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Abstract

A unified approach to continuous and discrete-time
Nehari problems, based on recently developed results by
the one-block and Hankel-norm wmodel
problenms, First,

in delta domain where numerical

the authors for

reduction is proposed, we derive
discrete-time solutions
error is small and then we show that the derived form
becomes same as the continuous form when the sampling

interval approaches to zero.

1. Introduction

Recent days, the role and use of the Nehari problem has
become very important, especially in the area of control

theory. In particular, it plays a main role in solving

the one-block and Hankel-norm model reduction problems.

The works on this subject are found in {11, [2],

and [9] for continuous-time systems and in [1],

[8] In [1] and [7],
problem of balanced state-space model for system
considered, On the other hand, the direct methods without
[3] and [9]. In (8], a
generalized state-space representation for causal as well
as noncausal system is used in the derivations.

{31,
[7]

Nehari

[5]
and
for discrete-time systems.
is
balancing were given in [2],
However,
they have not referred any relationship between continuous
and discrete-time cases and hence we have a difficulty
that we have to solve them with each other method. Thus,
the derivation of unified solutions to continuous and
discrete-time cases gives more insights into the problem
and is therefore of interest.

we derive the unified solutions for
Nehari problem in delta domain.

I{n this paper,
The benifits and connec-
tions between continuous and discrete-time systems by
using delta form are sufficiently discussed in [4]. The

delta form approach has the numerical properties superior
to those of usual shift form. Also, owing to the similar

of the delta with differential
operator, it can generally use the continuos-time insights

structure operator

in discrete problem and it directly represents continuous

form as sampling interval approaches zero. These indicate

that the delta form approach to the Nehari problem may

offer a powerful tool to solve the discrete-time Ho

control The

design problem for continuous-time plants,
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derivation procedure in this paper is based on the

immediate consequences of the all-pass properties.

This paper is structured as follows: After a simple
discussion of delta transformation and some definitions
is

are given, then a precise statement of the problem

formulated in Section 2. The unified solutions to Nehari
problem are given in Section 3 and a numerical example is
then shown in Section 4 to illustrate the usefulness of
the method proposed here. Concluding remarks are given in

Section 5,

2, Problen Formulation in Delta Domain

A. Definitions and Nomenclatures

Consider the delta operator
q-1
A
where q denote the forward shift operator and A

o =

(2.1)

is the
sampling interval. Then we can represent the discrete-time
model with delta operator as follows:

&x(k) = Ax(k) + Bu(k) (2.2)
y{k) = Cx(k)

where A = QAc (2.3)
B = QBc (2.4)
C = Ce (2.5)

1 A
Q= — j‘ exp(AcT) dz (2.6)

A 0

and Ac,Bc and Dc are the matrices in the continuos-time
Note that (2.2)

produce the new unstable zeros but not Z-transformation.

model . & -transformation for does not
An interesting observation from (2.3) - (2,6) is that they
reveal the close connection between discrete form and the
as A —> 0.
And when we desire to find an algorithm for a copmputer in

& -domain so that the digital system approximates the
transfer fuction matrices (TFM) G{(s), we may use the
following bilinear transformation in & -domain:

underlying continuous form since Q —> [

Gly) =G(s)| s = y/(1+A 7/2) (2.7)
or inversely we can approximate G{ ) to G(s) as follows:
G(s) =G(7r) 7 =s/(1-Ay/2) (2.8)

that |7 |2A/2 + Re(7) < 0 iff Re(s) <0,
|712A72 + Re(7) = 0 iff Re(s) = 0. And then we can see

Notice and



that the stability boundary for the case of delta operator

is the contour 7 = (exp{jwA) - 1) /A in frequency

domain,

Let discrete system G(7) =D + C{(y1-4)" !B and the app-
+ Ci{sl~41) 1By,
then a straight calculation by transformation (2.8) using

roximating continuous system Gi(s) = Dy

matrix inversion lemma gives

A = KA (2.9)
By = 4B (2.10)
Ci = Cyy (2.11)
A
Dy =D - — CA&1B (2.12)
A A
where iy = (I + — A)"1, provided A and (I + — A) are
2 2
invertible.
If G(7) is stable but not necessarily minimal with a

state-space realization in {2.2), then the controllability

and observability gramians, P and Q respectively, are

defined as the solutions to the following unified Lyapunov

equations:
AP + PAT + BBT + AAPAT = ¢ (2,13)
ATO + QA + CTC + AATOA = 0. (2.14)

The Hankel singular values of G( ) are defined as

{ ogi = Ai(PQ), 1<ign }
and the Hankel norm denoted || - lly is the largest of
these. Substituting (2.9), (2.10) and (2.11) into

corresponding continuous Lyapunov equation to (2.13) and
(2.14), then that  the
observability gramians of & -model are the same ones with

we see controllability and

corresponding continuous-time.
State-space system is denoted

Gly) := (H%]

(2.15)

vhere G(7) = C{yI-A)"1B + D. Then the G's conjugate
system is defined as
-AT} R CT
Glyr)* = (2.16)
-BTA DT- ABTATCT
where i = (1+A3)-1, provided A and (I+A3%) are

invertible. This formulation is easily derived by direct

calculation with matrix inversion lemma,
For a given

Ply) = (2.17)

Pi1 | Pi2 }
P2y | P22

we define the lower linear fractional tranformation by

FL(P,K) = Pyy + P12K(1-P22K)-1Py2. (2.18)
The Ho-norm of a TFM G(7) is denoted
HGlr) llo = sup omexl(expliwA)-11/A] (2.19)

RLo denotes the space %f proper, real rational function
with no poles on 7= (exp{jwA) -1)/A with bounded norm
denoted || ||o. RHo denotes the subspace of RLe with no
poles outside the open stability boundary contour and RHw-
denotes the space of orthogonal cowmplementary of RHy in

RLo with no poles on the stability boundary contour.

The 'inertia’ of a square matrix A,

written Indd or Ina,
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is defined as the triple of integers
Inad = { ma(d), va(d), &ald) }, (2.20)
InA = { =(A), v(1), &(A)}, (2.21)
va(A) and 5d{(A) denote the number of
of A the
stability boundary contour, respectively, and w (), v(A)
and &(A) denote the number of eigenvalues of A lying in

where ma(A),

eigenvalues lying outside, inside and on

RHP, LHP and on the imaginary axis, respectively.
B. Problem Formulation
Nehari problem[5] ( or so-called Hankel-norm approxi-
mation problem with zero order) is posed as follows: Given
G in RLo with }|G*Ju < @. G(7) € RHx", find all X's in
RHo such that
hG6+X lle £ a. (2.22)
¥%e may assume that G is proper and analytic inside the
G € RHo~. Otherwise,

stability boundary contour, i.e.

factor G uniquely as

G =06, + Gy
G1* , G2 & RHw, Gi proper.
So to solve the Nehari problem for G, solve it for Gi,
i.e. find all Xi's in RHo such that || Gy + Xi |lo ¢ @
and then set X = Xy + Gz. Thus, without loss of

generality, we can assume that G(7) &€ RHo .

3, Main results

In section 2, some definitions and basic results for
solving problem are given. In this section, we derive all

solutions to Nehari problem in delta domain using all-pass

properties and show that the solutions become to
continuous form as sampling interval approaches to zero.
Bo
Theorem 3.1 Given G(7) = , G & RHy-{nxm),
cC|D
such that
6 lln < « (3.1)
a parameterization of unified all solutions to Nehari
problem is given by the lower linear fractional
transformation
X7} = FLiQU 7). K( 7)), X & RHa (3.2)
where K € RHo, |{K|lw < a-!
Aq | Ba
and Q( 7 ) =
Co | Do
(-AT - B,BT)3T ‘ By RT-137CTDy,
-CP-DyBTAT Di1 - D Diz
-Dg i BTAT D21 0
(3.3)
vhere R = PQ - 2],
By = RT-1(3TCTDy,+QB),
and D11, Di2 and D21 are obtained as fllows:
Di1 = -A a?(1+ACAR-IPATCT)-ICIR-IB (3.4)
Di2T(1+ ACARIPATCTID = @21 (3.5)

D21™D21 = -A @2BTRT-VATCTD) - @2( ABTQR-!B-1). (3.6)

The following lemma gives sufficient conditions for a

TFM to be square all-pass.



Lemma 3.1 Given G(7) = { 2 b such that
AP + PAT + BBT + AAPAT =0, P = PT (3.7)
ATQ + QA + CTC + AATQA =0, Q = QT (3.8)
DBT + CP + ACPAT = 0 (3.9)
DTC + BTQ + ABTQA = 0 (3.10)
DDT + ACPCT = | (3.11)
DTD + ABTQB = | (3.12)
PQ =1 (3.13)

then G*G = GG* = 1. (3.14)

Proof : The proof is shown at Appendix B
ooo
[t will be necessary to determine the exact number of
stable poles for certain matrices satisfying Lyapunov
equations in proving Theorem 3,1, The connection between a
solution to the Lyapunov equation and the poles of system
are now stated.

Lemma 3.2 Given the nxn and nxm matrices A and B, there
exists a symmtric matrix P satisfying
AP + PAT + BBT + AAPAT = 0, (3.15)
then
(i) there exists a unique solution to (3.15) if and only
if Ai(4) + A (A + AAi(AA(A)* = 0 Vi, ]
(ii) if 6(P) = 0, then z4a(A) < v(P), va(d) < =(P)

)
(iii) if &4(A) = 0, then m(P) < wvd(A), v(P) < =md(A)
(iv) if (A,B) is controllable, then md(A) = v (P),
va(A) = w(P) and §a(A) = 5(P).

Proof : The proof follows from Theorem 3.3 of Glover(1984)
by using a bilinear transformation in & -domain,
ooa
Lemsa 3.3 Aq defined by Theorem 3.1 does not have any
eigenvalues on the stability boudary contour, that is,
§alAg) = 0. (3.16)
Proof : See Appendix C.
ooao
Next lemma plays a key role to approximate the
anticausal TFM G(7) by causal TFM F( 7).

Lemma 3.4 Let G(7) € RHo", then
HG6yr)* tu = inf [ 6+F |lo. (3.17)
Fe

o
The proof follows directly from Theorem 6.1 of Glover
(1984),

The next lemma considers lower linear fractional transfor-
mations with all-pass matrices and is based on the work of
Doyle([11], Lemma 15).

Lemma 3.5 Consider the following feedback system:
1 P

(yl L P11 Pr2

y2 P u , P=

="
[ —
Suppose that a-!'P is all-pass, P2;-! € RHo, ||P22le ¢ @
and K is a proper rational matrix. Then the foiiowing are
equivalent,

(i) FL(P.K) € RHs and [ Tyiuille < @

(ii) K € RHo and [[Kllo < !

1 Pi2,P21.P22 € RHo

Pz1 P22

The proof is derived similarily as that of [11].

Proof of Theorem 3.1 : We can now prove Theorem 3.1 from
Lemma 3.1 - 3.5 (See Appendix A).

Now we can directly show that Theorem 3.1 represents a
continuous form as sampling interval approaches to zero
from (2.2) - (2.6) and following:

A=1, Dit =0and Dy2 = D21 = el as A —> 0. (3.18)

§, Example

To illustrate the solution developed in the paper, the
following example is taken. Let G*(s) be given by

following state-space realization:

AC BC
G~(s) = , G(s) & RHo~
CC DC

where

5.12 20.18 9.85 i
Ae = -3. "4. -2. N Bc = 0
6.12 17.18 9.85 1
L 2. o (o0
Co = [6.12 2218 9.85]' De = [1]

The delta model G(9 ) with A = 0.01(sec) corresponding to
G~(s) is given as follows:

Al B
Gly) = , Gl7) € RHo™
C|D
where
5.24 21.16 10.35 1.08
A=[-3.08 -441 -2.20 B = {-2.59e-2
6.28 18.24 9.39 1.08
_ {1 2, 0. _ {0
C_{G.ll 22.1 9,85] D_[l]

The result by developed solution in Theorom 3.1 with
a =1 is shown in Fig. 4.1,

Singular Value

-10-

SV -db

-20-

M2 ' o 108
Frequency - Rad/Sec
Figure 4.1. Singular values plots of (G + X) with & = 1,

A =0.01 sec
A = 0 sec.

5, Conclusion

%e have proposed a method to obtain all solutions of the
Nehari problem in delta domain, based on developed results
by the authors for the one-block and Hankel-norm model

reduction problems. ilso, we have shown that the



solutions are the unified form for the continuous and
which the
difficulty that we must solve the problem with each other

discrete-time Nehari problems, eliminates

method in continuous and discrete-time case.
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Appendix A

Proof of Theorem 3.1 :

First construct augmented system Ga(y) € RHp (n*m)x(n+m)
and Q( 7) & RHo(n*m)x(n+m) gych that e 1[Gal(7) + Q(7)]

is square all-pass, where

G{r)o0 Aa | Ba
Galr) = = . (A1)
0 0 Ca | Da
Ag | Ba
Let Q( 7 ) have state-space realization
Co 1 Da
de | Be
then Ga( ) + U 7) = (1.2)
Ce | Do

Aa O Ba
vhere Ae = , Be = , Co = [Ca Col, De = Da+Dq.
0 Aq Ba
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a-1[Ga(7) *+ Q(7)] is square all-pass by lemma 2.1 if

there exist symmetric matrices Pe and Qe satisfying

AecPe + PeAeT + BeBel + AAePodeT = 0 (A.3)
AeTQe + Qode + CoTCe + AdeTQede = 0 (A. 4)
DeBeT + CePe + ACePedeT = 0 (A.5)
DeTCo + BeTQe + ABeTOede = 0 (A.6)
DeDeT + ACePeCoT = a2l (A.7)
DeTDe + ABeTQeBe = a2l (A.8)
PoQe = all. (Ag)
Now let the two solutions to Lyapunov eguations of G(77)
or Ga{7r) be P and Q, and hence satisfy (2.13) and
(2.14), respectively.

Assuming dimension{A) = dimension(Ae), one solution to

(4.9) is then,

P I Q -RT
Pe = Qe = [ ] (A.10)
1 QR-1! -R RP ).
Now given any De satisfying (A.7) and (A.8), Ba is
obtained from (1,1) block of (A.6), Cqo from the (1,1)
block of (A.5), and Ag from (1,2) block 0f (A.3) as,
Bq = RT-1(ATCa™De + QBa) (A 11)
Cq = -CaP - DeBaTAT (A.12)
Ag = (-AT-BgBaT)AT. (A.13)

For (A.10)-(A.13) the remaining block of (A.3)-(A.6) can
be verified by long manupulation and hence omitted here.
the inertia of QR-! |
= In(RQ"1) = In(-{QiP1-@21)Pi~1)
= In(-Qi+@?P17!) = In(-P 1/ 24P 172 + @)
= In(diag(-¢i2 + a?I)). (A.14)
where P1, Qi are solutions to Lypunov equations of G*(7)
and equal to -0 and -P, respectively, and oi2 = Ai(P1Qy)
, then by Lemma 3.4 QR-! has all eigenvalues in RHP. Thus
Aq has all eigenvalues inside stability boundary contour
by Lemma 3,2 and Lemma 3.3,
Now find De satisfying (A.6) or (A.7).
(4.10)-(A.13) into (A.8),
DeT(I+AATR-IPATCT)De + A @ 2DeTCAR-1B

Considering
[n(QR-1)

Substituting

+ A @2BTRT-1ATCTDs + a2( ABTQR-1B-I) = 0. (A.15)
and partitioning De with proper dimensions as
{ D1 Diz
De = (A.16)
D21 0O

then D11, Diz and Dz satisfy (3.4) - (3.6).

To complete the proof of Theorem 3.1 with Lemma 3.5 we
show finally that Qz;-! € RHo and {[Qz2ile < «.
First, from (3.3), A’ term of Qz1°! is

(-AT - RT-1(ATCTD;; + QB)BT)AT + RT-1(ATCTD;; + QB)BTAT

= -ATAT, (4.17)
Since | Ai(A)[2A/2 + Re( A (A)) > 0,

Q21°! € RHa. (4.18)
Next, since Qi2*Qiz + Qz22*Qzz = a?l,

o2z llo < @ if Q2*Qiz = O for all @,
that is, det{Qiz((exp(jwA)-1)/A)) = 0O for all w.

From (3.3), det(Qiz) is
det{Djz)-det{y 1 « [AT + RT-1(§TCTDy{BT + QBBT}iT]
-RT-LATCT(CP + D1(1BT)3AT} = det{ 71 - Aq)
= det(Dyjz)-det( 1 + ATST + RT-1QBBTAT - RT-1ATCTCP)
+ det{ 71 - Agy. (A 19)
where
det(71 + ATAT+RT-1QBRTAT - RT-1ATCTCP)
= det{y1 + RT-1[-(Q4P +AQAPAT)AT - @ZATiT - ATCTCP}
= det{ 91 + RT(-QATP - @2ATAT - 3TCTCP)]



= det{ 71 + RT-1AT(ATQP - a2AT)]
= det{ 91 + RT-1ATATRT), (A.20)
Since Ai(-ATAT) are not on stability boundary contour
det(Qi2) = 0 if det(Di2) = 0. (A.21)
This completes the proof.

Apendix B
Proof of Lemma 3.1 : First show that G{ 7 )}*G(7) = I,
(2.16), the state-space realization for G*G is

[ -AT + AATATAT (TC - AATATCTC ‘ CTD‘AA;f\TCTD
= 0

From

G*G = A
-BT + ABTATAT DIC - ABTATCTC } DTD- ABTATCTD
(B.1)
Applying a state similarity transformation on (B.1) by
I -Q
( 1 with Q = QT and setting (3.8) and (3.10), then
0 1
G*G = DTD - ABTATCTD, and hence if
DTD - ABTATCTD = | (B.2)
equivalently, from (3.10) and (B.2)
DTD + ABTQB = I, (B.3)
then G*G =1,

Next we can show that GG* = 1 similarily as above by a

I -P

state similarity transformation [ ] with P = PT,

1
we complete the proof to be square all-pass,
that is, G*G = GG* = I, by showing PQ = 1.
(3.10) by D and then substituting (3.11),
that

Finally ,
Premultiplying
then we have

C(l - PQ) = 0.
This completes the proof.

(B.4)
Thus PQ = I.

Appendix C

Proof of Lemma 3.3 : We prove our claim by contradictions
in two step using PBH test for controllibility.

i} Ag does have not any uncontrollable mode on the
(A,
uncontrollable mode on the stability boundary contour,

stability boundary contour Assume Bg) has any

Then there exist a A and a vector x such that

x*Aq = x*(-AT - ByBT)AT = Ax* , (€C.1)

x*Bq = x*(By  RT-1ATCTD12] = {0 O0]. (C.2)
From (C.1) and (C,2) we conclude that

-x*ATAT = Ax* (C.3)

vhich is contradiction with the fact that ATAT does have
not any eigenvalues on the stability boundary contour,
Thus, that (Aq, Bg)
uncontrollable mode on the stability boundary contour,

we conclude does not have any
il Agq does not have any controllable mode on the stability

boundary contour @ Assume (Aq, Bg) has any controllable
Then there does
not exist any A and any vector x such that
AxE, (C.4)
[o o1. (C.5)
Take x satisfying (C.4) and (C.5), and multiply P-Lyapunov
equation (C.6) by x* from the left and x from the right.
AqQR-! + QR-14qT + BgBqT + AAQQR 1AgT = 0 (C.6)
Then, we get

x*3qQRIx + x*QR 1AgTx + x*BgBaTx + x* AAQQR 13gTx

mode on the stability boundary contour,

x¥Aq =
x*Bq =
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= AX®QRIx + A*x*QR Ix + x*BgBeTx + A A A*x*QR-!x
A+A%+A X A¥)x"0R 1x + x*BgBqTx

(C.7)

—_ -~

A+A®¥ +AAA*) =0, (C.7) implies that

x*Bg = 0 (C.8)
which contradicts the assumption and thus (A, Bg) does
not have any

Since

controllable mode.



