Molecular Mechanisms of Cell Cycle Arrest and Apoptosis by Dideoxypetrosynol A, a Polyacetylene from the Sponge Petrosia sp., in Human Monocytic Leukemia Cells

  • Choi, Yung Hyun (Department of Biochemistry, Dongeui University College of Oriental Medicine and Department of Biomaterial (BK21 program), Dongeui University Graduate School)
  • 발행 : 2006.12.31

초록

Dideoxypetrosynol A, a polyacetylene from the marine sponge Petrosia sp., is known to exhibit significant selective cytotoxic activity against a small panel of human tumor cell lines, however, the mechanisms of which are poorly understood. In the present study, it was investigated the further possible mechanisms by which dideoxytetrosynol A exerts its anti-proliferative action in cultured human leukemia cell line U937. We observed that the proliferation-inhibitory effect of dideoxypetrosynol A was due to the induction of G1 arrest of the cell cycle and apoptosis, which effects were associated with up-regulation of cyclin D1 and down-regulation of cyclin E without any change in cyclin-dependent-kinases (Cdks) expression. Dideoxypetrosynol A markedly induced the levels of Cdk inhibitor p16/INK4a expression. Furthermore, down-regulation of phosphorylation of retinoblastoma protein (pRB) by this compound was associated with enhanced binding of pRB and the transcription factor E2F-1. The increase in apoptosis was associated with a dose-dependent up-regulation in pro-apoptotic Bax expression and activation of caspase-3 and caspase-9. Dideoxytetrosynol A decreased the levels of cyclooxygenase (COX)-2 mRNA and protein expression without significant changes in the levels of COX-1, which was correlated with a decrease in prostaglandin E2 (PGE2) synthesis. Furthermore, dideoxytetrosynol A treatment markedly inhibited the activity of telomerase, and the expression of human telomerase reverse transcriptase (hTERT), a main determinant of the telomerase enzymatic activity, was progressively down-regulated by dideoxytetrosynol A treatment in a dose-dependent fashion. Taken together, these findings provide important new insights into the possible molecular mechanisms of the anti-cancer activity of dideoxytetrosynol A.

키워드