Commun. Korean Math. Soc. **33** (2018), No. 4, pp. 1103–1112 https://doi.org/10.4134/CKMS.c170453 pISSN: 1225-1763 / eISSN: 2234-3024

NILPOTENT-DUO PROPERTY ON POWERS

Dong Hwa Kim

ABSTRACT. We study the structure of a generalization of right nilpotentduo rings in relation with powers of elements. Such a ring property is said to be *weakly right nilpotent-duo*. We find connections between weakly right nilpotent-duo and weakly right duo rings, in several algebraic situations which have roles in ring theory. We also observe properties of weakly right nilpotent-duo rings in relation with their subrings and extensions.

Throughout this paper all rings are associative with identity unless otherwise specified. Let R be a ring. We use N(R) and U(R) to denote the set of all nilpotent elements, and the group of all units in R, respectively. A nilpotent element is also called a nilpotent for simplicity. Denote the n by n full (resp., upper triangular) matrix ring over R by $Mat_n(R)$ (resp., $T_n(R)$). Write $D_n(R) = \{(a_{ij}) \in T_n(R) \mid a_{11} = \cdots = a_{nn}\}$ and use E_{ij} for the matrix with (i, j)-entry 1 and elsewhere 0. R[x] denotes the polynomial ring with an indeterminate x over R. $\mathbb{Z}(\mathbb{Z}_n)$ denotes the ring of integers (modulo n).

1. Weakly right nilpotent-duo rings

In this section we study the basic properties of weakly right nilpotent-duo ring. Due to Feller [6], a ring is called *right* (resp. *left*) duo if every right (resp. *left*) ideal is an ideal; and a ring is called *duo* if it is both right and left duo. One may find many useful results for right duo rings in [3,6,15,17]. Due to Bell [2], a ring R is called *IFP* if ab = 0 for $a, b \in R$ implies aRb = 0. It is easily shown that right (or left) duo rings are IFP. A ring is usually called *Abelian* if every idempotent is central. IFP rings are easily shown to be Abelian.

Following Hong et al. [8], a ring R (possibly without identity) is called *right* (resp., *left*) *nilpotent-duo* if $N(R)a \subseteq aN(R)$ (resp., $aN(R) \subseteq N(R)a$) for every $a \in R$; and a ring is called *nilpotent-duo* if it is both left and right nilpotent-duo. One-sided nilpotent-duo rings are Abelian by [8, Lemma 1.6(1)]. The concepts of right nilpotent-duo and IFP are independent of each other by the arguments in [8].

©2018 Korean Mathematical Society

Received November 13, 2017; Accepted February 1, 2018.

²⁰¹⁰ Mathematics Subject Classification. 16N40, 16U80.

Key words and phrases. weakly right nilpotent-duo ring, nilpotent, weakly right duo ring, right nilpotent-duo ring, Abelian ring.

D. H. KIM

A reduced ring R is right duo if and only if $D_2(R)$ is right nilpotent-duo by [8, Proposition 1.2]. However, by [8, Example 1.7], the nilpotent-duo property of $D_n(R)$ is not valid for the case of $n \ge 3$, where R is a reduced ring. But we obtain an affirmative situation when this argument is related to powers.

Example 1.1. Let A be a division ring and $R = D_n(A)$ for $n \ge 3$. Then R is neither right nor left nilpotent-duo by [8, Example 1.7]. Note $U(R) = \{(a_{ij}) \in$ $R \mid a_{ii} \neq 0$ and $N(R) = \{(a_{ij}) \in R \mid a_{ii} = 0\} = N_*(R) = N^*(R)$. Then $R = U(R) \cup N(R)$. Let $0 \neq M \in R$ and $N \in N(R)$.

Suppose $M \in U(R)$. Then $M^k \in U(R)$ for all $k \ge 1$ and so $NM^k =$ $M^k M^{-k} N M^k$, noting that $M^{-k} N M^k \in N(R)$. Suppose $M \in N(R)$. Then $M^n = 0$, and $NM^n = 0 = M^n N$ follows. Therefore $N(R)M^n \subseteq M^n N(R)$.

Based on this example, we introduce the following.

Definition 1.2. A ring R is said to be *weakly right nilpotent-duo* if for every $a \in R$ there exists $n = n(a) \geq 1$ such that $N(R)a^n \subseteq a^n N(R)$. A weakly left nilpotent-duo ring is defined similarly. A ring is called *weakly nilpotent-duo* if it is both weakly left and weakly right nilpotent-duo.

Right (resp., left) nilpotent-duo rings are clearly weakly right (resp., left) nilpotent duo. But the converse need not hold by the ring R in Example 1.1.

The following contains basic facts about weakly right nilpotent-duo rings.

Lemma 1.3. (1) Weakly right (left) nilpotent-duo rings are Abelian.

(2) Let R be a weakly right (left) nilpotent-duo ring. Then R/I is Abelian for every nil ideal I of R.

Proof. (1) The proof is almost similar to one of [8, Lemma 6.1(1)]. But we write it here for completeness. Let R be a weakly right nilpotent-duo ring and assume on the contrary that there exist $r, e^2 = e \in R$ with $er(1-e) \neq 0$. Then $er(1-e) \in N(R)$. Set a = 1-e and b = er(1-e). Since R is weakly right nilpotent-duo, $ba^n = a^n c$ for some $n \ge 1$ and $c \in N(R)$. But

 $er(1-e) = (er(1-e))(1-e) = (er(1-e))(1-e)^n = ba^n = a^n c = (1-e)c$ and

ſ

$$0 \neq er(1-e) = e[er(1-e)] = e[a^n c] = e[(1-e)c] = 0,$$

a contradiction. Thus R is Abelian. The proof of the left case is similar.

(2) is proved by [14, Proposition 3.6.1] and (1).

By Lemma 1.3(2), every factor R/N is Ableian for any nilradical N of a weakly right nilpotent-duo ring R.

Following Yao [18], a ring R is called *weakly right duo* if for each $a \in R$ there exists $n = n(a) \ge 1$ such that $a^n R$ is a two-sided ideal of R, i.e., $Ra^n \subseteq a^n R$. Weakly left duo rings are defined similarly. A ring is called weakly duo if it is both weakly left and weakly right duo. Weakly right duo rings are Abelian by [18, Lemma 4]. Right duo rings are clearly weakly right duo, but the converse

need not hold by the next argument. Let R be the ring in Example 1.1. Then each element of R is either a unit or a nilpotent, so R is easily shown to be weakly duo. But R is neither right nor left duo as can be seen by

$$RE_{23} = AE_{13} + AE_{23} \nsubseteq E_{23}R = AE_{23} + AE_{24} + \dots + AE_{2n}$$

and

$$E_{12}R = AE_{12} + AE_{13} + \dots + AE_{1n} \nsubseteq RE_{12} = AE_{12}.$$

In the following we see a connection, between weakly right duo rings and weakly right nilpotent-duo rings, that is similar to [8, Proposition 1.2].

Proposition 1.4. Let R be a reduced ring. Then R is weakly right (resp., left) duo if and only if $D_2(R)$ is weakly right (resp., left) nilpotent-duo.

Proof. Let $E = D_2(R)$. Since R is reduced, we have $N(E) = \begin{pmatrix} 0 & R \\ 0 & 0 \end{pmatrix}$. We apply the proof of [8, Proposition 1.2]. Suppose that R is weakly right duo, and consider $0 \neq A = \begin{pmatrix} a & c \\ 0 & a \end{pmatrix} \in E$ and $0 \neq B = \begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix} \in N(E)$.

Since R is weakly right duo, $Ra^k \subseteq a^k R$ for some $k \ge 1$. So $ba^k = a^k b_1$ for some $b_1 \in R$. Let $B_1 = \begin{pmatrix} 0 & b_1 \\ 0 & 0 \end{pmatrix}$. Then $B_1 \in N(E)$ and

$$BA^{k} = \begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix} \begin{pmatrix} a^{k} & c_{1} \\ 0 & a^{k} \end{pmatrix}$$
$$= \begin{pmatrix} 0 & ba^{k} \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & a^{k}b_{1} \\ 0 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} a^{k} & c_{1} \\ 0 & a^{k} \end{pmatrix} \begin{pmatrix} 0 & b_{1} \\ 0 & 0 \end{pmatrix}$$
$$= A^{k}B_{1},$$

where $A^k = \begin{pmatrix} a^k & c_1 \\ 0 & a^k \end{pmatrix}$. So E is weakly right nilpotent-duo. Conversely let E be weakly right nilpotent-duo, and consider $c, d \in R$. Let $C = \begin{pmatrix} c & 0 \\ 0 & c \end{pmatrix}$ and $D = \begin{pmatrix} 0 & d \\ 0 & 0 \end{pmatrix}$. Then $D \in N(E)$. Since E is weakly right nilpotent-duo, there exists $h \ge 1$ such that $N(E)C^h \subseteq C^h N(E)$. So $DC^h = C^h D_1$ for some $D_1 \in N(E)$. Since $N(E) = \begin{pmatrix} 0 & R \\ 0 & 0 \end{pmatrix}$, $D_1 = \begin{pmatrix} 0 & d_1 \\ 0 & 0 \end{pmatrix}$ for some $d_1 \in R$. Then, from

$$\begin{pmatrix} 0 & dc^h \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & d \\ 0 & 0 \end{pmatrix} \begin{pmatrix} c^h & 0 \\ 0 & c^h \end{pmatrix} = DC^h = C^h D_1$$
$$= \begin{pmatrix} c^h & 0 \\ 0 & c^h \end{pmatrix} \begin{pmatrix} 0 & d_1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & c^h d_1 \\ 0 & 0 \end{pmatrix},$$

we obtain $Rc^h \subseteq c^h R$. Thus R is weakly right duo. The proof of the left case is similar.

The concepts of weakly right nilpotent-duo and IFP are independent of each other as we see in the following.

Example 1.5. Consider $D_n(R)$ over a division ring R for $n \ge 4$. Then $D_n(R)$ is weakly nilpotent-duo by the argument in Example 1.1. However $D_n(R)$ in not IFP by [13, Example 1.3].

Consider next the converse argument. Let $R = K\langle x, y \rangle$ be the free algebra with noncommuting indeterminates x, y over a field K. Note that $xy^n \notin y^n R$ for any $n \geq 1$, so R is not weakly right duo. It then follows that $D_2(R)$ is not weakly right nilpotent-duo by Proposition 1.4. But $D_2(R)$ is IFP by [13, Proposition 1.2].

The following shows that the weak nilpotent-duo property is not left-right symmetric.

Example 1.6. We follow the construction in [12, Example 1] which states that there exists a left duo ring but not weakly right duo. Let S = F(t) be the quotient field of the polynomial ring F[t] with an indeterminate t over a field F, and consider the field monomorphism $\sigma : S \to S$ defined by $\sigma\left(\frac{f(t)}{g(t)}\right) = \frac{f(t^2)}{g(t^2)}$. Next set $R = S[[x;\sigma]]$ be the skew power series ring in which every element is of the form $\sum_{i=0}^{\infty} a_i x^i$, only subject to $xa = \sigma(a)x$ for all $a \in S$. Then R is left duo but not weakly right duo by the argument in [12, Example 1]. This implies that $E = D_2(R)$ is (weakly) left nilpotent-duo by [8, Proposition 1.2] but not weakly right nilpotent-duo by Proposition 1.4.

In the following we examine the property that $D_2(R)$ is not weakly left nilpotent-duo, via a direct computation. Note first that

 $U(E) = \left\{ \left(\begin{smallmatrix} f(x) & r(x) \\ 0 & f(x) \end{smallmatrix} \right) \in E \mid \text{the constant term of } f(x) \text{ is nonzero and } r(x) \in R \right\}$ and

$$N(E) = \left\{ \begin{pmatrix} 0 & s(x) \\ 0 & 0 \end{pmatrix} \in E \mid s(x) \in R \right\}.$$

Let $A = \begin{pmatrix} f(x) & f_1(x) \\ 0 & f(x) \end{pmatrix}$ with $f_1(x) \in R$ and $B = \begin{pmatrix} 0 & g(x) \\ 0 & 0 \end{pmatrix}$. If f(x) = 0, then $A^2 = 0$ and $BA^2 = 0 = A^2B$ follows. So we assume $f(x) \neq 0$. We can write $f(x) = a_0x^k + a_1x^{k+1} + \cdots \in R$ with $a_0 \neq 0$ and $k \ge 0$. Write $h(x) = \sum_{i=0}^{\infty} a_i x^i$. Then $f(x) = h(x)x^k$ and $h(x) \in U(R)$. Let $s \ge 1$ be any. For f(x) we have

$$f(x)^{s} = [a_{0}\sigma^{k}(a_{0})\sigma^{2k}(a_{0})\cdots\sigma^{(s-1)k}(a_{0})]x^{sk} + h_{1}(x)$$
$$= [a_{0}\sigma^{k}(a_{0})\sigma^{2k}(a_{0})\cdots\sigma^{(s-1)k}(a_{0}) + h_{2}(x)]x^{sk}$$

for some $h_1(x), h_2(x) \in R$. Let $v(x) = a_0 \sigma^k(a_0) \sigma^{2k}(a_0) \cdots \sigma^{(s-1)k}(a_0) + h_2(x)$, i.e., $f(x) = v(x)x^{sk}$. Then $v(x) \in U(R)$ because $a_0 \sigma^k(a_0) \sigma^{2k}(a_0) \cdots \sigma^{(s-1)k}(a_0)$ is nonzero. So the argument in [4, Lemma 1.3(3)] is applicable to this case. Let $g(x) = t^{2l+1} + \sum_{j=1}^{\infty} b_j x^j \in R$ with $l \ge 0$. Then there cannot exist

Let $g(x) = t^{2l+1} + \sum_{j=1}^{\infty} b_j x^j \in R$ with $l \ge 0$. Then there cannot exist $k(x) \in R$ such that $g(x)f(x)^s = f(x)^s k(x)$ for any $s \ge 1$. This implies that there cannot exist $C = \begin{pmatrix} 0 & k(x) \\ 0 & 0 \end{pmatrix} \in E$ such that

$$\begin{pmatrix} 0 & g(x)f(x)^s \\ 0 & 0 \end{pmatrix} = BA^s = A^sC = \begin{pmatrix} 0 & f(x)^sk(x) \\ 0 & 0 \end{pmatrix}.$$

(2) In the construction of (1), let $R = S[[x; \sigma]]$ be the skew power series ring, with the same S and σ , in which every element is of the form $\sum_{i=0}^{\infty} x^i a_i$, only subject to $ax = x\sigma(a)$ for $a \in S$. Then $D_2(R)$ can be shown to be (weakly) right nilpotent-duo but not weakly left nilpotent-duo, through a similar computation to the one of (1).

We observe a condition under which the weakly nilpotent-duo property can be left-right symmetric. Recall that an involution on a ring R is a function $*: R \to R$ which satisfies the properties that $(x+y)^* = x^* + y^*$, $(xy)^* = y^*x^*$, $1^* = 1$, and $(x^*)^* = x$ for all $x, y \in R$. Note that $(x^k)^* = (x^*)^k$ for $k \ge 1$ and $0^* = 0$, and hence $x \in N(R)$ implies $x^* \in N(R)$.

Proposition 1.7. (1) Let R be a ring with an involution *. Then R is weakly left nilpotent-duo if and only if R is weakly right nilpotent-duo.

(2) Let K be a commutative ring and G be a group. Then the group ring KG is weakly one-sided nilpotent-duo if and only if KG is nilpotent-duo.

Proof. We extend the proof of [8, Proposition 2.1] to this case.

(1) Suppose that R is weakly left nilpotent-duo. Let $a \in N(R)$ and $b \in R$. Then $(b^*)^k N(R) \subseteq N(R)(b^*)^k$ for some $k \ge 1$. Note $a^* \in N(R)$. So $(b^*)^k a^* = c(b^*)^k$ for some $c \in N(R)$, entailing $(b^k)^* a^* = c(b^k)^*$. This yields

$$ab^{k} = ((ab^{k})^{*})^{*} = ((b^{k})^{*}a^{*})^{*} = (c(b^{k})^{*})^{*} = b^{k}c^{*},$$

noting $c^* \in N(R)$. Therefore R is weakly right nilpotent-duo. The proof of the converse is analogous.

(2) Consider the standard involution * on KG, defined by $(\sum a_i g_i)^* = \sum a_i g_i^{-1}$ for all $a_i \in R$ and $g_i \in G$. Then KG is weakly left nilpotent-duo if and only if KG is weakly right nilpotent-duo if and only if KG is weakly nilpotent-duo by (1).

Let K be a commutative ring and G be a group. If G is Abelian, then the group ring KG is commutative, and hence is both duo and nilpotent-duo by Proposition 1.7. We argue about a case of non-Abelian of G in the following.

Proposition 1.8. Let K be a field of characteristic zero and R be the group ring KQ_8 , where Q_8 is the quaternion group. Then the following conditions are equivalent:

- (1) R is reduced;
- (2) R is nilpotent-duo;
- (3) R is right (left) nilpotent-duo;
- (4) R is weakly right (left) nilpotent-duo;
- (5) R is Abelian;
- (6) R is right (left) duo.

Proof. The proof is done by help of the proof of [8, Proposition 2.2] and the fact that weakly one-sided nilpotent-duo rings are Abelian by Lemma 1.3(1). \Box

D. H. KIM

2. More properties of weakly right nilpotent-duo rings

In this section, we observe properties of weakly right nilpotent-duo rings in relation with subrings and extensions. We first show that the class of weakly right nilpotent-duo rings is not closed under subrings and homomorphic images.

Example 2.1. (1) The class of weakly right nilpotent-duo rings is not closed under subrings. We take the ring S = F(t) with the monomorphism σ that is constructed in Example 1.6(1). We apply the argument in [8, Example 1.11]. Consider the skew polynomial ring $R_0 = S[x;\sigma]$ in which every element is of the form $\sum_{i=0}^{n} a_i x^i$, only subject to $xa = \sigma(a)x$ for all $a \in S$. Then R_0 is a principal left ideal domain by the left-handed version of [16, Theorem 1.2.9(i, ii)]. So R_0 is a left Noetherian domain and hence R_0 has a left quotient division ring by [16, Theorem 2.1.14], $Q(R_0)$ say.

 $D_2(Q(R_0))$ is weakly nilpotent-duo by Proposition 1.4. For our purpose, consider $R = D_2(R_0)$ that is a subring of $D_2(Q(R_0))$. Clearly $N(R) = \begin{pmatrix} 0 & R_0 \\ 0 & 0 \end{pmatrix}$. Let $A = \begin{pmatrix} x & 0 \\ 0 & x \end{pmatrix} \in R$ and $B = \begin{pmatrix} 0 & t+x \\ 0 & 0 \end{pmatrix} \in N(R)$. Let $n \ge 1$ be arbitrary and consider next

$$A^{n} = \begin{pmatrix} x & 0 \\ 0 & x \end{pmatrix}^{n} = \begin{pmatrix} x^{n} & 0 \\ 0 & x^{n} \end{pmatrix}.$$

Then $BA^n = \begin{pmatrix} 0 & tx^n + x^{n+1} \\ 0 & 0 \end{pmatrix}$. Assume on the contrary that there exists $C \in N(R)$ such that $BA^n = A^nC$. $C = \begin{pmatrix} 0 & c(x) \\ 0 & 0 \end{pmatrix}$ for some $c(x) \in R_0$, and so $A^nC = \begin{pmatrix} 0 & x^nc(x) \\ 0 & 0 \end{pmatrix}$, entailing $tx^n + x^{n+1} = x^nc(x)$. But since R_0 is a domain, $c(x) = a_0 + a_1x$ for some nonzero $a_0, a_1 \in S$. This yields

$$tx^{n} + x^{n+1} = x^{n}(a_{0} + a_{1}x) = \sigma^{n}(a_{0})x^{n} + \sigma^{n}(a_{1})x^{n+1},$$

entailing $t = \sigma^n(a_0)$. But this equality is impossible because $\sigma^n(a_0)$ is of the form $\frac{f(t^{2n})}{q(t^{2n})}$ (hence $t \neq \sigma^n(a_0)$). Therefore R is not weakly right nilpotent-duo.

(2) The class of weakly right nilpotent-duo rings is not closed under homomorphic images. Let R be the ring of quaternions with integer coefficients. Then R is a domain and so (weakly) nilpotent-duo. However for any odd prime integer q, the factor ring R/qR is isomorphic to $Mat_2(\mathbb{Z}_q)$ by the argument in [7, Exercise 2A]. But $Mat_2(\mathbb{Z}_q)$ is not Abelian, and thus R/qR is not weakly right nilpotent-duo by Lemma 1.3(1).

To see another example, we follow the construction of Antoine [1, Example 4.8]. Let K be a field and $A = K\langle x, y \rangle$ be the free algebra with noncommuting indeterminates x, y over F; and consider the factor ring R = A/I with I the ideal of A generated by x^2 . Then A is a domain and so nilpotent-duo. But R is neither left nor right nilpotent-duo as can be seen by $xy^n \notin y^n N(R)$ and $y^n x \notin N(R)y^n$ for all $n \ge 1$, noting $x \in N(R)$. Assume $xy^n = y^n r$ for some $r \in N(R)$. Then $0 = xxy^n = xy^n r \neq 0$ because $xy^n = y^n r \neq 0$, a contradiction.

We consider next a kind of weakly right nilpotent-duo ring whose subrings inherit the weakly right nilpotent-duo property. Let A be an algebra over a

commutative ring S. Due to Dorroh [5], the Dorroh extension of A by S is the Abelian group $A \oplus S$ with multiplication given by

$$(r_1, s_1)(r_2, s_2) = (r_1r_2 + s_1r_2 + s_2r_1, s_1s_2)$$

for $r_i \in A$ and $s_i \in S$. We use $A \times_D S$ for the Dorroh extension of A by S. Here A is clearly a subring of $A \times_D S$.

Proposition 2.2. Let R be a unitary algebra over a commutative reduced ring S. Then R is weakly right nilpotent-duo if and only if the Dorroh extension $R \times_D S$ is weakly right nilpotent-duo.

Proof. Note that every $s \in S$ is identified with $s1 \in R$ and so we have $R = \{r + s \mid (r, s) \in D\}$. N(D) = (N(R), 0) because S is a commutative reduced ring. Let $D = R \times_D S$.

We apply the proof of [8, Proposition 1.13]. Suppose that R is weakly right nilpotent-duo. Let $(r,s) \in D$ and $(n,0) \in N(D)$. Then there exists $k \geq 1$ such that $N(R)(r+s)^k \subseteq (r+s)^k N(R)$. So $n(r+s)^k = (r+s)^k n'$ for some $n' \in N(R)$. From this, we obtain

$$\begin{aligned} &(n,0)(r,s)^k = (n,0)((r+s)^k - s^k, s^k) \\ &= (n(r+s)^k - ns^k + ns^k, 0) = (n(r+s)^k, 0) \\ &= ((r+s)^k n', 0) = ((r+s)^k n' - s^k n' + s^k n', 0) \\ &= ((r+s)^k - s^k, s^k)(n', 0) = (r,s)^k (n', 0). \end{aligned}$$

Since $(n', 0) \in N(D)$, D is weakly right nilpotent-duo.

Conversely, suppose that D is weakly right nilpotent-duo. Let $a \in R$ and $n \in N(R)$. Then $N(D)(a,0)^h \subseteq (a,0)^h N(D)$ for some $h \ge 1$. Since $(n,0) \in N(D)$, there exists $(n'',0) \in N(D)$ such that $(n,0)(a,0)^h = (a,0)^h (n'',0)$. This yields

$$(na^{h}, 0) = (n, 0)(a^{h}, 0) = (n, 0)(a, 0)^{h} = (a, 0)^{h}(n'', 0)$$
$$= (a^{h}, 0)(n'', 0) = (a^{h}n'', 0),$$

entailing $na^h = a^h n''$. But $(n'', 0) \in N(D)$ implies $n'' \in N(R)$. Therefore R is weakly right nilpotent-duo.

Following [11], a ring is called *locally finite* if every finite subset generates a finite multiplicative semigroup. A ring is locally finite if and only if every subring generated by a finite subset is finite by [10, Theorem 2.2(1)]. Finite rings are clearly locally finite, and there exist locally finite rings but not finite by the existence of algebraic closures of finite fields.

Proposition 2.3. (1) Every locally finite Abelian ring is weakly right nilpotentduo.

(2) Let R be a locally finite Abelian ring and I be a proper ideal of R. If I is nil, then R/I is weakly right nilpotent-duo.

(3) Let R be a reduced locally finite ring. Then $D_2(R)$ is weakly right nilpotent-duo.

Proof. (1) Let R be a locally finite Abelian ring. Let $a \in R$ and $b \in N(R)$. By the proof of [11, Proposition 16], there exists $n \ge 1$ such that $a^n \in I(R)$. Since R is Abelian, $ba^n = a^n b$. So R is weakly right nilpotent-duo.

(2) R is weakly right nilpotent-duo by (1). Suppose that I is nil. Then R/I is Abelian by Lemma 1.3. R/I is also locally finite, and so R/I is weakly right nilpotent-duo by (1).

(3) Applying the proof of (1), R is weakly right duo. So $D_2(R)$ is weakly right nilpotent-duo by Proposition 1.4.

In the following we see that the weakly right nilpotent-duo property does not pass to polynomial rings.

Proposition 2.4. (1) Let R be a ring with $N(R) \neq 0$. Suppose that R[x] is weakly right nilpotent-duo. Then for every $a \in R$, there exists $k \geq 1$ such that $ba^k = a^k b$ for all $b \in N(R)$. Especially, R is weakly right nilpotent-duo.

(2) There exists a weakly right nilpotent-duo ring over which the polynomial ring is not weakly right nilpotent-duo.

(3) There exists a noncommutative division ring over which the polynomial ring is not weakly right duo.

Proof. We extend the method in the proof of [8, Theorem 2.9] to the case of power. (1) Suppose that R[x] is weakly right nilpotent-duo. Let $a \in R$ and $b \in N(R)$. Then there exists $k \ge 1$ such that $N(R[x])(a+x)^k \subseteq (a+x)^k N(R[x])$. So $b(a+x)^k = (a+x)^k g(x)$ for some $g(x) = \sum_{i=0}^m b_i x^i \in N(R[x])$. Comparing the degrees of both sides of the equality

$$b(a+x)^k = ba^k + \dots + bx^k = (a+x)^k (\sum_{i=0}^m b_i x^i) = a^k b_0 + \dots + b_m x^{k+m},$$

we obtain m = 0, i.e., $g(x) = b_0$. This yields $b = b_0$. Thus $ba^k = a^k b_0 = a^k b$. This implies that R is weakly right nilpotent-duo.

(2) Let S be the ring $Q(R_0)$ in Example 2.1. Then S is a noncommutative division ring in which $tx^k \neq t^{2k}x^k = x^k t$ for all $k \geq 1$. Consider next $R = D_2(S)$. Then R is weakly right nilpotent-duo by Proposition 1.4. Consider two matrices

$$A = \begin{pmatrix} x & 0 \\ 0 & x \end{pmatrix} \in R \text{ and } B = \begin{pmatrix} 0 & t \\ 0 & 0 \end{pmatrix} \in N(R).$$

Then we obtain

$$A^{k}B = \begin{pmatrix} 0 & x^{k}t \\ 0 & 0 \end{pmatrix} \neq \begin{pmatrix} 0 & tx^{k} \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & t \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x^{k} & 0 \\ 0 & x^{k} \end{pmatrix} = BA^{k}$$

for all $k \ge 1$. So R[x] is not weakly right nilpotent-duo by (1).

(3) Let S be the noncommutative division ring in the proof of (2). Then $D_2(S)[x]$ is not weakly right nilpotent-duo by the proof of (2). It is well-known that $D_2(S[x])$ is isomorphic to $D_2(S)[x]$ via

$$\begin{pmatrix} \sum_{i=0}^m a_i x^i & \sum_{i=0}^m b_i x^i \\ 0 & \sum_{i=0}^m a_i x^i \end{pmatrix} \mapsto \sum_{i=0}^m \begin{pmatrix} a_i & b_i \\ 0 & a_i \end{pmatrix} x^i,$$

noting that any given two polynomials can be assumed to have the same number of terms by using zero coefficients if necessary. S[x] is clearly a reduced ring, so S[x] is not weakly right duo by Proposition 1.4 because $D_2(S[x]) \cong D_2(S)[x])$ is not weakly right nilpotent-duo.

Next we observe a kind of factor ring of polynomial rings to which the weakly right nilpotent-duo property is able to pass. Recall the subring $V_n(R) = \{(m_{ij}) \in D_n(R) \mid m_{st} = m_{(s+1)(t+1)} \text{ for } s = 1, \ldots, n-2 \text{ and } t = 2, \ldots, n-1\}$ of $D_n(R)$ for given a ring R and $n \geq 2$.

Proposition 2.5. Let R be a locally finite Abelian ring. Then $R[x]/x^n R[x]$ is weakly right nilpotent-duo for every $n \ge 2$.

Proof. Since R is Abelian, $D_n(R)$ is also Abelian by [9, Lemma 2]. It is wellknown that $R[x]/x^n R[x]$ is isomorphic to $V_n(R)$. But $V_n(R)$ is a subring of $D_n(R)$, so $V_n(R)$ is Abelian. Thus $R[x]/x^n R[x]$ is Abelian. Moreover since R is locally finite, $R[x]/x^n R[x]$ is clearly locally finite, entailing that $R[x]/x^n R[x]$ is a locally finite Abelian ring. Therefore $R[x]/x^n R[x]$ is weakly right nilpotentduo by Proposition 2.3(1).

References

- R. Antoine, Nilpotent elements and Armendariz rings, J. Algebra 319 (2008), no. 8, 3128–3140.
- [2] H. E. Bell, Near-rings in which each element is a power of itself, Bull. Austral. Math. Soc. 2 (1970), 363–368.
- [3] H. H. Brungs, Three questions on duo rings, Pacific J. Math. 58 (1975), no. 2, 345–349.
- [4] Y. W. Chung and Y. Lee, Structures concerning group of units, J. Korean Math. Soc. 54 (2017), no. 1, 177–191.
- [5] J. L. Dorroh, Concerning adjunctions to algebras, Bull. Amer. Math. Soc. 38 (1932), no. 2, 85–88.
- [6] E. H. Feller, Properties of primary noncommutative rings, Trans. Amer. Math. Soc. 89 (1958), 79–91.
- [7] K. R. Goodearl and R. B. Warfield, Jr., An Introduction to Noncommutative Noetherian Rings, London Mathematical Society Student Texts, 16, Cambridge University Press, Cambridge, 1989.
- [8] C. Y. Hong, H. K. Kim, N. K. Kim, T. K. Kwak, and Y. Lee, *One-sided duo property* on nilpotents, (submitted).
- [9] C. Huh, H. K. Kim, and Y. Lee, p.p. rings and generalized p.p. rings, J. Pure Appl. Algebra 167 (2002), no. 1, 37–52.
- [10] C. Huh, N. K. Kim, and Y. Lee, Examples of strongly π-regular rings, J. Pure Appl. Algebra 189 (2004), no. 1-3, 195–210.
- [11] C. Huh, Y. Lee, and A. Smoktunowicz, Armendariz rings and semicommutative rings, Comm. Algebra 30 (2002), no. 2, 751–761.

D. H. KIM

- [12] H. K. Kim, N. K. Kim, and Y. Lee, Weakly duo rings with nil Jacobson radical, J. Korean Math. Soc. 42 (2005), no. 3, 457–470.
- [13] N. K. Kim and Y. Lee, Extensions of reversible rings, J. Pure Appl. Algebra 185 (2003), no. 1-3, 207–223.
- [14] J. Lambek, Lectures on Rings and Modules, With an appendix by Ian G. Connell, Blaisdell Publishing Co. Ginn and Co., Waltham, MA, 1966.
- [15] G. Marks, Reversible and symmetric rings, J. Pure Appl. Algebra 174 (2002), no. 3, 311–318.
- [16] J. C. McConnell and J. C. Robson, Noncommutative Noetherian Rings, Pure and Applied Mathematics (New York), John Wiley & Sons, Ltd., Chichester, 1987.
- $[17]\,$ G. Thierrin, On duo rings, Canad. Math. Bull. 3 (1960), 167–172.
- [18] X. Yao, Weakly right duo rings, Pure Appl. Math. Sci. 21 (1985), no. 1-2, 19–24.

Dong Hwa Kim Department of Mathematics Education Pusan National University Busan 46241, Korea Email address: dhgim@pusan.ac.kr