• Title/Summary/Keyword: cyclooxygenase inhibitory activity

Search Result 205, Processing Time 0.037 seconds

Molecular Mechanisms of Cell Cycle Arrest and Apoptosis by Dideoxypetrosynol A, a Polyacetylene from the Sponge Petrosia sp., in Human Monocytic Leukemia Cells

  • Choi, Yung Hyun
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.1 no.4
    • /
    • pp.243-251
    • /
    • 2006
  • Dideoxypetrosynol A, a polyacetylene from the marine sponge Petrosia sp., is known to exhibit significant selective cytotoxic activity against a small panel of human tumor cell lines, however, the mechanisms of which are poorly understood. In the present study, it was investigated the further possible mechanisms by which dideoxytetrosynol A exerts its anti-proliferative action in cultured human leukemia cell line U937. We observed that the proliferation-inhibitory effect of dideoxypetrosynol A was due to the induction of G1 arrest of the cell cycle and apoptosis, which effects were associated with up-regulation of cyclin D1 and down-regulation of cyclin E without any change in cyclin-dependent-kinases (Cdks) expression. Dideoxypetrosynol A markedly induced the levels of Cdk inhibitor p16/INK4a expression. Furthermore, down-regulation of phosphorylation of retinoblastoma protein (pRB) by this compound was associated with enhanced binding of pRB and the transcription factor E2F-1. The increase in apoptosis was associated with a dose-dependent up-regulation in pro-apoptotic Bax expression and activation of caspase-3 and caspase-9. Dideoxytetrosynol A decreased the levels of cyclooxygenase (COX)-2 mRNA and protein expression without significant changes in the levels of COX-1, which was correlated with a decrease in prostaglandin E2 (PGE2) synthesis. Furthermore, dideoxytetrosynol A treatment markedly inhibited the activity of telomerase, and the expression of human telomerase reverse transcriptase (hTERT), a main determinant of the telomerase enzymatic activity, was progressively down-regulated by dideoxytetrosynol A treatment in a dose-dependent fashion. Taken together, these findings provide important new insights into the possible molecular mechanisms of the anti-cancer activity of dideoxytetrosynol A.

  • PDF

Antiinflammatory and Antioxidative Effects of Morus spp. Fruit Extract (뽕나무 오디추출물의 항염증(抗炎症).항산화(抗酸化) 작용(作用)에 대한 생리활성(生理活性) 검색(檢索))

  • Kim, Sun-Yeou;Park, Kwang-Jun;Lee, Won-Chu
    • Korean Journal of Medicinal Crop Science
    • /
    • v.6 no.3
    • /
    • pp.204-209
    • /
    • 1998
  • Antiinflammatory and antioxidative effects of mulberry fruit were investigated by using bioassay screening system. The extract of muberry fruits showed inhibitory effect in phospholipase $A_2$ activity and cyclooxygenase II activity. Among nine varieties of mulberry tree, the antiinflammatory activities of the Shingwangppong, Ficus, Cheongilppong and Keomseolppong were higher than that of the other varieties. Also, antioxidative activity of mulberry fruit was examined by DPPH free radical scavenging method. The radical scavenging activity of the mulberry fruit decreased as following order : Shingwangppong > Keomseolppong > tetraploid Ficus> diploid Ficus.

  • PDF

Synthesis and Inhibitory Activity against COX-2 Catalyzed Prostaglandin Production of Flavone Analogs

  • Tran, Thanh-Dao;Chi, Yeon-Sook;Kim, Jeong-Soo;Kim, Hyun-Pyo;Kim, Sang-Hee;Park, Hae-Il
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.235.2-235.2
    • /
    • 2003
  • To decipher the structure-activity relationships of flavones for the inhibition of cyclooxygenase-2 catalyzed prostaglandin production, we synthesized 7-methxoyflavones, 7-hydroxyflavones, 5-methxoyflavones, 5-hydroxyflavones and flavones without any phenol group on A ring. Methoxyflavones were prepared from 2.6- and 2,4-dihydroxyacetophenones in 3 steps. Most of the methxoyflavones were converted to the corresponding hydroxyflavones by the reaction with BBr3 in good yields. (omitted)

  • PDF

Inhibitory Effect of Taraxci Herba Methanol Extract on Pro-inflammatory Mediator in Lipopolysaccharide;Activated Raw 264.7 cells

  • Jo, Mi-Jeong;Chu, Yan-Hui;Back, Young-Doo;Lee, Byung-Wook;Shin, Soon-Shik;Kwon, Young-Kyu;Kim, Sang-Chan
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.4
    • /
    • pp.907-913
    • /
    • 2008
  • Taraxci Herba (TH; Pogongyoung in Korean) has been used in traditional oriental medicine for the treatment of various ailments. The biological activity of this plant is not yet evaluated systematically. This study was conducted to evaluate the inhibitory effects of TH on the production of nitric oxide (NO) and the expression of inducible nitric oxide synthase (iNOS) in lipopolysaccharide (LPS)-activated Raw264.7 cells. The aim of the present work is to investigate a potential anti-inflammatory activity of TH. The Raw264.7 cells were cultured in DMEM medium for 24 h. After serum starvation for 12 h, the cells were treated with TH for 1 h, followed by stimulating NO production with LPS ($2{\mu}g/ml$). As result of this study, TH inhibited the levels of NO, PGE2, $TNF-{\alpha}$, IL-6 and $IL-1{\beta}$, and the expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) activated by LPS. These inhibitory effects were mediated though the inhibition of phosphorylation of inhibitory kappa B ($I{\kappa}B$). These findings showed that TH could have some anti-inflammatory effects.

Effect of Genistein on Chemopreventive Activity of Human Brest Cancer (Genistein이 유방암예방 활성에 미치는 영향)

  • Shon Yun-Hee;Kim Ho-Chang;Nam Kyung-Soo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.1
    • /
    • pp.88-92
    • /
    • 2006
  • Genistein was tested for chemopreventive potential against breast cancer by measuring the effect on proliferation of human breast cancer cells, human placental aromatase activity and cyclooxygenases-2 (COX-2) expression and activity, Genistein inhibited the growth of estrogen-independent MDA-MB-231 human breast cancer cell. However, there is no inhibitory effect of genistein on human placental aromatase activity. The expression of COX-2 was inhibited by genistein in Western blot analysis. Genistein significantly inhibited COX-2 activity at the concentrations of 10 (p<0.05), 25 (p<0.05) and 50 ${\mu}M$ (p<0.01). These results suggest that genistein may have breast cancer chemopreventive potential by inhibiting the growth of human breast cancer cell and expression and activity of COX-2.

The Improving Effect of Paeoniae Radix on Dextran Sulfate Sodium-induced Colitis in Mice (Dextran Sulfate Sodium으로 유도된 궤양성 대장염에 대한 작약의 개선 효과)

  • Myung, Noh Yil
    • Korean Journal of Plant Resources
    • /
    • v.31 no.4
    • /
    • pp.275-282
    • /
    • 2018
  • Paeoniae Radix has been used as a traditional medicine for various diseases including hepatic disease. However, the inhibitory effect of Paeoniae Radix on intestinal inflammation has not been fully understood yet. The aim of this study was to evaluate the effect of Paeoniae Radix on colitis induced by dextran sulfate sodium in mice. To investigate the protective effects of Paeoniae Radix, the colitis mice were induced by drinking water containing 5% dextran sulfate sodium for 7 days. Mice were randomized into groups receiving Paeoniae Radix (100 mg/kg), sulfasalazine (150 mg/kg) as a positive control, or water as a negative control. We evaluated the effects of Paeoniae Radix on clinical signs induced by dextran sulfate sodium, measuring weight loss, colon length, and disease activity index. Additionally, to find a possible explanation for the anti-inflammatory effects of Paeoniae Radix, we evaluated the effects of Paeoniae Radix on the interleukin-6 and cyclooxygenase-2 levels in colitis tissue. The results indicated that mice treated with dextran sulfate sodium showed measurable clinical signs, including weight loss and reduced colon length. However, Paeoniae Radix treatment significantly improved the weight loss and disease activity index as clinical symptoms. Moreover, Paeoniae Radix inhibited the interleukin-6 and cyclooxygenase-2 expression levels in colon tissues treated with dextran sulfate sodium. Taken together, the findings of this study suggest that Paeoniae Radix may be useful for treating intestinal inflammation, including ulcerative colitis.

Anti-Inflammatory, Anti-Angiogenic and Anti-Nociceptive Activities of 4-Hydroxybenzaldehyde

  • Lim, Eun-Ju;Kang, Hyun-Jung;Jung, Hyun-Joo;Kim, Kyung-Hoon;Lim, Chang-Jin;Park, Eun-Hee
    • Biomolecules & Therapeutics
    • /
    • v.16 no.3
    • /
    • pp.231-236
    • /
    • 2008
  • The current work was designed to assess novel pharmacological activities of 4-hydroxybenzaldehyde (HD), a major phenolic constituent of various natural products of plant origin, such as Gastrodia elata Blume. HD exhibited a significant inhibition in the chick chorioallantoic membrane (CAM) angiogenesis. HD also displayed an inhibitory effect in acetic acid-induced permeability in mice. Anti-nociceptive activity of HD was convinced using the acetic acid-induced writhing test in mice. HD was able to suppress production of nitric oxide (NO) and induction of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in the lipopolysaccharide (LPS)-activated RAW264.7 macrophages. HD also diminished the reactive oxygen species (ROS) level elevated in the LPS-activated macrophages. In brief, HD exhibits anti-angiogenic, anti-inflammatory and anti-nociceptive activities possibly via down-regulating iNOS and/or COX-2, which may be partly responsible for pharmacological efficacies of various natural products.

Protopine reduces the inflammatory activity of lipopolysaccharide-stimulated murine macrophages

  • Bae, Deok-Sung;Kim, Young-Hoon;Pan, Cheol-Ho;Nho, Chu-Won;Samdan, Javzan;Yansan, Jamyansan;Lee, Jae-Kwon
    • BMB Reports
    • /
    • v.45 no.2
    • /
    • pp.108-113
    • /
    • 2012
  • Protopine is an isoquinoline alkaloid contained in plants in northeast Asia. In this study, we investigated whether protopine derived from Hypecoum erectum L could suppress lipopolysaccharide (LPS)-induced inflammatory responses in murine macrophages (Raw 264.7 cells). Protopine was found to reduce nitric oxide (NO), cyclooxygenase-2 (COX-2), and prostaglandin $E_2$ ($PGE_2$) production by LPS-stimulated Raw 264.7 cells, without a cytotoxic effect. Pre-treatment of Raw 264.7 cells with protopine reduced the production of pro-inflammatory cytokines. These inhibitory effects were caused by blocking phosphorylation of mitogen-activated protein kinases (MAP kinases) and also blocking activation of a nuclear factor kappa-light-chain-enhancer of activated B cells (NF-${\kappa}B$).

Tanshinone II-A Inhibits Angiogenesis through Down Regulation of COX-2 in Human Colorectal Cancer

  • Zhou, Li-Hong;Hu, Qiang;Sui, Hua;Ci, Shu-Jun;Wang, Yan;Liu, Xuan;Liu, Ning-Ning;Yin, Pei-Hao;Qin, Jian-Min;Li, Qi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.9
    • /
    • pp.4453-4458
    • /
    • 2012
  • Angiogenesis plays a significant role in colorectal cancer (CRC) and cyclooxygenase-2 (COX-2) appears to be involved with multiple aspects of CRC angiogenesis. Our aim was to investigate the inhibitory effects of Tan II-A (Tanshinone II-A, Tan II-A) on tumor growth in mice, as well as alteration of expression of COX-2 and VEGF in CRC. We established the mice xenograft model of C26 CRC cell line, and injected 0.5, 1, 2mg/kg of Tan II-A and 1mg/kg of 5-FU in respectively in vivo. Then, we assayed tumor weight and volume, and evaluated microvascular density and expression of VEGF. COX-2 promoter and COX-2 plasmids were transfected into HCT-116 cells, followed by detection of COX-2 promoter activity by chemiluminescence, and detection of COX-2 mRNA expression by fluorescence quantitative PCR. Taken together, the results showed Tan II-A could inhibit tumor growth and suppress the VEGF level in vivo. HCT-116 cell experiments showed marked inhibitory effects of Tan II-A on COX-2 and VEGF in a dose-dependent manner. The results indicate that Tan II-A can effectively inhibit tumor growth and angiogenesis of human colorectal cancer via inhibiting the expression level of COX-2 and VEGF.

The Acetylation-based synthesis of 3,3',4',5,5',7-hexaacetate myricetin and evaluation of its anti-inflammatory activities in lipopolysaccharide-induced RAW264.7 mouse macrophage cells

  • Kristina Lama;Hyehyun Hong;Tae-Jin Park;Jin-Soo Park;Won-Jae Chi;Seung-Young Kim
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.29-38
    • /
    • 2023
  • Recent studies have highlighted the link between diseases and inflammation across our lifespan. Our sedentary lifestyle, high-calorie diet, chronic stress, chronic infections, and exposure to pollutants and xenobiotics, collectively intensify the course and recurrence of infections and inflammation in our bodies, promoting the prevalence of chronic diseases and aging. Given such phenomena and considering additional factors such as the frequency of prescription, and easy access to over-the-counter drugs, the need for anti-inflammatory therapeutics is ever-increasing. However, the readily available anti-inflammatory treatment option comes with a greater risk of side effects or high cost (biologics). Therefore in this growing competition of discovering and developing new potent anti-inflammatory drugs, we focused on utilizing the established knowledge of traditional medicine to find lead compounds. Since lead optimization is an indispensable step toward drug development, we applied this concept for the production of potent anti-inflammatory compounds achieved by structural modification of flavonoids. The derivative obtained through acetylation of myricetin, 3,3',4',5,5',7-hexaacetate myricetin, showed a greater inhibitory effect in the production of pro-inflammatory mediators such as nitric oxide, Prostaglandin E2, and pro-inflammatory cytokines like interleukin-6, interleukin1β, in lipopolysaccharide-stimulated RAW264.7 mouse macrophage cells compared to myricetin. The increased potency of inhibition was in conjunction with an increased inhibitory effect on inducible nitric oxide synthase and cyclooxygenase-2 proteins. Through such measures, this study supports lead optimization for well-established lead compounds from traditional medicine using a simpler and greener chemistry approach for the purpose of designing and developing potent anti-inflammatory therapeutics with possibly fewer side effects and increased bioavailability.