• 제목/요약/키워드: direct laser lithography

검색결과 24건 처리시간 0.027초

회절광학소자 제작을 위한 레이저 직접 노광기의 공정실험 (Parametric Study for a Diffraction Optics Fabrication by Using a Direct Laser Lithographic System)

  • 김영광;이혁교;김영식;이윤우
    • 한국정밀공학회지
    • /
    • 제33권10호
    • /
    • pp.845-850
    • /
    • 2016
  • A direct laser lithography system is widely used to fabricate various types of DOEs (Diffractive Optical Elements) including lenses made as CGH (Computer Generated Hologram). However, a parametric study that uniformly and precisely fabricates the diffractive patterns on a large area (up to $200mm{\times}200mm$) has not yet been reported. In this paper, four parameters (Focal Position Error, Intensity Variation of the Lithographic Beam, Patterning Speed, and Etching Time) were considered for stabilization of the direct laser lithography system, and the experimental results were presented.

펨토초 레이저를 이용한 미세 PR 패터닝 (Femtosecond Laser Lithography for Maskless PR Patterning)

  • 손익부;고명전;김영섭;노영철
    • 한국정밀공학회지
    • /
    • 제26권6호
    • /
    • pp.36-40
    • /
    • 2009
  • Development of maskless lithography techniques can provide a potential solution for the photomask cost issue. Furthermore, it could open a market for small scale manufacturing applications. Since femtosecond lasers have been found suitable for processing of a wide range of materials with sub-micrometer resolution, it is attractive to use this technique for maskless lithography. As a femtosecond laser has recently been developed, both of high power and high photon density are easily obtained. The high photon density results in photopolymerization of photoresist whose absorption spectrum is shorter than that of the femtosecond laser. The maskless lithography using the two-photon absorption (TPA) makes micro structures. In this paper, we present a femtosecond laser direct write lithography for submicron PR patterning, which show great potential for future application.

355nm UV 레이저를 이용한 AZ5214와 SU-8 포토레지스트 어블레이션에 관한 연구 (A Study on the Ablation of AZ5214 and SU-8 Photoresist Processed by 355nm UV Laser)

  • 오재용;신보성;김호상
    • 한국레이저가공학회지
    • /
    • 제10권2호
    • /
    • pp.17-24
    • /
    • 2007
  • We have studied a laser direct writing lithography(LDWL). This is more important to apply to micro patterning using UV laser. We demonstrate the possibility of LDWL and construct the fabrication system. We use Galvano scanner to process quickly micro patterns from computer data. And laser beam is focused with $F-{\theta}$ lens. AZ5214 and SU-8 photoresist are chosen as experimental materials and a kind of well-known positive and negative photoresist respectively. Laser ablation mechanism depends on the optical properties of polymer. In this paper, therefore we investigate the phenomenon of laser ablation according to the laser fluence variation and measure the shape profile of micro patterned holes. From these experimental results, we show that LDWL is very useful to process various micro patterns directly.

  • PDF

레이저를 이용한 차세대 평판 디스플레이 공정 (Laser Microfabrications for Next-Generation Flat Panel Display)

  • 김광열
    • 한국재료학회지
    • /
    • 제17권7호
    • /
    • pp.352-357
    • /
    • 2007
  • Since a pattern defects "repair" system using a diode pumped solid state laser for Flat Panel Display (FPD) was suggested, a lot of laser systems have been explored and developed for mass-production microfabrication process. A maskless lithography system using 405 nm violet laser and Digital Micromirror Device (DMD) has been developed for PDP and Liquid Crystal Display (LCD) Thin Film Transistor (TFT) photolithography process. In addition, a "Laser Direct Patterning" system for Indium Tin Oxide (ITO) for Plasma Display Panel(PDP) has been evaluated one of the best successful examples for laser application system which is applied for mass-production lines. The "heat" and "solvent" free laser microfabrications process will be widely used because the next-generation flat panel displays, Flexible Display and Organic Light Emitting Diode (OLED) should use plastic substrates and organic materials which are very difficult to process using traditional fabrication methods.

다중 패턴의 회절광학소자 제작을 위한 레이저 직접 노광시스템의 공정 연구 (Process Study of Direct Laser Lithographic System for Fabricating Diffractive Optical Elements with Various Patterns)

  • 김영광;이혁교;김영식;이윤우
    • 반도체디스플레이기술학회지
    • /
    • 제18권2호
    • /
    • pp.58-62
    • /
    • 2019
  • Diffractive Optical Elements(DOEs) diffracts incident light using the diffraction phenomenon of light to generate a desired diffraction image. In recent years, the use of diffraction optics, which can replace existing refractive optical elements with flat plates, has been increased by implementing various optical functions that could not be implemented in refractive optical devices and by becoming miniaturized and compacted optical elements. Direct laser lithography is typically used to effectively fabrication such a diffractive optical element in a large area with a low process cost. In this study, the process conditions for fabricating patterns of diffractive optical elements in various shapes were found using direct laser lithographic system, and optical performance evaluation was performed through fabrication.

평판 디스플레이용 Laser Direct Imaging에 관한 연구( I ) (A Study on the Laser Direct Imaging for FPD ( I ))

  • Kang, H.S.;Kim, K.R.;Kim, H.W.;Hong, S.K.
    • 한국레이저가공학회:학술대회논문집
    • /
    • 한국레이저가공학회 2005년도 추계학술발표대회 논문집
    • /
    • pp.37-41
    • /
    • 2005
  • When screen size of the Flat Panel Display (FPD) becomes larger, the traditional photo-lithography using photomasks and UV lamps might not be possible to make patterns on Photo Resist (PR) material due to limitation of the mask size. Though the maskless photo-lithography using UV lasers and scanners had been developed to implement large screen display, it was very slow to apply the process for mass-production systems. The laser exposure system using 405 nm semi-conductor lasers and Digital Micromirror Devices (DMD) has been developed to overcome above-mentioned problems and make more than 100 inches FPD devices. It makes very fine patterns for full HD display and exposes them very fast. The optical engines which contain DMD, Micro Lens Array (MLA) and projection lenses are designed for 10 to 50 ${\mu}m$ bitmap pattern resolutions. The test patterns for LCD and PDP displays are exposed on PR and Dry Film Resists (DFR) which are coated or laminated on some specific substrates and developed. The fabricated edges of the sample patterns are well-defined and the results are satisfied with tight manufacturing requirements.

  • PDF

Maskless 노광공정을 위한 LDI(Laser Direct Imaging) 시스템 개발 및 단일 레이저 빔 에너지 분포 분석 (Development of a LDI System for the Maskless Exposure Process and Energy Intensity Analysis of Single Laser Beam)

  • 이수진;김종수;신봉철;김동우;조명우
    • 한국생산제조학회지
    • /
    • 제19권6호
    • /
    • pp.834-840
    • /
    • 2010
  • Photo lithography process is very important technology to fabricate highly integrated micro patterns with high precision for semiconductor and display industries. Up to now, mask type lithography process has been generally used for this purpose; however, it is not efficient for small quantity and/or frequently changing products. Therefore, in order to obtain higher productivity and lower manufacturing cost, the mask type lithography process should be replaced. In this study, a maskless lithography system using the DMD(Digital Micromirror Device) is developed, and the exposure condition and optical properties are analyzed and simulated for a single beam case. From the proposed experimental conditions, required exposure experiments were preformed, and the results were investigated. As a results, 10${\mu}m$ spots can be generated at optimal focal length.