H, Tsugane K, Kanno T et al (2012) DNA methylation in plants: relationship to small RNAs and histone modifications, and functions in transposon inactivation. Plant Cell Physiol 53:766-784 https://doi.org/10.1093/pcp/pcs008
  37. Schoft VK, Chumak N, Choi Y et al. (2011) Function of the DEMETER DNA glycosylase in the Arabidopsis thaliana male gametophyte. Proc Natl Acad Sci USA 108:8042-8047 https://doi.org/10.1073/pnas.1105117108
  38. Schoft VK, Chumak N, Mosiolek M et al. (2009) Induction of RNA-directed DNA methylation upon decondensation of constitutive heterochromatin. EMBO Rep 10:1015-1021 https://doi.org/10.1038/embor.2009.152
  39. Scott BR, Brian DS (2014) Interpreting the language of histone and DNA modifications Biochimica et Biophysica Acta 1839(8): 627-643 https://doi.org/10.1016/j.bbagrm.2014.03.001
  40. Slotkin RK, Vaughn M, Borges F et al. (2009) Epigenetic reprogramming and small RNA silencing of transposable elements in pollen. Cell 136:461-472 https://doi.org/10.1016/j.cell.2008.12.038
  41. Teixeira FK, Heredia F, Sarazin A et al. (2009) A role for RNAi in the selective correction of DNA methylation defects. Science 323:1600-1604 https://doi.org/10.1126/science.1165313
  42. Wohrmann HJ, Gagliardini V, Raissig MT et al. (2012) Identification of a DNA methylation-independent imprinting control region at the Arabidopsis MEDEA locus. Genes Dev 26:1837-1850 https://doi.org/10.1101/gad.195123.112
  43. Wu X, Johansen JV, Helin K (2013) Fbxl10/Kdm2b recruits polycomb repressive complex 1 to CpG islands and regulates H2A ubiquitylation. Mol Cell 49:1134-1146 https://doi.org/10.1016/j.molcel.2013.01.016
  44. Zhu JK (2009) Active DNA demethylation mediated by DNA glycosylases. Annu Rev Genet 43:143-166 https://doi.org/10.1146/annurev-genet-102108-134205