• 제목/요약/키워드: cubic set

검색결과 92건 처리시간 0.023초

CUBIC B-SPLINE을 이용한 고유치 해석 (EIGENVALUE ANALYSIS USING PIECEWISE CUBIC B-SPLINE)

  • Kim Young-Moon
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2000년도 가을 학술발표회논문집
    • /
    • pp.355-360
    • /
    • 2000
  • This paper presents properties of piecewise cubic B-spline function and Rayleigh-Ritz method to compute the smallest eigenvales. In order to compute the smallest eigenvalues, Rayleigh quotient approach is used and four different types of finite element approximating functions corresponding to the statical deflection curve, spanned by the linearly independent set of piecewise cubic B-spline functions with equally spaced 5 knots from a partion of [0, 1], each satisfying homogeneous boundary conditions with constraining effects are used to compute the smallest eigenvalues for a Sturm-Lionville boundary equations of u"+ λ²u=0, u(0.0)=u(0.0)=0, 0≤x≤1.0.

  • PDF

Modification Cubic Spline에 의한 선체형상의 수치적 표현 (Numerical Representation of Hull Form Using Modified Cubic Spline)

  • 강원수;이규열;김용철
    • 대한조선학회지
    • /
    • 제27권1호
    • /
    • pp.3-10
    • /
    • 1990
  • 선체형상의 수치적 표현방법에는 선형을 구성하고 있는 일련의 곡선들을 이용하여 선형을 표현하는 curve approach와 선형을 직접 surface로 수식 처리하여 선형을 정의하는 surface approach가 있다. 본 논문에서는 2차원 곡선인 transverse section curve와 3차원 곡선인 longitudinal curve로 구성되는 곡선군들에 의해 형성되는 곡면요소를 수학적으로 처리하여 선체형상을 정의하는 curve approach방법에 대해 기술하였다. 형상 표면에 사용된 곡선 형태는 일반적인 parametric cubic spline을 보완한 modified cubic spline으로서 이 spline형태는 곡선 segment의 양 끝점에서의 접선 각도가 클 경우에도 아주 부드러운 곡률 분포를 얻을 수 있게 하기 때문에 선박 계산뿐만 아니라 유체동역학적 계산을 위한 선형 정의용으로 사용 가능할 정도의 정확성을 가진 기본 설계용 선형정의 결과를 얻을 수 있었다. 응용 예로서 SWATH 선형과 해양 조사선 선형을 표현한 결과를 보였으며, 본 선형 정의 방법을 선형 변환 기법과 연결하여 설계 요구 조건에 적합한 선형을 얻기 위한 선형 변환 예도 보였다.

  • PDF

CUBIC s-REGULAR GRAPHS OF ORDER 12p, 36p, 44p, 52p, 66p, 68p AND 76p

  • Oh, Ju-Mok
    • Journal of applied mathematics & informatics
    • /
    • 제31권5_6호
    • /
    • pp.651-659
    • /
    • 2013
  • A graph is $s$-regular if its automorphism group acts regularly on the set of its $s$-arcs. In this paper, the cubic $s$-regular graphs of order 12p, 36p, 44p, 52p, 66p, 68p and 76p are classified for each $s{\geq}1$ and each prime $p$. The number of cubic $s$-regular graphs of order 12p, 36p, 44p, 52p, 66p, 68p and 76p is 4, 3, 7, 8, 1, 4 and 1, respectively. As a partial result, we determine all cubic $s$-regular graphs of order 70p except for $p$ = 31, 41.

AGGREGATION OPERATORS OF CUBIC PICTURE FUZZY QUANTITIES AND THEIR APPLICATION IN DECISION SUPPORT SYSTEMS

  • Ashraf, Shahzaib;Abdullah, Saleem;Mahmood, Tahir
    • Korean Journal of Mathematics
    • /
    • 제28권2호
    • /
    • pp.343-359
    • /
    • 2020
  • The paper aim is to resolve the issue of ranking to the fuzzy numbers in decision analysis, artificial intelligence and optimization. In the literature lot of ideologies have been established for ranking to the fuzzy numbers, that ideologies have some restrictions and limitations. In this paper, we proposed a method based on cubic picture fuzzy information's, for ranking to defeat the existing restrictions. Further introduced some cubic picture fuzzy algebraic and cubic picture fuzzy algebraic* aggregated operators for aggregated the information. Finally, a multi-attribute decision making problem is assumed as a practical application to establish the appropriateness and suitability of the proposed ranking approach.

Efficient Piecewise-Cubic Polynomial Curve Approximation Using Uniform Metric

  • Kim, Jae-Hoon
    • Journal of information and communication convergence engineering
    • /
    • 제6권3호
    • /
    • pp.320-322
    • /
    • 2008
  • We present efficient algorithms for solving the piecewise-cubic approximation problems in the plane. Given a set D of n points in the plane, we find a piecewise-cubic polynomial curve passing through only the points of a subset S of D and approximating the other points using the uniform metric. The goal is to minimize the size of S for a given error tolerance $\varepsilon$, called the min-# problem, or to minimize the error tolerance $\varepsilon$ for a given size of S, called the min-$\varepsilon$ problem. We give algorithms with running times O($n^2$ logn) and O($n^3$) for both problems, respectively.

HTML5에서 Quadratic & Cubic Bézier 곡선을 이용한 2D to 3D 입체 이미지 변환 (2D to 3D Anaglyph Image Conversion using Quadratic & Cubic Bézier Curve in HTML5)

  • 박영수
    • 디지털융복합연구
    • /
    • 제12권12호
    • /
    • pp.553-560
    • /
    • 2014
  • 본 논문에서는 HTML5에서 Quadratic & Cubic B$\acute{e}$zier 곡선을 이용하여 2D 이미지를 3D 입체 이미지로 변환하는 방법을 제안한다. 3D 입체 이미지 변환은 원본 이미지에서 RGB색상 값을 분리 추출하여 좌안과 우안을 위한 2개의 이미지로 필터링한다. 사용자는 Quadratic B$\acute{e}$zier 곡선과 Cubic B$\acute{e}$zier곡선을 이용한 제어 점을 통해 이미지의 깊이 값을 설정하게 된다. 이 제어 점을 기반으로 2D 이미지의 깊이 값을 계산하여 3D이미지에 반영하게 된다. 이 모든 과정은 HTML5를 사용한 웹 환경에서 구현하였으며, 사용자들은 매우 쉽고 편리하게 자신들이 원하는 3D 이미지를 만들 수 있게 하였다.

RESTRICTION OF SCALARS AND CUBIC TWISTS OF ELLIPTIC CURVES

  • Byeon, Dongho;Jeong, Keunyoung;Kim, Nayoung
    • 대한수학회지
    • /
    • 제58권1호
    • /
    • pp.123-132
    • /
    • 2021
  • Let K be a number field and L a finite abelian extension of K. Let E be an elliptic curve defined over K. The restriction of scalars ResKLE decomposes (up to isogeny) into abelian varieties over K $$Res^L_KE{\sim}{\bigoplus_{F{\in}S}}A_F,$$ where S is the set of cyclic extensions of K in L. It is known that if L is a quadratic extension, then AL is the quadratic twist of E. In this paper, we consider the case that K is a number field containing a primitive third root of unity, $L=K({\sqrt[3]{D}})$ is the cyclic cubic extension of K for some D ∈ K×/(K×)3, E = Ea : y2 = x3 + a is an elliptic curve with j-invariant 0 defined over K, and EaD : y2 = x3 + aD2 is the cubic twist of Ea. In this case, we prove AL is isogenous over K to $E_a^D{\times}E_a^{D^2}$ and a property of the Selmer rank of AL, which is a cubic analogue of a theorem of Mazur and Rubin on quadratic twists.

CUBIC SYMMETRIC GRAPHS OF ORDER 10p3

  • Ghasemi, Mohsen
    • 대한수학회지
    • /
    • 제50권2호
    • /
    • pp.241-257
    • /
    • 2013
  • An automorphism group of a graph is said to be $s$-regular if it acts regularly on the set of $s$-arcs in the graph. A graph is $s$-regular if its full automorphism group is $s$-regular. In the present paper, all $s$-regular cubic graphs of order $10p^3$ are classified for each $s{\geq}1$ and each prime $p$.

산업용 로보트를 위한 3차 다항식 조인트궤적의 구성과 최적화 (Formulation and optimization of cubic polynomial joint trajectories for industrial robots)

  • 김태산;배준경;박종국
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1988년도 한국자동제어학술회의논문집(국내학술편); 한국전력공사연수원, 서울; 21-22 Oct. 1988
    • /
    • pp.92-97
    • /
    • 1988
  • The path planning is done at the joint level. Cubic spline functions are used for constructing joint trajectories for industrial robots. For N-joint robot, Cartesian knots are transformed into N sets of joint displacements, with one set for each joint. For industrial application the speed of operation affects the productivity. An algorithm is developed to schedule the time intervals between each pair of adjacent knots such that the total traveling time is minimized subject to the physical constraints on joint velocties acceleration and jerks.

  • PDF

CERTAIN CUBIC POLYNOMIALS OVER FINITE FIELDS

  • Kim, Hyung-Don;Kim, Jae-Moon;Yie, Ik-kwon
    • 대한수학회지
    • /
    • 제46권1호
    • /
    • pp.1-12
    • /
    • 2009
  • Motivated by XTR cryptosystem which is based on an irreducible polynomial $x^3-cx^2+c^px-1$ over $F_{p^2}$, we study polynomials of the form $F(c,x)=x^3-cx^2+c^qx-1$ over $F_{p^2}$ with $q=p^m$. In this paper, we establish a one to one correspondence between the set of such polynomials and a certain set of cubic polynomials over $F_q$. Our approach is rather theoretical and provides an efficient method to generate irreducible polynomials over $F_{p^2}$.