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DISCRETE-TIME BUFFER SYSTEMS WITH SESSION-BASED

ARRIVALS AND MARKOVIAN OUTPUT INTERRUPTIONS†

JEONGSIM KIM

Abstract. This paper considers a discrete-time buffer system with session-
based arrivals, an infinite storage capacity and one unreliable output line.

There are multiple different types of sessions and the output line is gov-
erned by a finite state Markov chain. Based on a generating functions
approach, we obtain an exact expression for the mean buffer content.
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1. Introduction

We consider a discrete-time buffer system with one output line, an infinite
storage capacity, and session-based arrivals. The time is divided into intervals of
equal length, called time slots. Sessions consist of a number of random packets
arriving to a buffer system in consecutive time slots. There are multiple different
types of sessions. Session-based arrival process is an extension of train arrival
process. Packet trains produce packets at a fixed rate of exactly one packet
per slot, whereas active sessions produce one or more than one packets per slot.
Session-based arrivals are realistic approach for modelling the traffic generated
by users in a telecommunication network. A possible application of session-based
arrival processes can be found in Hoflack et al. [4].

Hoflack et al. [5] and Wittevrongel et al. [1] investigated the session-based
arrival models with multiple session types and one output line. In [5] the session
lengths and the transmission times of the packets are geometrically distributed.
But in [1] the session lengths are generally distributed and the output line is
unreliable and prone to stochastic failures, where the effective transmission times
(that are required for the successful transmission of a packet) are geometrically
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distributed. Feyaerts et al. [2] investigated the train arrival model with one
type of train, geometric train lengths and an unreliable output line governed by
a finite state Markov chain. The interest in the above mentioned papers is to
obtain the probability generating functions of the buffer content and the packet
delay, as well as the mean buffer content, the mean packet delay and the mean
session delay.

In this paper, we consider the session-based arrival model with multiple ses-
sion types and one unreliable output line. The output line is governed by a
discrete-time Markov chain and the session lengths are generally distributed.
Our model is more general than the models in the above mentioned papers. By
using the equation for the vector generating function of the random variable
associated with the buffer content and analytic properties of the matrix gener-
ating function for the Markov chain describing the output line state, we obtain
an exact expression for the mean buffer content.

The paper is organized as follows. In Section 2, we describe the model in
detail. Section 3 focuses on the derivation of the mean buffer content. Numerical
results are given in Section 4.

2. Model description

We consider a discrete-time buffer system with one unreliable output line
(output channel) and an infinite storage capacity for packets. Sessions can span
over multiple consecutive slots and produce packets at a variable rate of one or
one more than packets per slot. Multiple sessions can be active simultaneously.
There are K different types of sessions. The numbers of new sessions of type k,
1 ≤ k ≤ K, started during a slot are assumed to be independent and identically
distributed (i.i.d.) random variables with a generic random variable Λk and
probability generating function (pgf) λk(z). The lengths of sessions of type k
are i.i.d. random variables with a generic random variable Lk and pgf lk(z).
The numbers of packets generated during one slot by an active session of type
k are i.i.d. random variables with a generic random variable Ak and pgf ak(z).
As mentioned above, active sessions generate at least one packet per slot.

The transmission times of the packets from the buffer are equal to one slot
per packet, but the packets are sent over an output line which may be prone to
probabilistic interruptions. The interruptions are governed by a discrete-time
Markov chain {C(t) : t = 0, 1, . . .} with states 1, 2, . . . ,m. We will use the
term ‘output line state’ to denote the state of {C(t) : t = 0, 1, . . .}. When the
output line is in state j, the accessibility of the output line is governed by a
Bernoulli distribution with success probability σj . Let pij , 1 ≤ i, j ≤ m, be
the transition probability from output line state i to state j. We assume that
{C(t) : t = 0, 1, . . .} is irreducible. We introduce the m×m matrices P0 and P1

defined as follows:

P0 = ((1− σi)pij)1≤i,j≤m, P1 = (σipij)1≤i,j≤m.
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Let κ = (κ1, . . . , κm) denote the steady state probability vector of {C(t) : t =
0, 1, . . .}, i.e., κ satisfies κ = κ(P0 + P1) and κ1 = 1. Here and subsequently, 1
denotes the m-dimensional column vector with all components equal to one.

Because the mean number of packet arrivals per slot is
∑K

k=1 E[Λk]E[Lk]E[Ak]
and the fundamental probability of the successful transmission is κP11, the

necessary and sufficient condition for stability is
∑K

k=1 E[Λk]E[Lk]E[Ak] < κP11.
We assume this stability condition throughout the paper.

3. Buffer content

In this section we focus on the mean buffer content in the steady state. Let
U(t) be the buffer content, i.e., the total number of packets present in the system
at slot t. To obtain the mean buffer content, we introduce an auxiliary variable
Y (t), which is defined as the total number of packets that will be generated after
slot t by active sessions in slot t.

LetX(t) = U(t)+Y (t). Since an active session generates at least one packet in
each slot, X(t) > 0 if and only if U(t) > 0. Thus, whenever X(t) > 0, a packet is
transmitted during slot t if the output line is accessible (not interrupted). From
this it is deduced that X(t) corresponds to the buffer content in the system,
where the packets arrive according to a batch Bernoulli process and a packet
departs in each slot, if any, whenever the Markovian output line is accessible.
The number of packet arrivals generated by the batch Bernoulli process in a slot
has the pgf

a(z) =
K∏

k=1

λk(lk(ak(z))).

From this we obtain

a′(1−) =

K∑
k=1

E[Λk]E[Lk]E[Ak], (1)

a′′(1−) =
( K∑

k=1

E[Λk]E[Lk]E[Ak]
)2

+

K∑
k=1

{
Var[Λk](E[Lk]E[Ak])

2

+ E[Λk]Var[Lk](E[Ak])
2 + E[Λk]E[Lk](Var[Ak]− E[Ak])

}
. (2)

Let X,U, Y and C be the steady state random variables corresponding to
X(t), U(t), Y (t) and C(t), respectively. Thus X = U + Y and the mean buffer
content is

E[U ] = E[X]− E[Y ]. (3)

In order to obtain the mean buffer content, we first compute E[X]. Let πni =
P(X = n,C = i), n = 0, 1, . . . , i = 1, . . . ,m, and πn = (πn1, πn2, . . . , πnm). De-
fine the vector pgf π(z) = (π1(z), π2(z), . . . , πm(z)), where πi(z) = E[zX1{C=i}] =
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n=0 πniz

n. Then the vector pgf π(z) satisfies

π(z) = a(z)
(1
z
(π(z)− π0)(P0z + P1) + π0(P0 + P1)

)
,

which is written as

π(z)
[
I +

1

z − 1

(
I − a(z)(P0z + P1)

)]
= a(z)π0P1. (4)

We remark that π0 can be obtained by well-known methods, for example, by
the spectral method in [3].

Note that P0z+P1, z > 0, is irreducible. Let χ(z) be the maximal eigenvalue
of P0z + P1 and ξ(z) the right eigenvector of P0z + P1 corresponding to the
eigenvalue χ(z), scaled by κξ(z) = 1. Thus

(P0z + P1)ξ(z) = χ(z)ξ(z). (5)

According to the implicit function theorem, χ(z) and all components of ξ(z) are
analytic on (0,∞). Differentiating (5) and evaluating at z = 1 yields

(I − P0 − P1)ξ
′(1) = P01− χ′(1)1. (6)

Premultiplying by κ in (6) gives

χ′(1) = κP01. (7)

Using this and κξ′(1) = 0, we can rewrite (6) as

(I − P0 − P1 − 1κ)ξ′(1) = P01− (κP01)1.

Since I − P0 − P1 − 1κ is invertible, this becomes

ξ′(1) = (I − P0 − P1 − 1κ)−1P01+ (κP01)1, (8)

where we have used (I −P0 −P1 − 1κ)−11 = −1. Differentiating (5) twice with
respect to z and evaluating at z = 1 leads to

2P0ξ
′(1) + (P0 + P1)ξ

′′(1) = χ′′(1)1+ 2χ′(1)ξ′(1) + ξ′′(1).

Premultiplying by κ in the above yields

χ′′(1) = 2κP0ξ
′(1). (9)

Postmultiplying by ξ(z) in (4), differentiating the resulting equation twice with
respect to z and letting z → 1−, we obtain

2(1− a′(1−)− χ′(1))π′(1−)1−
(
a′′(1−) + 2a′(1−)χ′(1) + χ′′(1)

)
= 2a′(1−)π0P11+ 2π0P1ξ

′(1).

Since E[X] = π′(1−)1, we have

E[X] =
a′′(1−) + χ′′(1) + 2a′(1−)(χ′(1) + π0P11) + 2π0P1ξ

′(1)

2(1− a′(1−)− χ′(1))
.

Plugging (7) and (9) into the above gives

E[X] =
a′′(1−) + 2(κP0 + π0P1)(a

′(1−)1+ ξ′(1))

2(1− a′(1−)− κP01)
. (10)
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Now we compute E[Y ]. Since an active session of type k has mean remaining

session length E[Lk(Lk−1)]
2E[Lk]

, the mean number of packets that will be generated

in the future by an active session of type k is E[Lk(Lk−1)]
2E[Lk]

E[Ak]. Since the mean

number of active sessions of type k at an arbitrary slot is E[Λk]E[Lk], the mean
number of packets that will be generated in the future by currently active sessions
of type k is(

E[Λk]E[Lk]
)
×
(E[Lk(Lk − 1)]

2E[Lk]
E[Ak]

)
=

1

2
E[Λk](E[L2

k]− E[Lk])E[Ak].

From this we have

E[Y ] =
1

2

K∑
k=1

E[Λk](E[L2
k]− E[Lk])E[Ak]. (11)

Substituting (1), (2) and (8) into (10) and then substituting the resulting equa-
tion and (11) into (3), we finally obtain the explicit expression for the mean
buffer content, as shown below in Theorem 3.1.

Theorem 3.1. The mean buffer content is given by

E[U ] =
1

2
(
κP11−

∑K
k=1 E[Λk]E[Lk]E[Ak]

)(( K∑
k=1

E[Λk]E[Lk]E[Ak]
)2

+

K∑
k=1

{
Var[Λk](E[Lk]E[Ak])

2 + E[Λk]Var[Lk](E[Ak])
2

+ E[Λk]E[Lk](Var[Ak]− E[Ak])
}

+ 2
(
κP01+

K∑
k=1

E[Λk]E[Lk]E[Ak]
)
(κP0 + π0P1)1

+ 2(κP0 + π0P1)(I − P0 − P1 − 1κ)−1P01
)

− 1

2

K∑
k=1

E[Λk](E[L2
k]− E[Lk])E[Ak]. (12)

We remark that the denominator in the first line of (12) is positive by the
stability condition, and that if E[Λ2

k],E[L2
k] and E[A2

k] are finite, then E[U ] < ∞.

4. Numerical results

In this section we present numerical example to compute the mean buffer
content.
Example 1. For the output line, we consider a discrete-time Markov chain
with states 1, 2, . . . ,m and σi = i

m+1 , i = 1, . . . ,m. Transitions occur with a
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probability

pij =
e−ϵ|i−j|∑m
k=1 e

−ϵ|i−k| ,

where the parameter ϵ is nonnegative. If the parameter ϵ becomes larger, the
Markov process stays in a state longer and the autocorrelation of the output line
accessibility becomes stronger.

There are 10 different types of sessions. The numbers of new sessions of
type k started during a slot have a geometric distribution with parameter δ,
i.e., P(Λk = n) = (1 − δ)nδ, n = 0, 1, . . .. The lengths of sessions of type k
have a discrete Pareto distribution, i.e., P(Lk = n) = 1

ζ(k+3)
1

nk+3 , n = 1, 2, . . .,

where ζ(s) =
∑∞

n=1
1
ns is the Riemann zeta function. The numbers of packets

generated during one slot by an active session of type k have a discrete uniform
distribution on {1, 2, . . . , k}, i.e., P(Ak = n) = 1

k , n = 1, . . . , k.

We define the load as ρ =
∑10

k=1 E[Λk]E[Lk]E[Ak]

κP11
. In Fig. 1, we plot the mean

buffer content, varying the load ρ from 0.1 to 0.9. The parameter δ is chosen

such that the load becomes ρ, i.e., δ is given by δ =
(

ρκP11∑10
k=1 E[Lk]E[Ak]

+ 1
)−1

.

The number of output line states m is chosen as m = 9 and the parameter ϵ is
taken as ϵ = 0, 1, 2, and 3. As we expect, the mean buffer content increases as
the load ρ increases. We also observe that for a given value of the load ρ the
mean buffer content is large when ϵ is large. This is consistent with the intuition
that the stronger the autocorrelation of the output line accessibility becomes,
the larger the buffer content becomes.

5. Conclusion

We considered the discrete-time buffer system with session-based arrivals and
one unreliable output line, where the output line is governed by a discrete-time
Markov chain. Even though our model is more complex than other models
regarding session-based arrival models, but by using a new and very simple
method we obtained an exact expression for the mean buffer content.
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Figure 1. The mean buffer content, E[U ].
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