• 제목/요약/키워드: differential voltage controlled oscillator

검색결과 49건 처리시간 0.024초

A Differential Voltage-controlled Oscillator as a Single-balanced Mixer

  • Oh, Nam-Jin
    • International journal of advanced smart convergence
    • /
    • 제10권1호
    • /
    • pp.12-23
    • /
    • 2021
  • This paper proposes a low power radio frequency receiver front-end where, in a single stage, single-balanced mixer and voltage-controlled oscillator are stacked on top of low noise amplifier and re-use the dc current to reduce the power consumption. In the proposed topology, the voltage-controlled oscillator itself plays the dual role of oscillator and mixer by exploiting a series inductor-capacitor network. Using a 65 nm complementary metal oxide semiconductor technology, the proposed radio frequency front-end is designed and simulated. Oscillating at around 2.4 GHz frequency band, the voltage-controlled oscillator of the proposed radio frequency front-end achieves the phase noise of -72 dBc/Hz, -93 dBc/Hz, and -113 dBc/Hz at 10KHz, 100KHz, and 1 MHz offset frequency, respectively. The simulated voltage conversion gain is about 25 dB. The double-side band noise figure is -14.2 dB, -8.8 dB, and -7.3 dB at 100 KHz, 1 MHz and 10 MHz offset. The radio frequency front-end consumes only 96 ㎼ dc power from a 1-V supply.

The Tripler Differential MMIC Voltage Controlled Oscillator Using an InGaP/GaAs HBT Process for Ku-band Application

  • Yoo Hee-Yong;Lee Rok-Hee;Shrestha Bhanu;Kennedy Gary P.;Park Chan-Hyeong;Kim Nam-Young
    • Journal of electromagnetic engineering and science
    • /
    • 제6권2호
    • /
    • pp.92-97
    • /
    • 2006
  • In this paper, a fully integrated Ku-band tripler differential MMIC voltage controlled oscillator(VCO), which consists of a differential VCO core and two triplers, is developed using high linearity InGaP/GaAs HBT technology. The VCO core generates an oscillation frequency of 3.583 GHz, an output power of 3.65 dBm, and a phase noise of -96.7 dBc/Hz at 100 kHz offset with a current consumption of 30 mA at a supply voltage of 2.9 V. The tripler shows excellent side band rejection of 23 dBc at 3 V and 12 mA. The tripler differential MMIC VCO produces an oscillation frequency of 10.75 GHz, an output power of -13 dBm and a phase noise of -89.35 dBc/Hz at 100 kHz offset.

PLL 주파수 합성기를 위한 dual-modulus 프리스케일러와 차동 전압제어발진기 설계 (Design of CMOS Dual-Modulus Prescaler and Differential Voltage-Controlled Oscillator for PLL Frequency Synthesizer)

  • 강형원;김도균;최영완
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 한국정보통신설비학회 2006년도 하계학술대회
    • /
    • pp.179-182
    • /
    • 2006
  • This paper introduce a different-type voltage-controlled oscillator (VCO) for PLL frequency synthesizer, And also the architecture of a high speed low-power-consumption CMOS dual-modulus frequency divider is presented. It provides a new approach to high speed operation and low power consumption. The proposed circuits simulate in 0.35 um CMOS standard technology.

  • PDF

Low Phase Noise LC-VCO with Active Source Degeneration

  • Nguyen, D.B. Yen;Ko, Young-Hun;Yun, Seok-Ju;Han, Seok-Kyun;Lee, Sang-Gug
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제13권3호
    • /
    • pp.207-212
    • /
    • 2013
  • A new CMOS voltage-bias differential LC voltage-controlled oscillator (LC-VCO) with active source degeneration is proposed. The proposed degeneration technique preserves the quality factor of the LC-tank which leads to improvement in phase noise of VCO oscillators. The proposed VCO shows the high figure of merit (FOM) with large tuning range, low power, and small chip size compared to those of conventional voltage-bias differential LC-VCO. The proposed VCO implemented in 0.18-${\mu}m$ CMOS shows the phase noise of -118 dBc/Hz at 1 MHz offset oscillating at 5.03 GHz, tuning range of 12%, occupies 0.15 $mm^2$ of chip area while dissipating 1.44 mW from 0.8 V supply.

A Fabrication and Testing of New RC CMOS Oscillator Insensitive Supply Voltage Variation

  • Kim, Jin-su;Sa, Yui-hwan;Kim, Hi-seok;Cha, Hyeong-woo
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제5권2호
    • /
    • pp.71-76
    • /
    • 2016
  • A controller area network (CAN) receiver measures differential voltage on a bus to determine the bus level. Since 3.3V transceivers generate the same differential voltage as 5V transceivers (usually ${\geq}1.5V$), all transceivers on the bus (regardless of supply voltage) can decipher the message. In fact, the other transceivers cannot even determine or show that there is anything different about the differential voltage levels. A new CMOS RC oscillator insensitive supply voltage for clock generation in a CAN transceiver was fabricated and tested to compensate for this drawback in CAN communication. The system consists of a symmetrical circuit for voltage and current switches, two capacitors, two comparators, and an RS flip-flop. The operational principle is similar to a bistable multivibrator but the oscillation frequency can also be controlled via a bias current and reference voltage. The chip test experimental results show that oscillation frequency and power dissipation are 500 kHz and 5.48 mW, respectively at a supply voltage of 3.3 V. The chip, chip area is $0.021mm^2$, is fabricated with $0.18{\mu}m$ CMOS technology from SK hynix.

A Low-Spur CMOS PLL Using Differential Compensation Scheme

  • Yun, Seok-Ju;Kim, Kwi-Dong;Kwon, Jong-Kee
    • ETRI Journal
    • /
    • 제34권4호
    • /
    • pp.518-526
    • /
    • 2012
  • This paper proposes LC voltage-controlled oscillator (VCO) phase-locked loop (PLL) and ring-VCO PLL topologies with low-phase noise. Differential control loops are used for the PLL locking through a symmetrical transformer-resonator or bilaterally controlled varactor pair. A differential compensation mechanism suppresses out-band spurious tones. The prototypes of the proposed PLL are implemented in a CMOS 65-nm or 45-nm process. The measured results of the LC-VCO PLL show operation frequencies of 3.5 GHz to 5.6 GHz, a phase noise of -118 dBc/Hz at a 1 MHz offset, and a spur rejection of 66 dBc, while dissipating 3.2 mA at a 1 V supply. The ring-VCO PLL shows a phase noise of -95 dBc/Hz at a 1 MHz offset, operation frequencies of 1.2 GHz to 2.04 GHz, and a spur rejection of 59 dBc, while dissipating 5.4 mA at a 1.1 V supply.

An InGaP/GaAs HBT Based Differential Colpitts VCO with Low Phase Noise

  • Shrestha, Bhanu;Kim, Nam-Young
    • Journal of electromagnetic engineering and science
    • /
    • 제7권2호
    • /
    • pp.64-68
    • /
    • 2007
  • An InGaP/GaAs HBT based differential Colpitts voltage control oscillator(VCO) is presented in this paper. In the VCO core, two switching transistors are introduced to steer the core bias current to save power. An LC tank with an inductor quality factor(Q) of 11.4 is used to generate oscillation frequency. It has a superior phase noise characteristics of -130.12 dBc/Hz and -105.3 at 1 MHz and 100 kHz frequency offsets respectively from the carrier frequency(1.566 GHz) when supplied with a control voltage of 0 volt. It dissipates output power of -5.3 dBm. Two pairs of on-chip base collector (BC) diodes are used in the tank circuit to increase the VCO tuning range(168 MHz). This VCO occupies the area of $1.070{\times}0.90mm^2$ including buffer and pads.

Polar Transmitter with Differential DSM Phase and Digital PWM Envelope

  • Zhou, Bo;Liu, Shuli
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제14권3호
    • /
    • pp.313-321
    • /
    • 2014
  • A low-power low-cost polar transmitter for EDGE is designed in $0.18{\mu}m$ CMOS. A differential delta-sigma modulator (DSM) tunes a three-terminal voltage-controlled oscillator (VCO) to perform RF phase modulation, where the VCO tuning curve is digitally pre-compensated for high linearity and the carrier frequency is calibrated by a dual-mode low-power frequency-locked loop (FLL). A digital intermediate-frequency (IF) pulse-width5 modulator (PWM) drives a complementary power-switch followed by an LC filter to achieve envelope modulation with high efficiency. The proposed transmitter with 9mW power dissipation relaxes the time alignment between the phase and envelope modulations, and achieves an error vector magnitude (EVM) of 4% and phase noise of -123dBc/Hz at 400kHz offset frequency.

2.4GHZ CMOS LC VCO with Low Phase Noise

  • Qian, Cheng;Kim, Nam-Young
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.501-503
    • /
    • 2008
  • This paper presents the design of a 2.4 GHz low phase noise fully integrated LC Voltage-Controlled-Oscillator (VCO) in $0.18{\mu}m$ CMOS technology. The VCO is without any tail bias current sources for a low phase noise and, in which differential varactors are adopted for the symmetry of the circuit. At the same time, the use of differential varactors pairs reduces the tuning range, i.e., the frequency range versus VTUNE, so that the phase noise becomes lower. The simulation results show the achieved phase noise of -138.5 dBc/Hz at 3 MHz offset, while the VCO core draws 3.9mA of current from a 1.8V supply. The tuning range is from 2.28GHz to 2.55 GHz.

  • PDF

전류 컨베어 회로를 이용한 차동전압-주파수 변환기의 설계 (Design of Differential Voltage-to-Frequency Converter Using Current Conveyor Circuit)

  • 최진호
    • 한국정보통신학회논문지
    • /
    • 제15권4호
    • /
    • pp.891-896
    • /
    • 2011
  • 이 논문에서는 전류 컨베이어 회로를 이용하여 입력 전압의 차에 비례하는 주파수 신호를 생성하는 회로를 설계하였다. 설계된 회로는 HSPICE를 이용하여 회로의 동작을 분석하였으며, 입력 전압 차는 수V에서 수mV 단위까지 변화시키면서 출력 주파수를 시뮬레이션하였다. 회로의 시뮬레이션 결과 이론적인 계산값과 비교하였을 때 에러는 -1.9%에서 +1.8% 이내였다.