ON NILPOTENT-DUO RINGS

Zhelin Piao*

Abstract

A ring R is called right (resp., left) nilpotent-duo if $N(R) a \subseteq a N(R)$ (resp., $a N(R) \subseteq N(R) a$) for every $a \in R$, where $N(R)$ is the set of all nilpotents in R. In this article we provide other proofs of known results and other computations for known examples in relation with right nilpotent-duo property. Furthermore we show that the left nilpotent-duo property does not go up to a kind of matrix ring.

Throughout this article every ring is associative with identity unless otherwise specified. Let R be a ring. $N(R)$ and $U(R)$ denote the set of all nilpotent elements and the group of all units in R, respectively. We use $J(R), N_{*}(R)$, and $N^{*}(R)$ to denote the Jacobson radical, lower nilradical (i.e., prime radical), and upper nilradical (i.e., the sum of all nil ideals) of R, respectively. A nilpotent element is also called a nilpotent for simplicity. It is well-known that $N_{*}(R) \subseteq N^{*}(R) \subseteq N(R)$ and $N^{*}(R) \subseteq J(R)$. Denote the n by n full (resp., upper triangular) matrix ring over R by $M a t_{n}(R)$ (resp., $T_{n}(R)$). Write $D_{n}(R)=\left\{\left(a_{i j}\right) \in\right.$ $\left.T_{n}(R) \mid a_{11}=\cdots=a_{n n}\right\}$ and use $E_{i j}$ for the matrix with (i, j)-entry 1 and elsewhere $0 . \mathbb{Z}\left(\mathbb{Z}_{n}\right)$ denotes the ring of integers (modulo $\left.n\right) . R[x]$ (resp., $R[[x]]$) denotes the polynomial ring (resp., power series ring) with an indeterminate x over R.

1. Other proofs for results

In this section, we provide other kinds of proofs of [4, Theorem $1.2(5)]$ and $[4$, Proposition 1.6]. These are helpful to see the structure of right nilpotent-duo matrix rings.

Following Feller [3], a ring (possibly without identity) is called right (resp., left) duo if every right (resp., left) ideal is an ideal; a ring is called

[^0]duo if it is both right and left duo. Following [4], a ring R (possibly without identity) shall be called right nilpotent-duo if $N(R) a \subseteq a N(R)$ for every $a \in R$. Left nilpotent-duo rings are defined similarly. A ring shall be called nilpotent-duo if it is both left and right nilpotent-duo. Note that a ring R is nilpotent-duo if and only if $N(R) a=a N(R)$ for each $a \in R$. A ring R is usually called reduced if $N(R)=0$. A ring is usually called abelian if every idempotent is central. Reduced rings are clearly abelian. It is easily checked that both commutative rings and reduced rings are nilpotent-duo. One-sided nilpotent-duo rings are Abelian by [4, Lemma 1.8(1)].

In the following we give another proof to [4, Theorem 1.2(5)] for the need to use the structure of matrices in such cases.

Theorem 1.1. [4, Theorem 1.2(5)] Let R be a reduced ring. Then R is right (resp., left) duo if and only if $D_{2}(R)$ is right (resp., left) nilpotent-duo.

Proof. Let $E=D_{2}(R)$. First note that $N(E)=\left(\begin{array}{cc}0 & R \\ 0 & 0\end{array}\right)$ because R is reduced. Suppose that R is right duo. Consider $B A$, for $0 \neq A=$ $\left(\begin{array}{ll}a & c \\ 0 & a\end{array}\right) \in E$ and $0 \neq B=\left(\begin{array}{ll}0 & b \\ 0 & 0\end{array}\right) \in N(E)$. Then $B A=\left(\begin{array}{cc}0 & b a \\ 0 & 0\end{array}\right)$. Since R is right duo, $b a=a b_{1}$ for some $b_{1} \in R$. Let $B_{1}=\left(\begin{array}{cc}0 & b_{1} \\ 0 & 0\end{array}\right)$. Then $B_{1} \in N(E)$ and

$$
B A=\left(\begin{array}{cc}
0 & b a \\
0 & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & a b_{1} \\
0 & 0
\end{array}\right)=\left(\begin{array}{cc}
a & c \\
0 & a
\end{array}\right)\left(\begin{array}{cc}
0 & b_{1} \\
0 & 0
\end{array}\right)=A B_{1} .
$$

So E is right nilpotent-duo.
Conversely, let E be right nilpotent-duo, and consider $d c$ for $0 \neq$ $c, d \in R$. If $d c=0$ then we are done. So we assume that $d c \neq 0$. Let $C=\left(\begin{array}{ll}c & 0 \\ 0 & c\end{array}\right)$ and $D=\left(\begin{array}{ll}0 & d \\ 0 & 0\end{array}\right)$. Then $D \in N(E)$. Since E is right nilpotent-duo, there exists $D_{1} \in N(E)$ such that $D C=C D_{1}$. Say $D_{1}=\left(\begin{array}{cc}0 & d_{1} \\ 0 & 0\end{array}\right)$. Note that $D C \neq 0$ implies $C D_{1} \neq 0$. From $\left(\begin{array}{cc}0 & d c \\ 0 & 0\end{array}\right)=D C=C D_{1}=\left(\begin{array}{cc}0 & c d_{1} \\ 0 & 0\end{array}\right)$, we obtain $d c=c d_{1}$. Thus R is right duo. The proof for the left case can be done similarly.

The monomorphism σ in [4, Example 1.5(1)] is not surjective. Hong et al. proved that if σ is surjective then the ring $D_{2}(R)$ is nilpotentduo ([4, Proposition 1.6]), by using [4, Theorem 1.2(5)] and a wellknown fact. In the following we provide another proof which contains the concrete structure.

Proposition 1.2. [4, Proposition 1.6] Let K be a field and σ be a monomorphism of K. Consider the skew power series ring $R=K[[x ; \sigma]]$ by σ with an indeterminate x over K, where every element is of R is of the form $\sum_{i=0}^{\infty} a_{i} x^{i}$, only subject to $x a=\sigma(a) x$ for all $a \in K$. Set $E=D_{2}(R)$. If σ is bijective, then E is a nilpotent-duo ring.

Proof. We apply the argument in the proof of [1, Theorem 1.4]. Using the computation in the latter part of [4, Example 1.5(1)], one can prove that E is left nilpotent-duo. We also have that $U(E)$ is the set of all $\left(\begin{array}{cc}f(x) & r(x) \\ 0 & f(x)\end{array}\right) \in E$, where the constant term of $f(x)$ is nonzero and $r(x) \in R$; and

$$
N(E)=\left\{\left.\left(\begin{array}{cc}
0 & s(x) \\
0 & 0
\end{array}\right) \in E \right\rvert\, s(x) \in R\right\}
$$

Suppose that σ is bijective. Let $0 \neq A=\left(\begin{array}{cc}f(x) & f_{1}(x) \\ 0 & f(x)\end{array}\right)$ and $0 \neq$ $B=\left(\begin{array}{cc}0 & g(x) \\ 0 & 0\end{array}\right)$ in E. We will show that there exists $C \in N(E)$ such that $B A=A C$.

If $f(x)=0$, then $B A=0=A B$. So assume $f(x)=\sum_{i=m}^{\infty} a_{i} x^{i} \in$ R with $a_{m} \neq 0$, where $m \geq 0$. Let $h(x)=\sum_{k=0}^{\infty} c_{k} x^{k}$ with $c_{k}=$ a_{m+k} for all k. Then $f(x)=h(x) x^{m}$ with $h(x) \in U(R)$. We first show that $g(x) f(x) \in f(x) R$.

Write $h(x)^{-1} g(x) h(x)=\sum_{l=0}^{\infty} d_{l} x^{l}$, noting that $\sum_{l=0}^{\infty} d_{l} x^{l} \neq 0$ because $g(x) \neq 0$. Then we obtain

$$
\begin{aligned}
g(x) f(x)=g(x) h(x) x^{m} & =h(x) h(x)^{-1} g(x) h(x) x^{m} \\
& =h(x) x^{m}\left(\sum_{l=0}^{\infty} \sigma^{-m}\left(d_{l}\right) x^{l}\right)=f(x)\left(\sum_{l=0}^{\infty} \sigma^{-m}\left(d_{l}\right) x^{l}\right),
\end{aligned}
$$

using the surjection of σ.

Let $k(x)=\sum_{l=0}^{\infty} \sigma^{-m}\left(d_{l}\right) x^{l}$ and $C=\left(\begin{array}{cc}0 & k(x) \\ 0 & 0\end{array}\right)$. Then $C \in N(E)$, and moreover we get

$$
\begin{aligned}
B A=\left(\begin{array}{cc}
0 & g(x) \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
f(x) & f_{1}(x) \\
0 & f(x)
\end{array}\right) & =\left(\begin{array}{cc}
0 & g(x) f(x) \\
0 & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & f(x) k(x) \\
0 & 0
\end{array}\right) \\
& =\left(\begin{array}{cc}
f(x) & f_{1}(x) \\
0 & f(x)
\end{array}\right)\left(\begin{array}{cc}
0 & k(x) \\
0 & 0
\end{array}\right)=A C .
\end{aligned}
$$

Therefore E is right nilpotent-duo.

2. Computations and examples

In this section, we provide other computations of the examples in [4, Example 1.3] and [4, Example 1.5(3)]. These are helpful to investigate the structures of various kinds of right nilpotent-duo rings and right duo rings.

In the following we give another computation to show the properties of given rings in [4, Example 1.3].

Example 2.1. There exists a non-reduced right duo ring R over which $D_{2}(R)$ is not right nilpotent-duo. We refer to the construction and argument of Courter in [2, Example 3.4]. Let K be a field and E be the row finite infinite matrix ring over K. Let S be the K-subspace of E generated by the matrices $\left\{a_{0}, a_{1}, \ldots, a_{j}, \ldots\right\}$, where
$a_{0}=E_{12}, a_{1}=E_{13}, a_{2}=E_{14}+E_{32}, \ldots, a_{j}=E_{1(j+2)}+E_{(j+1) 2}$ for $j \geq 2$.
Next let I be the identity matrix in E and $R=K I \oplus S$, i.e., R is the K-subspace of E with a basis $\left\{I, a_{0}, a_{1}, \ldots, a_{j}, \ldots\right\}$. Then R is a right duo ring by [2, Example 3.4]. R is not reduced since $a_{0}^{2}=E_{12}^{2}=0$. Every element in R is expressed by $k I+\sum_{i=0}^{m} c_{i} a_{i}$ with $m \geq 1$ and $k, c_{0}, \ldots, c_{m} \in K$. Note that $S a_{0}=0=a_{0} S, a_{i} a_{i+1}=a_{0}$ for $i \geq 1$, and $a_{i} S=K a_{0}$. So R is a local ring such that $J(R)=N(R)=N^{*}(R)=$ $N_{*}(R)=S, J(R)^{2}=K a_{0}$, and $J(R)^{3}=0$.

We claim that $D_{2}(R)$ is not right nilpotent-duo. Note

$$
N\left(D_{2}(R)\right)=\left\{\left.\left(\begin{array}{cc}
x & y \\
0 & x
\end{array}\right) \in D_{2}(R) \right\rvert\, x \in N(R)\right\} .
$$

Consider two matrices

$$
A=\left(\begin{array}{cc}
a_{2} & I+a_{2} \\
0 & a_{2}
\end{array}\right) \text { and } B=\left(\begin{array}{cc}
a_{1} & I \\
0 & a_{1}
\end{array}\right)
$$

in $D_{2}(R)$. Then $A, B \in N\left(D_{2}(R)\right)$ and $B A=\left(\begin{array}{cc}a_{0} & a_{0}+a_{1}+a_{2} \\ 0 & a_{0}\end{array}\right)$. Assume that there exists $C=\left(\begin{array}{cc}\sum_{i=0}^{m} c_{i} a_{i} & k I+\sum_{j=0}^{n} d_{j} a_{j} \\ 0 & \sum_{i=0}^{m} c_{i} a_{i}\end{array}\right) \in N\left(D_{2}(R)\right)$ such that $B A=A C$, where $k, c_{i}, d_{j} \in K$. Then

$$
\begin{aligned}
A C & =\left(\begin{array}{cc}
a_{2}\left(\sum_{i=0}^{m} c_{i} a_{i}\right) & a_{2}\left(k I+\sum_{j=0}^{n} d_{j} a_{j}\right)+\left(I+a_{2}\right)\left(\sum_{i=0}^{m} c_{i} a_{i}\right) \\
0 & a_{2}\left(\sum_{i=0}^{m} c_{i} a_{i}\right)
\end{array}\right) \\
& =\left(\begin{array}{cc}
a_{0} & a_{0}+a_{1}+a_{2} \\
0 & a_{0}
\end{array}\right)
\end{aligned}
$$

implies

$$
a_{2}\left(\sum_{i=0}^{m} c_{i} a_{i}\right)=a_{0} \text { and } a_{2}\left(k I+\sum_{j=0}^{n} d_{j} a_{j}\right)+\left(I+a_{2}\right)\left(\sum_{i=0}^{m} c_{i} a_{i}\right)=
$$

$a_{0}+a_{1}+a_{2}$. So we have $c_{3}=1$ from

$$
c_{3} a_{0}=c_{3} a_{2} a_{3}=a_{2}\left(\sum_{i=0}^{m} c_{i} a_{i}\right)=a_{0}
$$

and thus

$$
a_{2}\left(k I+\sum_{j=0}^{n} d_{j} a_{j}\right)+\left(I+a_{2}\right)\left(\sum_{i=0}^{m} c_{i} a_{i}\right)=k a_{2}+d_{3} a_{0}+\sum_{i=0}^{m} c_{i} a_{i}+a_{0}
$$

It then follows that

$$
a_{0}+a_{1}+a_{2}=\left(1+c_{0}+d_{3}\right) a_{0}+c_{1} a_{1}+\left(k+c_{2}\right) a_{2}+a_{3}+\left(\sum_{i=4}^{m} c_{i} a_{i}\right)
$$

But this equality is impossible because the right hand side contains a_{3}. Thus such C cannot exist, and so $D_{2}(R)$ is not right nilpotent-duo.

In [4, Example 1.5(3)], Hong et al. stated only the existence of a left nilpotent-duo ring which is not right nilpotent-duo. Here we provide the concrete procedure of constructing such rings to see that structure of such rings more deeply.

Example 2.2. There exists a left nilpotent-duo ring which is not right nilpotent-duo. We use a construction that is analogous to one of Example 2.1. Let K be a field and E be the column finite infinite matrix ring over K. Let S be the K-subspace of E generated by the matrices $\left\{a_{0}, a_{1}, \ldots, a_{j}, \ldots\right\}$, where
$a_{0}=E_{21}, a_{1}=E_{31}, a_{2}=E_{41}+E_{23}, \ldots, a_{j}=E_{(j+2) 1}+E_{2(j+1)}$ for $j \geq 2$.

Next let I be the identity matrix in E and $R=K I \oplus S$, i.e., R is the K subspace of E with a basis $\left\{I, a_{0}, a_{1}, \ldots, a_{j}, \ldots\right\}$. Then R is a left duo ring by applying the argument in [2, Example 3.4]. R is not reduced since $a_{0}^{2}=E_{21}^{2}=0$. Every element in R is expressed by $k I+\sum_{i=0}^{m} c_{i} a_{i}$ with $m \geq 1$ and $k, c_{0}, \ldots, c_{m} \in K$. Note that

$$
S a_{0}=0=a_{0} S, a_{1} S=0 \text { and } a_{i+1} a_{i}=a_{0}, S a_{i}=K a_{0} \text { for all } i \geq 1
$$

So R is a local ring such that $J(R)=N(R)=N^{*}(R)=N_{*}(R)=S$, $J(R)^{2}=K a_{0}$, and $J(R)^{3}=0$. Therefore R is left nilpotent-duo by [4, Theorem 1,.2(2)].

Consider a_{1} and a_{2} in $N(R)$. Then $a_{2} a_{1}=a_{0}$ but $a_{0} \notin a_{1} S=0$. So R is not right nilpotent-duo. Furthermore $a_{2} a_{1}=a_{0} \notin a_{1} R=K a_{1}$, and so R is not right duo.

Hong et al. showed that $D_{2}(R)$ need not be right duo over a right duo ring R, in [4, Example 1.3]. Here we provide another argument to show that.

Example 2.3. There exists a right duo ring R over which $D_{2}(R)$ is not right duo. Let R be the right duo ring in Example 2.1, and A, B be the same matrices as in Example 2.1. Assume on the contrary that there exists

$$
D=\left(\begin{array}{cc}
h I+\sum_{i=0}^{m} c_{i} a_{i} & k I+\sum_{j=0}^{n} d_{j} a_{j} \\
0 & h I+\sum_{i=0}^{m} c_{i} a_{i}
\end{array}\right) \in D_{2}(R)
$$

such that $B A=A D$, where $h, k, c_{i}, d_{j} \in K$. Then we get

$$
a_{2}\left(h I+\sum_{i=0}^{m} c_{i} a_{i}\right)=h a_{2}+c_{3} a_{0}=a_{0}
$$

hence $h=0$ and $c_{3}=1$. This yields $D=C$ as in Example 2.1, and the remainder of the argument follows Example 2.1. Then such D cannot exist, and so $D_{2}(R)$ is not right duo.

Hong et al. showed that $D_{2}(R)$ need not be right nilpotent-duo over a right nilpotent-duo ring R, in [4, Example 1.3]. Here we provide another argument to show that. We also show that $D_{2}(R)$ need not be left nilpotent-duo over a left nilpotent-duo ring R.

Example 2.4. (1) There exists a right nilpotent-duo ring R over which $D_{2}(R)$ is not right nilpotent-duo. It suffices to show that the ring R in Example 2.1 is right nilpotent-duo. Let $x \in R$ and $y \in N(R)$. If $x \in U(R)$ then $y x=x x^{-1} y x$. Here $x^{-1} y x \in N(R)$, so we are done.

Assume $x \notin U(R)$. Then we can express them by $x=\sum_{i=0}^{m} e_{i} a_{i}$ and $y=\sum_{i=0}^{m} f_{i} a_{i}$, where $e_{i}, f_{i} \in K$. Then

$$
I-y=I+\sum_{i=0}^{m}\left(-f_{i}\right) a_{i} \in U(R)
$$

Next, by help of the argument in [2, Example 3.4], we get $(I-y) x=$ $x v$ for some $v=I+\sum_{i=0}^{l} g_{i} a_{i} \in U(R)$, where $g_{i} \in K$. Then

$$
x-y x=(I-y) x=x v=x\left(I+\sum_{i=0}^{l} g_{i} a_{i}\right)=x+x\left(\sum_{i=0}^{l} g_{i} a_{i}\right)
$$

entailing that $y x=x\left(\sum_{i=0}^{l}\left(-g_{i}\right) a_{i}\right)$ with $\sum_{i=0}^{l}\left(-g_{i}\right) a_{i} \in N(R)$. Therefore R is right nilpotent-duo.
(2) Let R be the left nilpotent-duo ring in Example 2.2. We claim that $D_{2}(R)$ is not left nilpotent-duo. Note

$$
N\left(D_{2}(R)\right)=\left\{\left.\left(\begin{array}{cc}
x & y \\
0 & x
\end{array}\right) \in D_{2}(R) \right\rvert\, x \in N(R)\right\}
$$

Consider two matrices

$$
A=\left(\begin{array}{cc}
a_{2} & I+a_{2} \\
0 & a_{2}
\end{array}\right) \text { and } B=\left(\begin{array}{cc}
a_{1} & I \\
0 & a_{1}
\end{array}\right)
$$

in $D_{2}(R)$. Then $A, B \in N\left(D_{2}(R)\right)$ and $A B=\left(\begin{array}{cc}a_{0} & a_{0}+a_{1}+a_{2} \\ 0 & a_{0}\end{array}\right)$. Assume that there exists $C=\left(\begin{array}{cc}\sum_{i=0}^{m} c_{i} a_{i} & k I+\sum_{j=0}^{n} d_{j} a_{j} \\ 0 & \sum_{i=0}^{m} c_{i} a_{i}\end{array}\right) \in N\left(D_{2}(R)\right)$ such that $A B=C A$, where $k, c_{i}, d_{j} \in K$. Then

$$
\begin{aligned}
C A & =\left(\begin{array}{cc}
\left(\sum_{i=0}^{m} c_{i} a_{i}\right) a_{2} & \left(\sum_{i=0}^{m} c_{i} a_{i}\right)\left(I+a_{2}\right)+\left(k I+\sum_{j=0}^{n} d_{j} a_{j}\right) a_{2} \\
0 & \left(\sum_{i=0}^{m} c_{i} a_{i}\right) a_{2}
\end{array}\right) \\
& =\left(\begin{array}{cc}
a_{0} & a_{0}+a_{1}+a_{2} \\
0 & a_{0}
\end{array}\right)
\end{aligned}
$$

implies

$$
\left(\sum_{i=0}^{m} c_{i} a_{i}\right) a_{2}=a_{0} \text { and }\left(\sum_{i=0}^{m} c_{i} a_{i}\right)\left(I+a_{2}\right)+\left(k I+\sum_{j=0}^{n} d_{j} a_{j}\right) a_{2}=
$$

$a_{0}+a_{1}+a_{2}$. So we have $c_{3}=1$ from

$$
c_{3} a_{0}=c_{3} a_{3} a_{2}=\left(\sum_{i=0}^{m} c_{i} a_{i}\right) a_{2}=a_{0}
$$

and thus

$$
\left(\sum_{i=0}^{m} c_{i} a_{i}\right)\left(I+a_{2}\right)+\left(k I+\sum_{j=0}^{n} d_{j} a_{j}\right) a_{2}=\sum_{i=0}^{m} c_{i} a_{i}+a_{0}+k a_{2}+d_{3} a_{0}
$$

It then follows that

$$
a_{0}+a_{1}+a_{2}=\left(1+c_{0}+d_{3}\right) a_{0}+c_{1} a_{1}+\left(k+c_{2}\right) a_{2}+a_{3}+\left(\sum_{i=4}^{m} c_{i} a_{i}\right)
$$

But this equality is impossible because the right hand side contains a_{3}. Thus such C cannot exist, and so $D_{2}(R)$ is not left nilpotent-duo.

Applying the method in Example 2.3 to the left case, it is able to show that $D_{2}(R)$ need not be left duo over the left duo ring R in Example 2.2.

References

[1] Y.W. Chung and Y. Lee, Structures concerning group of units, J. Korean Math. Soc., 54 (2017), 177-191.
[2] R.C. Courter, Finite dimensional right duo algebras are duo, Proc. Amer. Math. Soc., 84 (1982), 157-161.
[3] E.H. Feller, Properties of primary noncommutative rings, Trans. Amer. Math. Soc., 89 (1958), 79-91.
[4] C.Y. Hong, H.K. Kim, N.K. Kim, T.K. Kwak, and Y. Lee, One-sided duo property on nilpotents, (Submitted).
*
Department of Mathematics
Yanbian University
Yanji 133002, China
E-mail: zlpiao@ybu.edu.cn

[^0]: Received May 27, 2019; Accepted August 21, 2019.
 2010 Mathematics Subject Classification: 16N40, 16U80.
 Key words and phrases: right nilpotent-duo ring, right duo ring, matrix ring, infinite matrix ring, skew power series ring.

