DOI QR코드

DOI QR Code

NILPOTENT-DUO PROPERTY ON POWERS

  • Kim, Dong Hwa (Department of Mathematics Education Pusan National University)
  • Received : 2017.11.13
  • Accepted : 2018.02.01
  • Published : 2018.10.31

Abstract

We study the structure of a generalization of right nilpotent-duo rings in relation with powers of elements. Such a ring property is said to be weakly right nilpotent-duo. We find connections between weakly right nilpotent-duo and weakly right duo rings, in several algebraic situations which have roles in ring theory. We also observe properties of weakly right nilpotent-duo rings in relation with their subrings and extensions.

Keywords

References

  1. R. Antoine, Nilpotent elements and Armendariz rings, J. Algebra 319 (2008), no. 8, 3128-3140. https://doi.org/10.1016/j.jalgebra.2008.01.019
  2. H. E. Bell, Near-rings in which each element is a power of itself, Bull. Austral. Math. Soc. 2 (1970), 363-368. https://doi.org/10.1017/S0004972700042052
  3. H. H. Brungs, Three questions on duo rings, Pacific J. Math. 58 (1975), no. 2, 345-349. https://doi.org/10.2140/pjm.1975.58.345
  4. Y. W. Chung and Y. Lee, Structures concerning group of units, J. Korean Math. Soc. 54 (2017), no. 1, 177-191. https://doi.org/10.4134/JKMS.j150666
  5. J. L. Dorroh, Concerning adjunctions to algebras, Bull. Amer. Math. Soc. 38 (1932), no. 2, 85-88. https://doi.org/10.1090/S0002-9904-1932-05333-2
  6. E. H. Feller, Properties of primary noncommutative rings, Trans. Amer. Math. Soc. 89 (1958), 79-91. https://doi.org/10.1090/S0002-9947-1958-0098763-0
  7. K. R. Goodearl and R. B. War eld, Jr., An Introduction to Noncommutative Noetherian Rings, London Mathematical Society Student Texts, 16, Cambridge University Press, Cambridge, 1989.
  8. C. Y. Hong, H. K. Kim, N. K. Kim, T. K. Kwak, and Y. Lee, One-sided duo property on nilpotents, (submitted).
  9. C. Huh, H. K. Kim, and Y. Lee, p.p. rings and generalized p.p. rings, J. Pure Appl. Algebra 167 (2002), no. 1, 37-52. https://doi.org/10.1016/S0022-4049(01)00149-9
  10. C. Huh, N. K. Kim, and Y. Lee, Examples of strongly $\pi$-regular rings, J. Pure Appl. Algebra 189 (2004), no. 1-3, 195-210. https://doi.org/10.1016/j.jpaa.2003.10.032
  11. C. Huh, Y. Lee, and A. Smoktunowicz, Armendariz rings and semicommutative rings, Comm. Algebra 30 (2002), no. 2, 751-761. https://doi.org/10.1081/AGB-120013179
  12. H. K. Kim, N. K. Kim, and Y. Lee, Weakly duo rings with nil Jacobson radical, J. Korean Math. Soc. 42 (2005), no. 3, 457-470. https://doi.org/10.4134/JKMS.2005.42.3.457
  13. N. K. Kim and Y. Lee, Extensions of reversible rings, J. Pure Appl. Algebra 185 (2003), no. 1-3, 207-223. https://doi.org/10.1016/S0022-4049(03)00109-9
  14. J. Lambek, Lectures on Rings and Modules, With an appendix by Ian G. Connell, Blaisdell Publishing Co. Ginn and Co., Waltham, MA, 1966.
  15. G. Marks, Reversible and symmetric rings, J. Pure Appl. Algebra 174 (2002), no. 3, 311-318. https://doi.org/10.1016/S0022-4049(02)00070-1
  16. J. C. McConnell and J. C. Robson, Noncommutative Noetherian Rings, Pure and Applied Mathematics (New York), John Wiley & Sons, Ltd., Chichester, 1987.
  17. G. Thierrin, On duo rings, Canad. Math. Bull. 3 (1960), 167-172. https://doi.org/10.4153/CMB-1960-021-7
  18. X. Yao, Weakly right duo rings, Pure Appl. Math. Sci. 21 (1985), no. 1-2, 19-24.