DOI QR코드

DOI QR Code

The Acetylation-based synthesis of 3,3',4',5,5',7-hexaacetate myricetin and evaluation of its anti-inflammatory activities in lipopolysaccharide-induced RAW264.7 mouse macrophage cells

  • Kristina Lama (Department of Pharmaceutical Engineering & Biotechnology, Sunmoon University) ;
  • Hyehyun Hong (Department of Pharmaceutical Engineering & Biotechnology, Sunmoon University) ;
  • Tae-Jin Park (Department of Pharmaceutical Engineering & Biotechnology, Sunmoon University) ;
  • Jin-Soo Park (Natural Product Informatics Research Center, Korea Institute of Science and Technology) ;
  • Won-Jae Chi (Microorganism Resources Division, National Institute of Biological Resources) ;
  • Seung-Young Kim (Department of Pharmaceutical Engineering & Biotechnology, Sunmoon University)
  • Received : 2022.12.14
  • Accepted : 2023.01.19
  • Published : 2023.12.31

Abstract

Recent studies have highlighted the link between diseases and inflammation across our lifespan. Our sedentary lifestyle, high-calorie diet, chronic stress, chronic infections, and exposure to pollutants and xenobiotics, collectively intensify the course and recurrence of infections and inflammation in our bodies, promoting the prevalence of chronic diseases and aging. Given such phenomena and considering additional factors such as the frequency of prescription, and easy access to over-the-counter drugs, the need for anti-inflammatory therapeutics is ever-increasing. However, the readily available anti-inflammatory treatment option comes with a greater risk of side effects or high cost (biologics). Therefore in this growing competition of discovering and developing new potent anti-inflammatory drugs, we focused on utilizing the established knowledge of traditional medicine to find lead compounds. Since lead optimization is an indispensable step toward drug development, we applied this concept for the production of potent anti-inflammatory compounds achieved by structural modification of flavonoids. The derivative obtained through acetylation of myricetin, 3,3',4',5,5',7-hexaacetate myricetin, showed a greater inhibitory effect in the production of pro-inflammatory mediators such as nitric oxide, Prostaglandin E2, and pro-inflammatory cytokines like interleukin-6, interleukin1β, in lipopolysaccharide-stimulated RAW264.7 mouse macrophage cells compared to myricetin. The increased potency of inhibition was in conjunction with an increased inhibitory effect on inducible nitric oxide synthase and cyclooxygenase-2 proteins. Through such measures, this study supports lead optimization for well-established lead compounds from traditional medicine using a simpler and greener chemistry approach for the purpose of designing and developing potent anti-inflammatory therapeutics with possibly fewer side effects and increased bioavailability.

Keywords

Acknowledgement

This research was supported by a grant from the National Institute of Biological Resources (NIBR), funded by the Ministry of Environment (MOE) of the Korea (NIBR202203112). The authors acknowledge the use of VNMRS system belonging to Natural Product Informatics Research Center, Korea Institute of Science and Technology.

References

  1. Institute for Quality and Efficiency in Health Care (2006) What is an inflammation?. NCBI Bookshelf. https://www.ncbi.nlm.nih.gov/books/NBK279298/. Accessed 15 November 2022
  2. Abdulkhaleq LA, Assi MA, Abdullah R, Zamri-Saad M, Taufiq-Yap YH, Hezmee MNM (2018) The crucial roles of inflammatory mediators in inflammation: A review. Vet World 11(5): 627-635. doi: 10.14202/vetworld.2018.627-635
  3. Vergnolle N (2003) The inflammatory response. Drug Dev Res 59(4): 375-381 https://doi.org/10.1002/ddr.10306
  4. Dinarello CA (2000) Proinflammatory cytokines. Chest 118(2): 503-508. doi: 10.1378/chest.118.2.503
  5. Park JY, Pillinger MH, Abramson SB (2006) Prostaglandin E2 synthesis and secretion: The role of PGE2 synthases. Clin Immunol 119(3): 229-240. doi: 10.1016/j.clim.2006.01.016
  6. St-Jacques B, Ma W (2014) Peripheral prostaglandin E2 prolongs the sensitization of nociceptive dorsal root ganglion neurons possibly by facilitating the synthesis and anterograde axonal trafficking of EP4 receptors. Exp Neurol 261: 354-366. doi: 10.1016/j.expneurol.2014.05.028
  7. Aktan F (2004) iNOS-mediated nitric oxide production and its regulation. Life Sci 75(6): 639-653. doi: 10.1016/j.lfs.2003.10.042
  8. Merad M, Martin JC (2020) Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nat Rev Immunol 20(6): 355-362. doi: 10.1038/s41577-020-0331-4
  9. Xu W, Larbi A (2018) Immunity and Inflammation: From Jekyll to Hyde. Exp Gerontol, 107: 98-101. doi: 10.1016/j.exger.2017.11.018
  10. Duan L, Rao X, Sigdel KR (2019) Regulation of inflammation in autoimmune disease. J Immunol Res 2019: 7403796. doi: 10.1155/2019/7403796
  11. Loos BG, Van Dyke TE (2000) The role of inflammation and genetics in periodontal disease. Periodontology 83(1): 26-39. doi: 10.1111/prd.12297
  12. Chung HY, Cesari M, Anton S, Marzetti E, Giovannini S, Seo AY, Carter C, Yu BP, Leeuwenburgh C (2009) Molecular inflammation: Underpinnings of aging and age-related diseases. Ageing Res Rev 8(1): 18-30. doi: 10.1016/j.arr.2008.07.002
  13. Vane JR, Botting RM (1998) Mechanism of Action of Nonsteroidal Anti-inflammatory Drugs. Am J Med 104(3A): 2S-8S. doi: 10.1016/S0002-9343(97)00203-9
  14. USP Therapeutic Categories Model Guidelines. U.S. Food and Drug Administration. https://www.fda.gov/regulatory-information/fdaaaimplementation-chart/usp-therapeutic-categories-model-guidelines. Accessed 25 November 2022
  15. Baumgart DC, Misery L, Naeyaert S, Taylor PC (2019) Biological therapies in immune-mediated inflammatory diseases: Can biosimilars reduce access inequities? Front Pharmacol 10: 1-13. doi: 10.3389/fphar.2019.00279
  16. Dinarello CA (2010) Anti-inflammatory Agents: Present and Future. Cell 140(6): 935-950. doi: 10.1016/j.cell.2010.02.043
  17. Becker DE (2013) Basic and clinical pharmacology of Glucocorticosteroids. Anesth Prog 60(1): 25-32. doi: 10.2344/0003-3006-60.1.25
  18. Gensler LS (2013) Glucocorticoids: Complications to Anticipate and Prevent. The Neurohospitalist 3(2): 92-97. doi: 10.1177/194187441245867
  19. Gorczyca P, Manniello M, Pisano M, Avena-Woods C (2016) NSAIDs: Balancing the Risks and Benefits. US Pharm 41(3): 24-26
  20. Calixto J (2019) The role of natural products in modern drug discovery. Anais Da Academia Brasileira De Ciencias. doi:10.1590/0001-37652 01920190105
  21. Newman DJ, Cragg GM (2020) Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J Nat Prod 83: 770-803. doi: 10.1021/acs.jnatprod.9b01285
  22. Hou W, Hu S, Su Z, Wang Q, Meng G, Guo T, Zhang J, Gao P (2018) Myricetin attenuates LPS-induced inflammation in raw 264.7 macrophages and mouse models. Future Med Chem 10(19): 2253-2264. doi: 10.4155/fmc-2018-0172
  23. Zhong R, Miao L, Zhang H, Tan L, Zhao Y, Tu Y, Angel Prieto M, Simal-Gandara J, Chen L, He C, Cao H (2022) Anti-inflammatory activity of flavonols via inhibiting MAPK and NF-ΚB signaling pathways in raw264.7 macrophages. Current Research in Food Science 5: 1176-1184. doi: 10.1016/j.crfs.2022.07.007
  24. Kan X, Liu B, Guo W, Wei L, Lin Y, Guo Y, Gong Q, Li Y, Xu D, Cao Y, Huang B, Dong A, Ma H, Fu S, Liu J (2019) Myricetin relieves lps?induced mastitis by inhibiting inflammatory response and repairing the blood-milk barrier. J Cell Physiolo 234(9): 16252-16262. doi: 10.1002/jcp.28288
  25. Lee DH, Lee CS (2016) Flavonoid myricetin inhibits TNF-α-stimulated production of inflammatory mediators by suppressing the AKT, mTOR and NF-ΚB pathways in human keratinocytes. Eur J Pharmacol 784: 164-172. doi: 10.1016/j.ejphar.2016.05.025
  26. Kan X, Liu J, Chen Y, Guo W, Xu D, Cheng J, Cao Y, Yang Z, Fu S (2021) Protective effect of myricetin on LPS-induced mastitis in mice through ERK1/2 and p38 protein author. Naunyn-Schmiedeb Arch Pharmacol 394(8): 1727-1735. doi: 10.1007/s00210-021-02069-3
  27. Chen M, Chen Z, Huang D, Sun C, Xie J, Chen T, Zhao X, Huang Y, Li D, Wu B, Wu D (2021) Myricetin inhibits TNF-α-induced inflammation in A549 cells via the SIRT1/NF-ΚB pathway. Pulm Pharmacol Ther doi: 10.1016/j.pupt.2021.102000
  28. Hu M (2007) Commentary: Bioavailability of flavonoids and polyphenols: Call to arms. Mol Pharm 4(6): 803-806. doi: 10.1021/mp7001363
  29. Crozier A, Del Rio D, Clifford MN (2010) Bioavailability of dietary flavonoids and phenolic compounds. Mol Asp Med 31(6): 446-467. doi: 10.1016/j.mam.2010.09.007
  30. Yao Y, Lin G, Xie Y, Ma P, Li G, Meng Q, Wu T (2014) Preformulation studies of myricetin: a natural antioxidant flavonoid. Pharmazie 69: 19-26. doi: 10.1691/ph.2014.3076
  31. Li, Y (2012) Qinghaosu (artemisinin): Chemistry and pharmacology. Acta Pharmacologica Sinica 33(9): 1141-1146. doi: 10.1038/aps.2012.104
  32. Imming P (2015) Medicinal Chemistry: Definitions and Objectives, Drug Activity Phases, Drug Classification Systems. In: The Practice of Medicinal Chemistry, 4th edn. Elsevier Ltd, pp 3-13
  33. Wu KK (2000) Aspirin and Salicylate. Circulation 102(17): 2022-2023
  34. Kumar R, Lu Y, Elliott AG, Kavanagh AM, Cooper MA, Davis RA (2016) Semi?synthesis and NMR spectral assignments of flavonoid and Chalcone derivatives. Magn Reson Chem 54(11): 880-886. doi: 10.1002/mrc.4482
  35. Awouafack MD, Tane P, Spiteller M, Eloff JN (2015) Eriosema (fabaceae) species represent a rich source of flavonoids with interesting pharmacological activities. Nat Prod Commun 10(7): 1325-1330 https://doi.org/10.1177/1934578X1501000749
  36. Zheng X, Meng WD, Xu YY, Cao JG, Qing FL (2003) Synthesis and anticancer effect of Chrysin derivatives. Bioorganic Med Chem Lett 13(5): 881-884. doi: 10.1016/S0960-894X(02)01081-8
  37. Cho H, Yun CW, Park WK, Kong JY, Kim KS, Park Y, Lee S, Kim BK (2004) Modulation of the activity of pro-inflammatory enzymes, COX-2 and iNOS, by chrysin derivatives. Pharmacol Res 49(1): 37-43. doi: 10.1016/S1043-6618(03)00248-2
  38. Ohta N, Yagishita K (1970) Isolation and Structure of New Flavonoids, Flavoyadorinin-A, Flavoyadorinin-B and Homo-flavoyadorinin-B, in the Leaves of Viscum album Linnaeus var. coloratum Ohwi Epiphyting to Pyrus communis Linnaeus. Agricultural and Biological Chemistry 34(6): 900-907. doi: 10.1080/00021369.1970.10859692
  39. Picq M, Prigent AF, Ngmoz G, Andrb AC, Pacheco H (1982) Pentasubstituted Quercetin Analogues as Selective Inhibitors of Particulate 3':5'-Cyclic-AMP Phosphodiesterase from Rat Brain. J Med Chem 25(10): 1192-1198. doi: 10.1021/jm00352a019.
  40. Mammen D, Daniel M (2012) A critical evaluation on the reliability of two aluminum chloride chelation methods for quantification of flavonoids. Food Chem 135(3): 1365-1368. doi: 10.1016/j.foodchem.2012.05.109
  41. Nan H, Ma H, Zhang R, Zhan R (2014) Physiochemical properties of the complex of myricetin and hydroxypropyl-β-cyclodextrin. Trop J Pharm Res 13(11): 1791-1796 https://doi.org/10.4314/tjpr.v13i11.3
  42. Jomova K, Hudecova L, Lauro P, Simunkova M, Alwasel SH, Alhazza IM, Valko M (2019) A Switch between Antioxidant and Prooxidant Properties of the Phenolic Compounds Myricetin, Morin, 3',4'-Dihydroxyflavone, Taxifolin and 4-Hydroxy-Coumarin in the presence of Copper(II) ions: A Spectroscopic, Absorption titration and DNA Damage Study. Molecules 24: 4335. doi:10.3390/molecules24234335
  43. Fischer F, Zufferey E, Bourgeois JM, Heritier J, Micaux F (2011) UVABC screens of luteolin derivatives compared to Edelweiss extract. J Photochem Photobiol B: Biology 103(1): 8-15. doi: 10.1016/j.jphotobiol.2011.01.005
  44. Myricetin. Pubchem. https://pubchem.ncbi.nlm.nih.gov/compound/5281672. Accessed 28 November 2022
  45. Myricetin hexaacetate. Pubchem. https://pubchem.ncbi.nlm.nih.gov/compound/26925. Accessed 28 November 2022
  46. Ren G, Jingli H, Qinghong F, Hong S (2012) Synthesis of flavonol 3-O-glycoside by UGT78D1. Glycoconj J 29: 425-432. doi: 10.1007/s10719-012-9410-5
  47. Casey JP, Berry DA, Briggs TF, Buckbinder L, Kim MJ, Liang A, Pandian A (2021) Acylated active agents and methods of their use for the treatment of metabolic disorders and nonalcoholic fatty liver disease. Google Patents. PCT/US2020/063307
  48. Mohammadi A, Yaghoobi MM, Gholamhoseinian Najar A, KalantariKhandani B, Sharifi H, Saravani M (2016) Hsp90 inhibition suppresses PGE2 production via modulating COX-2 and 15-PGDH expression in HT-29 colorectal cancer cells. Inflammation 39: 1116-1123. doi:10.1007/s10753-016-0343-1
  49. Kim JH, Park TJ, Park JS, Kim MS, Chi WJ, Kim SY (2021) Luteolin3'-O-phosphate inhibits lipopolysaccharide-induced inflammatory responses by regulating NF-ΚB/MAPK cascade signaling in raw 264.7 cells. Molecules 26: 7393. doi:10.3390/molecules26237393
  50. Makarova MN (2011) Bioavailability and metabolism of flavonoids. Eksperimental'naya i Klinicheskaya Farmakologiya 74(6): 33-40
  51. Wang TY, Li Q, Bi K (2018) Bioactive flavonoids in medicinal plants: Structure, activity and biological fate. Asian J Pharm Sci 13(1): 12-23. doi: 10.1016/j.ajps.2017.08.004
  52. da Silva SVS, Barboza OM, Souza JT, Soares EN, dos Santos CC, Pacheco LV (2021) Structural Design, Synthesis and Antioxidant, Antileishmania, Anti-Inflammatory and Anticancer Activities of a Novel Quercetin Acetylated Derivative. Molecules. doi: 10.3390/molecules26226923
  53. Lo S, Leung E, Fedrizzi B, Barker D (2021) Syntheses of mono-acylated luteolin derivatives, evaluation of their antiproliferative and radical scavenging activities and implications on their oral bioavailability. Sci Rep 11(1): 1-9. doi: 10.1038/s41598-021-92135-w
  54. Nakano E, Kamei D, Murase R, Taki I, Karasawa K, Fukuhara K, Iwai S (2019) Anti-inflammatory effects of new catechin derivatives in a hapten-induced mouse contact dermatitis model. Eur J Pharmacol 845: 40-47. doi: 10.1016/j.ejphar.2018.12.036
  55. Liang YC, Tsai SH, Tsai DC, Lin-Shiau SY, Lin JK (2001) Suppression of inducible cyclooxygenase and nitric oxide synthase through activation of peroxisome proliferator-activated receptor-γ by flavonoids in mouse macrophages. FEBS Letters 496(1): 12-18. doi: 10.1016/S0014-5793(01)02393-6
  56. Mogensen TH (2009) Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev 22(2): 240-273. doi: 10.1128/CMR.00046-08