• Title/Summary/Keyword: discrete systems

Search Result 1,864, Processing Time 0.021 seconds

Application of fuzzy Petri nets for discrete event system control and monitoring (이산사건 시스템 제어 및 모니터링을 위한 퍼지 패트리네트 응용)

  • 노명균;홍상은
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.403-406
    • /
    • 1997
  • This paper presents a Petri net approach for the control and monitoring of discrete event system. The proposed model is fuzzy Petri nets based on the fuzzy logic with Petri nets and the hierarchy concept. Fuzzy Petri nets have been used to model the imprecise situations which can arise within automated manufacturing system, and also the hierarchy concept allow to handle the refinement of places and transition in Petri nets model. These will form the foundation of a simulator-tool with manipulation interface for application of fuzzy Petri nets.

  • PDF

A design of discrete-time integral controllers under skewed sampling

  • Ishihara, Tadashi;Guo, Hai-Jiao;Taketa-Hiroshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.428-433
    • /
    • 1993
  • First, we propose a transparent and efficient design of discrete-time integral controllers accounting sampling skew. Based on the proposed controller, we derive a state-space representation of doubly coprime factorization including integral action. The representation is then used to obtain a convenient state-space parametrization of discrete-time two-degree-of-freedom integral controllers acconting sampling skew.

  • PDF

L2-ERROR ANALYSIS OF FULLY DISCRETE DISCONTINUOUS GALERKIN APPROXIMATIONS FOR NONLINEAR SOBOLEV EQUATIONS

  • Ohm, Mi-Ray;Lee, Hyun-Young
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.5
    • /
    • pp.897-915
    • /
    • 2011
  • In this paper, we develop a symmetric Galerkin method with interior penalty terms to construct fully discrete approximations of the solution for nonlinear Sobolev equations. To analyze the convergence of discontinuous Galerkin approximations, we introduce an appropriate projection and derive the optimal $L^2$ error estimates.

REPRESENTATIONS OF SOLUTIONS TO PERIODIC CONTINUOUS LINEAR SYSTEM AND DISCRETE LINEAR SYSTEM

  • Kim, Dohan;Shin, Jong Son
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.4
    • /
    • pp.933-942
    • /
    • 2014
  • We give a representation of the component of solutions with characteristic multiplier 1 in a periodic linear inhomogeneous continuous system. It follows from this representation that asymptotic behaviors of the component of solutions to the system and to its associated homogeneous system are quite different, though they are similar in the case where the characteristic multiplier is not 1. Moreover, the representation is applicable to linear discrete systems with constant coefficients.

DISCRETE-TIME BUFFER SYSTEMS WITH SESSION-BASED ARRIVALS AND MARKOVIAN OUTPUT INTERRUPTIONS

  • Kim, Jeongsim
    • Journal of applied mathematics & informatics
    • /
    • v.33 no.1_2
    • /
    • pp.185-191
    • /
    • 2015
  • This paper considers a discrete-time buffer system with session-based arrivals, an infinite storage capacity and one unreliable output line. There are multiple different types of sessions and the output line is governed by a finite state Markov chain. Based on a generating functions approach, we obtain an exact expression for the mean buffer content.

Unified approach to continuous and discrete Nehari problems

  • Kwon, Oh-Kyu;Lee, Koon-Seok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.581-585
    • /
    • 1992
  • A unified approach to continuous and discrete-time Nehari problems, based on recently developed results by the authors for the one-block and Hankel-norm model reduction problems, is proposed. First, we derive discrete-time solutions in delta domain where numerical error is small and then we show that the derived form becomes same as the continuous form when the sampling interval approaches to zero.

  • PDF

ERROR ESTIMATES FOR FULLY DISCRETE DISCONTINUOUS GALERKIN METHOD FOR NONLINEAR PARABOLIC EQUATIONS

  • Ohm, Mi-Ray;Lee, Hyun-Yong;Shin, Jun-Yong
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.3_4
    • /
    • pp.953-966
    • /
    • 2010
  • In this paper, we develop discontinuous Galerkin methods with penalty terms, namaly symmetric interior penalty Galerkin methods to solve nonlinear parabolic equations. By introducing an appropriate projection of u onto finite element spaces, we prove the optimal convergence of the fully discrete discontinuous Galerkin approximations in ${\ell}^2(L^2)$ normed space.

A Robust Discrete-Time Model Reference Adaptive Control in the Presence of Bounded Disturbances (제한된 외란하에서의 강인한 이산 시간 모델 추종 적응 제어)

  • 이호진;함운철;최계근
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.12
    • /
    • pp.1618-1624
    • /
    • 1988
  • In this paper, a robust discrete model reference adaptive controller is proposed using a generalized model reference adaptive algorithm for single-input single-output discrete systems. A signal dependent time-varying dead-zone is employed in a generalized adaptive control structure. This adaptive controller is shown to assure the boundedness of the signals of the system even in the presence of bounded external disturbance.

  • PDF

A Method for Design of Discrete Variable Stochastic Systems using Simulation (이산형 변수 시스템의 설계를 위한 시뮬레이션 활용 기법 연구)

  • 박경종
    • Journal of the Korea Society for Simulation
    • /
    • v.8 no.3
    • /
    • pp.1-16
    • /
    • 1999
  • This paper deals with a discrete simulation optimization method for designing a complex probabilistic discrete event system. The proposed algorithm in this paper searches the effective and reliable alternatives satisfying the target values of the system to be designed through a single run in a relatively short time period. It tries to estimate an autoregressive model, and construct mean and confidence interval for evaluating correctly the objective function obtained by small amount of output data. The experimental results using the proposed method are also shown.

  • PDF

The Development of a MATLAB-based Discrete Event Simulation Framework for the Engagement Simulations of the Weapon Systems (무기체계 교전 시뮬레이션을 위한 매트랩 기반 이산사건시뮬레이션 프레임워크의 개발)

  • Hwang, Kun-Chul;Lee, Min-Gyu;Kim, Jung-Hoon
    • Journal of the Korea Society for Simulation
    • /
    • v.21 no.2
    • /
    • pp.31-39
    • /
    • 2012
  • Simulation Framework is a basic software tool used to develop simulation applications. This paper describes the development of a discrete event simulation framework based on DEVS(Discrete EVent System Specification) formalism, using MATLAB language which is widely used in technical computing and engineering disciplines. The newly developed framework utilizing MATLAB object oriented programming combines the convenience of MATLAB language and the sophisticated architecture of the DEVS formalism. Hence, it supports the productivity, flexibility, extensibility that are required for the simulation application software development of the weapon systems engagement. Moreover, it promises a simulation application the increased the computation speed proportional to the number of CPU of a multi-core processor, providing the batch simulation functionality based on MATLAB parallel computing technology.