DOI QR코드

DOI QR Code

DUO RING PROPERTY RESTRICTED TO GROUPS OF UNITS

  • Han, Juncheol (Department of Mathematics Education Pusan National University) ;
  • Lee, Yang (Department of Mathematics Education Pusan National University) ;
  • Park, Sangwon (Department of Mathematics Dong-A University)
  • Received : 2014.07.10
  • Published : 2015.05.01

Abstract

We study the structure of right duo ring property when it is restricted within the group of units, and introduce the concept of right unit-duo. This newly introduced property is first observed to be not left-right symmetric, and we examine several conditions to ensure the symmetry. Right unit-duo rings are next proved to be Abelian, by help of which the class of noncommutative right unit-duo rings of minimal order is completely determined up to isomorphism. We also investigate some properties of right unit-duo rings which are concerned with annihilating conditions.

Keywords

References

  1. H. E. Bell, Near-rings in which each element is a power of itself, Bull. Austral. Math. Soc. 2 (1970), 363-368. https://doi.org/10.1017/S0004972700042052
  2. H. E. Bell and Y. Li, Duo group rings, J. Pure Appl. Algebra 209 (2007), no. 3, 833-838. https://doi.org/10.1016/j.jpaa.2006.08.002
  3. H. H. Brungs, Three questions on duo rings, Pacific J. Math. 58 (1975), no. 2, 345-349. https://doi.org/10.2140/pjm.1975.58.345
  4. V. Camillo and D. A. Khurana, A characterization of unit regular rings, Comm. Algebra 29 (2001), no. 5, 2293-2295. https://doi.org/10.1081/AGB-100002185
  5. V. P. Camillo and H.-P. Yu, Exchange rings, units and idempotents, Comm. Algebra 22 (1994), no. 12, 4737-4749. https://doi.org/10.1080/00927879408825098
  6. K. E. Eldridge, Orders for finite noncommutative rings with unity, Amer. Math. Monthly 73 (1966), 512-514.
  7. E. H. Feller, Properties of primary noncommutative rings, Trans. Amer. Math. Soc. 89 (1958), 79-91. https://doi.org/10.1090/S0002-9947-1958-0098763-0
  8. K. R. Goodearl, Von Neumann Regular Rings, Pitman, London, 1979.
  9. C. Huh, H. K. Kim, N. K. Kim, and Y. Lee, Basic examples and extensions of symmetric rings, J. Pure Appl. Algebra 202 (2005), no. 1-3, 154-167. https://doi.org/10.1016/j.jpaa.2005.01.009
  10. S. U. Hwang, N. K. Kim, and Y. Lee, On rings whose right annihilators are bounded, Glasg. Math. J. 51 (2009), no. 3, 539-559. https://doi.org/10.1017/S0017089509005163
  11. Y. C. Jeon, H. K. Kim, Y. Lee, and J. S. Yoon, On weak Armendariz rings, Bull. Korean Math. Soc. 46 (2009), no. 1, 135-146. https://doi.org/10.4134/BKMS.2009.46.1.135
  12. N. K. Kim and Y. Lee, Extensions of reversible rings, J. Pure Appl. Algebra 185 (2003), no. 1-3, 207-223. https://doi.org/10.1016/S0022-4049(03)00109-9
  13. J. Lambek, Lectures on Rings and Modules, Blaisdell Publishing Company, Waltham, 1966.
  14. J. Lambek, On the representation of modules by sheaves of factor modules, Canad. Math. Bull. 14 (1971), 359-368. https://doi.org/10.4153/CMB-1971-065-1
  15. Y. Lee, On generalizations of commutativity, Comm. Algebra 43 (2015), no. 4, 1687-1697. https://doi.org/10.1080/00927872.2013.876035
  16. G. Marks, Reversible and symmetric rings, J. Pure Appl. Algebra 174 (2002), no. 3, 311-318. https://doi.org/10.1016/S0022-4049(02)00070-1
  17. J. C. McConnell and J. C. Robson, Noncommutative Noetherian Rings, John Wiley & Sons Ltd., Chichester, New York, Brisbane, Toronto, Singapore, 1987.
  18. C. P. Milies and S. K. Sehgal, An Introduction to Group Rings, Kluwer Academic Pub-lishers, Dordrecht, 2002.
  19. L. Motais de Narbonne, Anneaux semi-commutatifs et unis riels anneaux dont les id aux principaux sont idempotents, Proceedings of the 106th National Congress of Learned Societies (Perpignan, 1981), Bib. Nat., Paris (1982), 71-73.
  20. S. B. Nam, Finite local rings of order ${\preceq}$ 16 with nonzero Jacobson radical, Korean J. Math. 21 (2013), 23-28. https://doi.org/10.11568/kjm.2013.21.1.23
  21. W. K. Nicholson, Lifting idempotents and exchange rings, Trans. Amer. Math. Soc. 229 (1977), 269-278. https://doi.org/10.1090/S0002-9947-1977-0439876-2
  22. M. B. Rege and S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), no. 1, 14-17. https://doi.org/10.3792/pjaa.73.14
  23. G. Shin, Prime ideals and sheaf representation of a pseudo symmetric ring, Trans. Amer. Math. Soc. 184 (1973), 43-60. https://doi.org/10.1090/S0002-9947-1973-0338058-9
  24. G. Thierrin, On duo rings, Canad. Math. Bull. 3 (1960), 167-172. https://doi.org/10.4153/CMB-1960-021-7
  25. L. Xu and W. Xue, Structure of minimal non-commutative zero-insertive rings, Math. J. Okayama Univ. 40 (1998), 69-76.

Cited by

  1. UNIT-DUO RINGS AND RELATED GRAPHS OF ZERO DIVISORS vol.53, pp.6, 2016, https://doi.org/10.4134/BKMS.b150684