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Abstract

First, we propose a transparent and efficient design
of discrete-time integral controllers accounting
sampling skew. Based on the proposed controller, we
derive a state-space representation of doubly
coprime factorization including integral action. The
representation is then used to obtain a convenient
state-space parametrization of discrete-time two—
degree—of-freedom integral controllers accounting
sampling skew.

1. Introduction

Integral controllers have been widely used to achieve
zero steady-state errors for step references and/or
step disturbances. Mita [1] has proposed a novel
state feedback design of discrete~time integral
controllers taking account of the full sampling delay.
Ishihara ef al [2] have reformulated Mita's design
and have proposed a transparent design of observer—
based integral controllers accounting computation
delay which is a multiple of sampling period.
Taking this controller as a basic controller, Guo et
al.{3] have proposed a convenient state~space
parametrization of discrete-time two-degree—of-
freedom integral controllers.

Recently, digital controller design accounting
sampling skew has drawn renewed attention [4][5].
In this paper, by generalizing results given in [1]-
{3], we propose a transparent and efficient design of
discrete-time integral controllers accounting sampling
skew. First, the state feedback design [1] for the full
sampling delay case is generalized to skewed
sampling case. An observer-based controller is
constructed for the output feedback case. Using the
observer-based controller as a basic controller, we
derive a state space representation of doubly coprime
factorization with integral action. Using the

representation, we give a convenient parametrization
of two-degree-of-freedom integral controllers
accounting the sampling skew.

2. Preliminaries

Consider a continuous-time plant described by
X(1) = Ax(t) + Bu(t), y(t) = Cx(1) 2.1)
where xER" is a state vector, ¥&R™ is a control

vector and yER™ in an output vector. Define the
skewed output as

vk = ykT=8), k=12,

where T is sampling period and 9 is a skew factor.
Then the discrete~time model of (2.1) under the
skewed sampling is given by

x(k+1) = Fx(k) + Gu(k)

2.2)
yy(k+1) = Hx(k) + Dgu(k)
where
T
F=e', G-= Ie""Bdt
2.3)

H, =Ce’™®, D, =C I e*Bdr
4

In the following discussion, we assume that the
pair (F,G) is controllable, the pair (H,F) is
observable and det CB=0. Define

(2.4)

E,

F-1 G ]

and assume det Eg»0.
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For the output feedback design, we use a full
order observer given by

Tk+1) = Fi(k) + Gu(k) +Kily, (k+1)-95(k+1)]
9ok +1) = Hx(k)+Du(k)

where K, is an observer gain matrix.

In the next section, we will propose an output
feedback design of integral controllers accounting the
sampling skew.

3. Integral Controller Design

First, we extend the reformulated version [2] of the
state feedback design of integral controllers 1] to
the skewed sampling case. Assume that the output
is obtained by the skewed sampling while the states
are measurable without the sampling skew. This
assumption is unrealistic  but is convenient for
constructing an observer-based controller.

As a structure of an integral controller, we
consider

ulk) = Oy x(k) +sy(k) +J [ ry(k) =y, (k)]
stk +1) = s5(k) + Tyl ry(k) - yo(K)]

where, s3(k) is the state of an integrator, ry(k) is the
skewed-sampled value of a continuous time step
signal r(f).

For an efficient determination of the matrices O
and Jy in (3.1), we have the following result.
Proposition 3.1: Let L is a arbitrary matrix that
makes the matrix F-~GL stable. Determine the
matrices Oy and J, in (3.1) by the matrix equation

(0, J,)E, = [LF I+LG] (3.2)

Then, the closed-loop system consisting (2.2) and
(3.1) is asymptotically stable and the zero steady-
state error for a step reference signal ry(k) is
achieved. In addition, the behavior of the error
vector

k) = [x'(k)-x'(=) u'(k)-u'(=)]" (3.3)

where x(®) and u(cc) are the steady values of the
state and the contro] input, respectively, is described
by

Ek+1) = PEK) G4

where

F G
- ’ (3.5)
-LF  -LG

The eigenvalues of the error transition matrix (3.5)
consist of the eigenvalues of F-GL and m zeros.
Proof: The closed-loop system consisting of (2.2)
and (3.1) is described by

x(k+1) x(k) 0

R RN 2T

utk+1) u(k) 5 (.6)
x(k)

k+l) = [H_D
yo(k+1} = [ H ;,][u(k)

where

W=

F G
—O(F-N-J H, 1-(0,G+J D)
Note that (3.7) can be expressed as

1 0 |{\F-I G
Wl @8)
-0, ~J,||H, D

5

Assume that the closed loop system is asymptotically
stable. Then, it follows from (3.6) and (3.8) that the
steady state is expressed as

x(0) I olfo
=FE . p 3.9
L(m)l [J,, ()5 gy J-Jar}

Consequently, the steady state output is given by

ol

yy(®) = [H, DJE'| |=r ‘(.10

r

Next, we show the closed loop stability. It follows
from (3.6) and (3.8) that the behavior of the error
can be described as

G
Eke1) =

E(k) + Hv(k) (3.11)

where v(k)=u,(k+1) is a new control input defined by

wk) = | O(F=D+)H, OG+JD-T1EKk)
(3.12)
=—{[ o, ja]Ea +{0 _]]}E(k)
For the matrices Oy and J; satisfying (3.2), (3.12)
can be rewritten as
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wk) = -[LF LG]Ek) (3.13)

and the error system can be described by (3.4).
Using the technique used by Mita [1], it can easily
be shown that the eigenvalues of the error transition
matrix (3.5) are those of F~GL and m zeros. M

The above result show that the state feedback
matrices Oy and J; can easily determined by solving
the linear matrix equation (3.2) for arbitrary state
feedback gain matrix L for the standard regulator
problem for the plant.

For the output feedback case, we can construct an
integral controller by replacing the state x(¢) in (3.1)
with the estate estimate generated by an observer.
Then, the algorithm of the observer-based controller
is described by

u(k) = =0 2(k) +s,(k) +J g r(k) =y (k)]

_ (3.14)
sk 1) = 5,06) +J [ r(k) - y,(K))]

4. Doubly Coprime Factorization with
Integral Action

Williamson [4] has obtained a state space

representation of the doubly coprime factorization
accounting the sampling skew by a direct use of the
well-known continuous—time result [6] which is
based on an LQG controller. The result is
summarized as follows.
Lemma 4.1t Let M,(z) and C, 5(z) denote the
transfer function matrix of the plant and that of the
- LQG controller with the state feedback_ gain matrix
L and the observer gain matrix Kj, respectively.
Then My(z) and C,5(z) can be expressed in coprime
forms as ‘

Mz) 2 D, +H,(zI-F)"G]

L b @.1)
= Q; (Z)Pa(z) = Pg(z)Qb (Z)

Croo(®) =S, @R(2) =R(2)S;'(2)  (42)
where

Py2) =z7'(D,+(H,~D,L)eI-F+GL)'G]  (4.3)
0,&) = I-LEI-F+GL)"'G (4.4)
Pyz) =27 Dy+Hyel-F+KH) (G -K,Dy)] (4.5)
04(@) = 1 -H (eI ~F+K J1) K, (.6)

R(z) =zL(zI-F+GL)"'K, 4.7)

8,(z) =1 +(H,~D,L)zI-F+GL)"'K, (4.8)
Ry(z) =2L(I -F+KH) 'K, C(49)
8,z) =1+LGI-F+KH) (G -KDy) (4.10)

The eight matrices in (4.3)-(4.10) are proper and
stable and constitute the doubly coprime factorization

R S, ]|%@ -5 {ro @11
-P2) O || P R@ | |o 1

0

Since the above representation is based on an
LQG controller, it is inconvenient to parametrize all
stabilizing integral controllers. Taking the observer-
based integral controller (3.14) as a basic controller,
we give a convenient state—space parametrization.

First, we need the following resuits for the
solutions of the matrix equation (3.2) and its dual
equation.
Lemma 4.2: (a) The solution of matrices O, Jy
satisfying the matrix equation [0y Jy)E;=[LF I+LG]
can be expressed as follows.

J, = [Dy+(H,-DLYI-F+GL)'G]*
(4.12)
0, =L +J (H,~D,L)J~F+GL)"

(b) For an observer gain matrix Kj consider the
matrix equation

g 9| | K (4.13)
AN
I | |rH,K,

with respect to the matrices O, and J,. Then the
solution can be expressed as

Jy = [Dy+H(I-F+KH) G -K D]
) . (4.19)
0, = K,+(I-F+KH) (G-K DY,

Proof: The results are obtained by straightforward
matrix calculations. Details are omitted. |
Using Lemma 4.1 and Lemma 4.2, we can obtain
the following result.
Proposition 4.1: Consider the  observer-based
integral controller (3.14). Let Cy(z) denote the
transfer function matrix from ygk) to -u(k). Then
Cpi{z) can be expressed in coprime factorizatin
forms as

Cpi@) = U, @ V,(2) = V(2) Us (@) (4.15)

where
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Uz) =2z - DI +O(zI -F+K H)G-KD,)} (4.16)
U2) =2 @ - DI +(H,~D,LXz[-F+GL)'0,] (4.17)
V@) = J, +(z-1)O,zI -F+K J1,) 'K, (4.18)
Vi(2) = T, +@-DLEI-F+GL) "0, 4.19)

The matrices (4.16)-(4.19) are proper and stable and
constitute the doubly coprime factorization with the

matrices (4.3)-(4.6), ie.,
Uf(z) 1.75(2) Oy2) -V,@2) |7 o 4.20)
"Pa(z) Q(,(z) Pa(z) (l;,(z) 017

Proof: The left factorization in (4.15) can easily be
obtained by considering z-transformations of (3.14)
and the observer algorithm (2.5). Although the right
coprime factorization can directly be proved, it
requires extensive matrix calculations. Instead, we
give a constructive proof which requires less
calculation.

Consider the doubly coprime factorization (4.11)
in Lemma 4.1. Then, for an arbitrary proper and
stable matrix ©(z), the following identity holds

S42)-0(2)P(z) R(2)+©@)04()
_Pa(z) Q_a(z)

'(4.21)
Q) -R@+00@1] [1 0
Pyz)  S2)-P(0)6@) 0 7
It follows from the above identity that
[ $42)-0@)P@)] [ R2)+O(2)04@)] 22

= [R2)+O@)Q(N | S@)-O@)P(2)] !

Consequently, if there exists a stable matrix ©(z)
such that

Ug(z) = Sa(z) - G(Z)Ps(z)
V(2) = R@) + 00,

are the left factorization factors of (4.15), then the
right hand of (4.22) must be a right factorization of
Cpafz). Using the left factorization of (4.16) and
(4.18), we can express the matrix ©(z) satisfying
(4.23) as

(4.23)

0@) = V@) -Ry@)) 0y @)  (4.24)

From (4.9) and (4.18), we can write the numerator
matrix in (4.24) as

Vy(@) - Ry2) = [ I+(H,~-DLYI -F+GL)'K,]
[I-H & -F+KJ1)'K,]

Using (4.25) and (4.6) in (4.24), we have
O@) =J [ [+(H,-DLYI-F+GL) 'K, ] (4.26)

(4.25)

By simple matrix calculation, we have an expression
dual to (2.26) as

O@) = [ I+L(I-F+K ) G-KD)V, (427

The matrix ©(z) is apparently proper and stable.
We can easily check that the matrix (4.27) also
satisfies the first equation of (4.23). Hence, we have
shown that there exists ©(z) satisfying (4.23).

Substituting (4.26) and (4.27) in the right hand
side of (4.22), we can obtain the right factorization
factors of Cpi{z) as follows

Uy @) = Siz) ~ ©(2)P(z)
=27~ D{+(H-D L)Yzl -F+GL)"  (4.28)
[ K,+(I-F+KH) (G -K D))
V@) = Ry@) +0@)04(2)
=J,+@-DLEI-F+GL) [ K, +(-F (4.29)
+K,H) (G-K D), ]
Using the expressions given in Lemma 4.2, we can

easily check that (4.28) and (4.29) reduced to (4.17)
and (4.19), respectively.

5. Parametrization of Two-Degree—of~
Freedom Integral Controllers

The doubly coprime factorization given in the
previous section can conveniently be used to ‘obtain
parametrization of two-degree-of-freedom integral
controllers accounting the sampling skew.

In the following discussion, we denote the set of
proper and stable rational matrices by R.

For the plant given by (2.2), we consider a two-
degree—of—-freedom controller described by the
transfer function matrices

C,@) = [Cr@) CpR)]
= D@ [N, @) N,@)

from the input vector [r'(f) -y'()]" to the control
input u(f). Noting that the z-transform of the unit
step reference input ry(f) is factored as

(5.1)

r(2) = D @N(2) (5.2)

where
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D) =z7'z-DI, N@) =1 (5.3)

we have the following result as a special case of the
parametrization of general two-degree—of-freedom.
controllers.

Lemma 5.: Let T(M,) denote the class of
stabilizing two-degree—of-freedom controller for the
plant M, given by (4.1) and a step reference input.
Then this class can be parametrized by two free
parameters ©,(z) € Ry and ©,(2) € Ry as

D, (2) = Uy2) - ©0,)R,(2)
NT‘(Z) = 176(2) + Gl(z)D',(z) G4
Ne(@) = V(@) + ©,2)0,2)
where U,(2), V,(2), Oyz) and R,(z) are defined in
Lemma 4.1 and D (z) is defined in (4.3). d

Note that a controller given by the above
parametrization .does not necessarily guarantee
integral action. As a special case of the well
known result for general robust tracking problem [7],
the necessary and sufficient conditions guaranteeing
the integral action can be stated as follows.
Lemma 5.2: The two-degree~of-freedom controller
(5.1) solves the discrete—time robust tracking
problem for a step reference input if and only if the
following three conditions are satisfied.

1) D (2)Qy2) + N,()P(2) = 1
2) @-1)7"'D(2) €R (5.5)
3) [N,,@)-N,1D ' (z) €R;
U
Let us call a controller satisfying the three
conditions by a two—degree—of—freedom integral
controller. For our choice of the basic controller, we
can obtain the following simple characterization.
Lemma 5.3: Let Tp{(M;) denote the class of all
two-degree-of-freedom integral controllers for the
plant M, given by (4.1). Then the controller
belonging to this class can be represented by the
parametrization of T(M,) given in Lemma 5.1 with
the free parameters ©,2) ER; and ©,(z) ER;
satisfying ©,(1)=0.
Proof: For a controller described by (5.4) in Lemma
S.1 with the free parameters ©,(z) €ER; and
©,(z) € Ry, the three conditions in Lemma 4.2 can
be restated as follows.
1) Note that the first condition in Lemma 5.2 is
independent of ©,(z). In addition, since the matrices

P2), Qy(2), Uy(z) and V,(z) satisfy the relation of

the doubly coprime factorization, the first condition
in Lemma 5.1 is satisfied for any ©,(z) ER;.

Consequently, the first condition is satisfied for
arbitrary free parameters in R;.

2) Substituting (5.4) into the second condition in
Lemma 5.2, we have

271 + Oyl - F+K,H) (G -KDyp)]
+27z=1)"'0,()| D, + H, (5.6)
@l - F+K,H) (G -K, D) E R,

Since the first term belongs to R and the zeros of
Hy(zl-A+KH, ) (G-KyDy) do not locate at z=1 by
the assumption det E;=0, the second condition in
Lemma 5.2 is equivalent to

z'(z-1)"0,2)ER; (5.7)

3) Using (5.3) and (5.4) in the third condition in
Lemma 5.2, we obtain

0,(2) - 2(z-1)"0,(2) Qb(z) ER (5.8)
which is equivalent to
2(z-1)70,@) Q-a(z) ER; 5.9

under the assumption ©,(z) € R;.

Assume that the controller described by ©,(z) € Ry
and O,(z) € Ry achieves robust tracking. Then, it
follows from (5.7) and (5.9) that ©,1)=0.
Conversely, if we consider a controller described by
the parametrization given in Lemma 5.1 with
©,(2) € R; and O,(z) € R, satisfying ©,(1)=0, then
the condition (5.7) and (5.9) are satisfied.
Consequently, the three condition in Lemma 5.2 are
equivalent to ©,(z) ER; and O,(z) € Ry satisfying
©,(1)=0. | |

Although the above result gives a simple
parametrization of the integral controllers, the free
parameter ©,(z) must satisfy the constraint. The
following result gives a simple trick to remove the
constraint.

Lemma 5.4: In the parametrization T(M,) given in
Lemma 5.1, replace the free parameter ©,(z) by

0,2) = 27z -1, (5.10)

where ©g(z) ERg . Then the class Ty (M) is
parametrized by ©,(z) € Ry and O,(z) € R both of
which are arbitrary in R, . ]
From the above lemmas, we obtain the following
result clarifying the relation between the above
parametrization and the basic integral controller.
Proposition 5.1: Consider a controller described by
the parametrization given in lemma 5.4, Let u(z)
denote the z-transform of the control input wu(?).
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Hy(zlF) ' G+Dy

ra(K) Hslll -'__,

Fig.1 Basic integral controller and frec parameters

Then the control input can be expressed as

u(z) = 2(z-1)" [ r(2) -y, (2)] - O4i(2)
_em(z)[ya(z) "_))b(l)] (511)
M GFF(Z)ra(Z)

where

0,.(2) = ©,(2) +20,GI ~-F+K,H,) 'K, (5.12)

9:@) = H () + Dyu(z) (5.13)

Proof: Using (5.4), we can write the control input of
a two—degree—of-freedom integral controller with the
free parameters as

u(z) = [U,@)-0,6)P)]"
7@ +0,00,@Ihe  (.14)
+ [V,@) +0,00,0),@)}

Note that the z-transform of the state estimate
geénerated by the observer (2.5) can be written as

£@) = (@ <F+K, )"

[2K,y,(2) +(G-K,Du(z)) (5.15)

Using the expressions for the factorization given in
Proposition 4.1 and (5.15) in (5.14), we can easily
obtain the expression (5.11). N

Since the term z(zI-F+KgI1;) 'K, in (5.13) belongs
10 Ry, Og(z) €R; if and only if ©,(z)ER,. Therefore,
instead of ©,(z), we can use ©q(z) as a new free
parameter in the parametrization. From (5.11), we
can readily illustrate the structure of the controller
given by the proposed parametrization as in Fig. 1.

6. Conclusions

We have proposed a transparent and efficient
design  of discrete~time observer-based integral
controller accounting sampling skew. Unlike the
conventional approach, this design does nat require
a solution of a higher order regulator problem for an
extended system including the integrators.

The free parameters in the parametrization given
in Section 5 can be used in various ways to enhance
performance. This issue will be discussed elsewhere.
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