• 제목/요약/키워드: duo ring

검색결과 30건 처리시간 0.022초

STRUCTURES CONCERNING GROUP OF UNITS

  • Chung, Young Woo;Lee, Yang
    • 대한수학회지
    • /
    • 제54권1호
    • /
    • pp.177-191
    • /
    • 2017
  • In this note we consider the right unit-duo ring property on the powers of elements, and introduce the concept of weakly right unit-duo ring. We investigate first the properties of weakly right unit-duo rings which are useful to the study of related studies. We observe next various kinds of relations and examples of weakly right unit-duo rings which do roles in ring theory.

NILPOTENT-DUO PROPERTY ON POWERS

  • Kim, Dong Hwa
    • 대한수학회논문집
    • /
    • 제33권4호
    • /
    • pp.1103-1112
    • /
    • 2018
  • We study the structure of a generalization of right nilpotent-duo rings in relation with powers of elements. Such a ring property is said to be weakly right nilpotent-duo. We find connections between weakly right nilpotent-duo and weakly right duo rings, in several algebraic situations which have roles in ring theory. We also observe properties of weakly right nilpotent-duo rings in relation with their subrings and extensions.

WEAKLY DUO RINGS WITH NIL JACOBSON RADICAL

  • KIM HONG KEE;KIM NAM KYUN;LEE YANG
    • 대한수학회지
    • /
    • 제42권3호
    • /
    • pp.457-470
    • /
    • 2005
  • Yu showed that every right (left) primitive factor ring of weakly right (left) duo rings is a division ring. It is not difficult to show that each weakly right (left) duo ring is abelian and has the classical right (left) quotient ring. In this note we first provide a left duo ring (but not weakly right duo) in spite of it being left Noetherian and local. Thus we observe conditions under which weakly one-sided duo rings may be two-sided. We prove that a weakly one-sided duo ring R is weakly duo under each of the following conditions: (1) R is semilocal with nil Jacobson radical; (2) R is locally finite. Based on the preceding case (1) we study a kind of composition length of a right or left Artinian weakly duo ring R, obtaining that i(R) is finite and $\alpha^{i(R)}R\;=\;R\alpha^{i(R)\;=\;R\alpha^{i(R)}R\;for\;all\;\alpha\;{\in}\;R$, where i(R) is the index (of nilpotency) of R. Note that one-sided Artinian rings and locally finite rings are strongly $\pi-regular$. Thus we also observe connections between strongly $\pi-regular$ weakly right duo rings and related rings, constructing available examples.

ON A GENERALIZATION OF RIGHT DUO RINGS

  • Kim, Nam Kyun;Kwak, Tai Keun;Lee, Yang
    • 대한수학회보
    • /
    • 제53권3호
    • /
    • pp.925-942
    • /
    • 2016
  • We study the structure of rings whose principal right ideals contain a sort of two-sided ideals, introducing right ${\pi}$-duo as a generalization of (weakly) right duo rings. Abelian ${\pi}$-regular rings are ${\pi}$-duo, which is compared with the fact that Abelian regular rings are duo. For a right ${\pi}$-duo ring R, it is shown that every prime ideal of R is maximal if and only if R is a (strongly) ${\pi}$-regular ring with $J(R)=N_*(R)$. This result may be helpful to develop several well-known results related to pm rings (i.e., rings whose prime ideals are maximal). We also extend the right ${\pi}$-duo property to several kinds of ring which have roles in ring theory.

ON NILPOTENT-DUO RINGS

  • Piao, Zhelin
    • 충청수학회지
    • /
    • 제32권4호
    • /
    • pp.401-408
    • /
    • 2019
  • A ring R is called right (resp., left) nilpotent-duo if N(R)a ⊆ aN(R) (resp., aN(R) ⊆ N(R)a) for every a ∈ R, where N(R) is the set of all nilpotents in R. In this article we provide other proofs of known results and other computations for known examples in relation with right nilpotent-duo property. Furthermore we show that the left nilpotent-duo property does not go up to a kind of matrix ring.

ON STRONGLY RIGHT 𝜋-DUO RINGS

  • Cheon, Jeoung Soo;Nam, Sang Bok;Yun, Sang Jo
    • 충청수학회지
    • /
    • 제33권3호
    • /
    • pp.327-337
    • /
    • 2020
  • This article continues the study of right 𝜋-duo rings, concentrating on the situation of nonzero powers. For this purpose we introduce the concept of strongly right 𝜋-duo and examine the structure of strongly right 𝜋-duo in relation to various ring properties that play important roles in ring theory. It is proved for a strongly right 𝜋-duo ring R that if the upper (lower) nilradical of R is zero then R is reduced. Various kinds of examples are examined in relation to the questions raised in the procedure.

DUO RING PROPERTY RESTRICTED TO GROUPS OF UNITS

  • Han, Juncheol;Lee, Yang;Park, Sangwon
    • 대한수학회지
    • /
    • 제52권3호
    • /
    • pp.489-501
    • /
    • 2015
  • We study the structure of right duo ring property when it is restricted within the group of units, and introduce the concept of right unit-duo. This newly introduced property is first observed to be not left-right symmetric, and we examine several conditions to ensure the symmetry. Right unit-duo rings are next proved to be Abelian, by help of which the class of noncommutative right unit-duo rings of minimal order is completely determined up to isomorphism. We also investigate some properties of right unit-duo rings which are concerned with annihilating conditions.

Structures Related to Right Duo Factor Rings

  • Chen, Hongying;Lee, Yang;Piao, Zhelin
    • Kyungpook Mathematical Journal
    • /
    • 제61권1호
    • /
    • pp.11-21
    • /
    • 2021
  • We study the structure of rings whose factor rings modulo nonzero proper ideals are right duo; such rings are called right FD. We first see that this new ring property is not left-right symmetric. We prove for a non-prime right FD ring R that R is a subdirect product of subdirectly irreducible right FD rings; and that R/N∗(R) is a subdirect product of right duo domains, and R/J(R) is a subdirect product of division rings, where N∗(R) (J(R)) is the prime (Jacobson) radical of R. We study the relation among right FD rings, division rings, commutative rings, right duo rings and simple rings, in relation to matrix rings, polynomial rings and direct products. We prove that if a ring R is right FD and 0 ≠ e2 = e ∈ R then eRe is also right FD, examining that the class of right FD rings is not closed under subrings.

RINGS WITH A RIGHT DUO FACTOR RING BY AN IDEAL CONTAINED IN THE CENTER

  • Cheon, Jeoung Soo;Kwak, Tai Keun;Lee, Yang;Piao, Zhelin;Yun, Sang Jo
    • 대한수학회보
    • /
    • 제59권3호
    • /
    • pp.529-545
    • /
    • 2022
  • This article concerns a ring property that arises from combining one-sided duo factor rings and centers. A ring R is called right CIFD if R/I is right duo by some proper ideal I of R such that I is contained in the center of R. We first see that this property is seated between right duo and right π-duo, and not left-right symmetric. We prove, for a right CIFD ring R, that W(R) coincides with the set of all nilpotent elements of R; that R/P is a right duo domain for every minimal prime ideal P of R; that R/W(R) is strongly right bounded; and that every prime ideal of R is maximal if and only if R/W(R) is strongly regular, where W(R) is the Wedderburn radical of R. It is also proved that a ring R is commutative if and only if D3(R) is right CIFD, where D3(R) is the ring of 3 by 3 upper triangular matrices over R whose diagonals are equal. Furthermore, we show that the right CIFD property does not pass to polynomial rings, and that the polynomial ring over a ring R is right CIFD if and only if R/I is commutative by a proper ideal I of R contained in the center of R.

UNIT-DUO RINGS AND RELATED GRAPHS OF ZERO DIVISORS

  • Han, Juncheol;Lee, Yang;Park, Sangwon
    • 대한수학회보
    • /
    • 제53권6호
    • /
    • pp.1629-1643
    • /
    • 2016
  • Let R be a ring with identity, X be the set of all nonzero, nonunits of R and G be the group of all units of R. A ring R is called unit-duo ring if $[x]_{\ell}=[x]_r$ for all $x{\in}X$ where $[x]_{\ell}=\{ux{\mid}u{\in}G\}$ (resp. $[x]_r=\{xu{\mid}u{\in}G\}$) which are equivalence classes on X. It is shown that for a semisimple unit-duo ring R (for example, a strongly regular ring), there exist a finite number of equivalence classes on X if and only if R is artinian. By considering the zero divisor graph (denoted ${\tilde{\Gamma}}(R)$) determined by equivalence classes of zero divisors of a unit-duo ring R, it is shown that for a unit-duo ring R such that ${\tilde{\Gamma}}(R)$ is a finite graph, R is local if and only if diam(${\tilde{\Gamma}}(R)$) = 2.