CUBIC SYMMETRIC GRAPHS OF ORDER $10 p^{3}$

Mohsen Ghasemi

Abstract

An automorphism group of a graph is said to be s-regular if it acts regularly on the set of s-arcs in the graph. A graph is s-regular if its full automorphism group is s-regular. In the present paper, all s regular cubic graphs of order $10 p^{3}$ are classified for each $s \geq 1$ and each prime p.

1. Introduction

Throughout this paper, we consider finite connected graphs without loops or multiple edges. For a graph X, every edge of X gives rise to a pair of opposite arcs. By $V(X), E(X), A(X)$ and $\operatorname{Aut}(X)$, we denote the vertex set, the edge set, the arc set and the automorphism group of the graph X, respectively. The neighborhood of a vertex $v \in V(X)$, denoted by $N(v)$, is the set of vertices adjacent to v in X. Let a group G act on a set Ω, and let $\alpha \in \Omega$. We denote by G_{α} the stabilizer of α in G, that is, the subgroup of G fixing α. The group G is said to be semiregular if $G_{\alpha}=1$ for each $\alpha \in \Omega$, and regular if G is semiregular and transitive on Ω. A graph \widetilde{X} is called a covering of a graph X with projection $p: \widetilde{X} \rightarrow X$ if there is a surjection $p: V(\widetilde{X}) \rightarrow V(X)$ such that $\left.p\right|_{N(\tilde{v})}: N(\tilde{v}) \rightarrow N(v)$ is a bijection for any vertex $v \in V(X)$ and $\tilde{v} \in p^{-1}(v)$. The graph \widetilde{X} is called the covering graph and X the base graph. A covering \widetilde{X} of X with a projection p is said to be regular (or K-covering) if there is a semiregular subgroup K of the automorphism group $\operatorname{Aut}(\widetilde{X})$ such that graph X is isomorphic to the quotient graph \widetilde{X} / K, say by h, and the quotient map $\widetilde{X} \rightarrow \widetilde{X} / K$ is the composition $p h$ of p and h (for the purpose of this paper, all functions are composed from left to right). If K is cyclic or elementary abelian, then \widetilde{X} is called a cyclic or an elementary abelian covering of X, respectively. If \widetilde{X} is connected, then K is the covering transformation group. The fibre of an edge or a vertex is its preimage under p. An automorphism of \widetilde{X} is said to be fibre-preserving if it maps a fibre to a fibre, while an element of the covering
transformation group fixes each fibre setwise. The set of all fibre-preserving automorphisms forms a group called the fibre-preserving group.

An s-arc in a graph X is an ordered $(s+1)$-tuple $\left(v_{0}, v_{1}, \ldots, v_{s}\right)$ of vertices of X such that v_{i-1} is adjacent to v_{i} for $1 \leq i \leq s$ and $v_{i-1} \neq v_{i+1}$ for $1 \leq i<s$; in other words, it is a directed walk of length s which never includes a backtracking. A graph X is said to be s-arc-transitive if $\operatorname{Aut}(X)$ is transitive on the set of s-arcs in X. In particular, 0 -arc-transitive means vertex-transitive, and 1-arc-transitive means arc-transitive or symmetric. A graph X is said to be edge-transitive if $\operatorname{Aut}(X)$ is transitive on $E(X)$ and half-arc-transitive if X is vertex-transitive and edge-transitive, but not arc-transitive. A subgroup of the automorphism group of a graph X is said to be s-regular if it acts regularly on the set of s-arcs of X. In particular, if the subgroup is the full automorphism group $\operatorname{Aut}(X)$ of X, then X is said to be s-regular. Thus, if a graph X is s-regular, then $\operatorname{Aut}(X)$ is transitive on the set of s-arcs and the only automorphism fixing an s-arc is the identity automorphism of X. A regular edge- but not vertex-transitive graph will be referred to as a semisymmetric graph.

Clearly, a cycle is s-arc-transitive for any $s \geq 0$. Tutte [40, 41] showed that every finite connected cubic symmetric graph is s-regular for some $s \geq 1$ and that this s is at most five. Djoković and Miller [10] constructed an infinite family of cubic 2-regular graphs, and Conder and Praeger [7] constructed two infinite families of cubic s-regular graphs for $s=2$ or 4 . Several different types of infinite families of tetravalent 1-regular graphs have also been constructed in $[29,33,38]$. The first cubic 1-regular graph was constructed by Frucht [20] and an infinitely many cubic 1-regular graphs of girth 6 were constructed later by Miller [37]. From Cheng and Oxley's classification of symmetric graphs of order $2 p$ [5], it can be shown that Miller's construction contains all cubic 1regular graphs of order $2 p$, where $p \geq 13$ is a prime congruent to 1 modulo 3. Marušič and Xu [36] showed a way to construct a cubic 1-regular graph Y from a tetravalent half-arc-transitive graph X with girth 3 by letting the triangles of X be the vertices in Y with two triangles being adjacent whenever they share a common vertex in X. Using Marušič and Xu's result, Miller's construction can be generalized to graphs of order $2 n$, where $n \geq 13$ is odd such that 3 divides $\varphi(n)$, the Euler function (see [2,35]). It may be shown that all cubic 1-regular Cayley graphs on the dihedral groups (see [35]) are exactly those graphs generalized by Miller's construction. Additionally, more cubic 1 -regular graphs were constructed by Feng and Kwak [12, 13, 14]. Also, as shown in [35] or in [34], one can see an importance in studying cubic 1-regular graphs in connection with chiral (that is, regular and irreflexible) maps on a surface by means of tetravalent half-arc-transitive graphs or in connection with symmetries of hexagonal molecular graphs on the torus.

Regular coverings of a graph have received considerable attention. For example, consider the complete graph K_{4}, the complete bipartite graph $K_{3,3}$, the hypercube Q_{3} or the Petersen graph O_{3} as graph X. The s-regular cyclic
or elementary abelian coverings of X, whose fibre-preserving groups are arctransitive, have been classified for each $1 \leq s \leq 5$ in refs. [15, 16, 17, 19]. As an application of these classifications, all s-regular cubic graphs of orders $4 p$, $4 p^{2}, 6 p, 6 p^{2}, 8 p, 8 p^{2}, 10 p$, and $10 p^{2}$ have been constructed for each $1 \leq s \leq 5$ and each prime p in refs. $[15,16,17]$.

Malnič et al. [28] classified the cubic semisymmetric cyclic coverings of the bipartite graph $K_{3,3}$ when the fibre-preserving group contains an edge- but not vertex-transitive subgroup. Using the covering technique, cubic semisymmetric graphs of orders $8 p^{2}, 6 p^{2}$ and $2 p^{3}$ were classified in [1, 23, 30]. Some general methods of elementary abelian coverings were developed in [11, 26, 27]. Using the covering technique, Malnič and Potočnik [32] classified the vertex-transitive elementary abelian coverings of the Petersen graph when the fibre-preserving group is vertex-transitive. To investigate the s-regular $\mathbb{Z}_{p^{2}} \times \mathbb{Z}_{p^{-}}, G_{1}(p)=$ $\left\langle a, b \mid c m a^{p}=b^{p}=c^{p}=1, c=[a, b], a c=c a, b c=c b\right\rangle$ - or $G_{2}(p)=\langle a, b| a^{p^{2}}=$ $\left.b^{p}=1,[a, b]=a^{p}\right\rangle$-coverings of the Petersen graph O_{3}, we will assume that the fibre-preserving group is arc-transitive. Since the s-regular cyclic or elementary abelian coverings of the Petersen graph O_{3} are classified for each $1 \leq s \leq 5$ in [16], we only classify the s-regular $\mathbb{Z}_{p^{2}} \times \mathbb{Z}_{p^{-}}, G_{1}(p)=\langle a, b| a^{p}=b^{p}=c^{p}=$ $1, c=[a, b], a c=c a, b c=c b\rangle-$ and $G_{2}(p)=\left\langle a, b \mid a^{p^{2}}=b^{p}=1,[a, b]=a^{p}\right\rangle-$ coverings of the Petersen graph O_{3} for each $1 \leq s \leq 5$. As an application of these classifications, this paper provides a classification of s-regular cubic graphs of order $10 p^{3}$ for each $1 \leq s \leq 5$ and each prime p.

The following theorem is the main result of this paper.
Theorem 1.1. A graph X is a cubic connected symmetric graph of order $10 p^{3}$ for some prime p if and only if X is isomorphic to $C 80.1$ ($p=2$, 3-regular $)$, $C 1250.1$ ($p=5$, 2-regular) or $C 1250.2$ ($p=5$, 3-regular).

2. Preliminaries related to coverings

Let X be a graph and K a finite group. By a^{-1} we mean the reverse arc to an arc a. A voltage assignment (or K-voltage assignment) of X is a function $\phi: A(X) \rightarrow K$ with the property that $\phi\left(a^{-1}\right)=\phi(a)^{-1}$ for each arc $a \in A(X)$. The values of ϕ are called voltages and K the voltage group. The graph $X \times_{\phi} K$ derived from a voltage assignment $\phi: A(X) \rightarrow K$ has vertex set $V(X) \times K$ and edge set $E(X) \times K$ so that an edge (e, g) of $X \times_{\phi} K$ joins a vertex (u, g) to $(v, \phi(a) g)$ for $a=(u, v) \in A(X)$ and $g \in K$, where $e=u v$.

Clearly, the derived graph $X \times_{\phi} K$ is a covering of X with the first coordinate projection $p: X \times_{\phi} K \rightarrow X$, which is called the natural projection. By defining $\left(u, g^{\prime}\right)^{g}:=\left(u, g^{\prime} g\right)$ for any $g \in K$ and $\left(u, g^{\prime}\right) \in V\left(X \times_{\phi} K\right), K$ becomes a subgroup of $\operatorname{Aut}\left(X \times_{\phi} K\right)$ which acts semiregularly on $V\left(X \times_{\phi} K\right)$. Therefore, $X \times_{\phi} K$ can be viewed as a K-covering. For each $u \in V(X)$ and $u v \in E(X)$, the vertex set $\{(u, g) \mid g \in K\}$ is the fibre of u and the edge set $\{(u, g)(v, \phi(a) g) \mid g \in$ $K\}$ is the fibre of $u v$, where $a=(u, v)$. Conversely, each regular covering \widetilde{X} of
X with a covering transformation group K can be derived from a K-voltage assignment. Given a spanning tree T of the graph X, a voltage assignment ϕ is said to be T-reduced if the voltages on the tree arcs are the identity. Gross and Tucker [21] showed that every regular covering \widetilde{X} of a graph X can be derived from a T-reduced voltage assignment ϕ with respect to an arbitrary fixed spanning tree T of X. It is clear that if ϕ is reduced, the derived graph $X \times_{\phi} K$ is connected if and only if the voltages on the cotree arcs generate the voltage group K.

Let \tilde{X} be a K-covering of X with a projection p. If $\alpha \in \operatorname{Aut}(X)$ and $\tilde{\alpha} \in$ $\operatorname{Aut}(\widetilde{X})$ satisfy $\tilde{\alpha} p=p \alpha$, we call $\tilde{\alpha}$ a lift of α, and α the projection of $\tilde{\alpha}$. Concepts such as a lift of a subgroup of $\operatorname{Aut}(X)$ or a projection of a subgroup of $\operatorname{Aut}(\widetilde{X})$ are self-explanatory. The lifts and the projections of such subgroups are, of course, subgroups in $\operatorname{Aut}(\tilde{X})$ and in $\operatorname{Aut}(X)$, respectively. In particular, if the covering graph \widetilde{X} is connected, then the covering transformation group K is the lift of the trivial group, that is, $K=\{\tilde{\alpha} \in \operatorname{Aut}(\tilde{X}): p=\tilde{\alpha} p\}$. Clearly, if $\tilde{\alpha}$ is a lift of α, then $K \tilde{\alpha}$ are all the lifts of α.

Let $X \times_{\phi} K \rightarrow X$ be a connected K-covering derived from a T-reduced voltage assignment ϕ. The problem of whether an automorphism α of X lifts or not can be grasped in terms of voltages as follows. Observe that a voltage assignment on arcs extends to a voltage assignment on walks in a natural way. Given $\alpha \in \operatorname{Aut}(X)$, we define a function $\bar{\alpha}$ from the set of voltages on fundamental closed walks based at a fixed vertex $v \in V(X)$ to the voltage group K by

$$
(\phi(C))^{\bar{\alpha}}=\phi\left(C^{\alpha}\right)
$$

where C ranges over all fundamental closed walks at v, and $\phi(C)$ and $\phi\left(C^{\alpha}\right)$ are the voltages on C and C^{α}, respectively. Note that if K is abelian, $\bar{\alpha}$ does not depend on the choice of the base vertex, and the fundamental closed walks at v can be substituted by the fundamental cycles generated by the cotree arcs of X.

The next proposition is a special case of [24, Theorem 3.5].
Proposition 2.1. Let $X \times{ }_{\phi} K \rightarrow X$ be a connected K-covering derived from a T-reduced voltage assignment ϕ. Then an automorphism α of X lifts if and only if $\bar{\alpha}$ extends to an automorphism of K.

For more results on the lifts of automorphisms of X, we refer the reader to $[3,4,9,25,31]$. Let X be a graph and let N be a subgroup of $\operatorname{Aut}(X)$. Denote by X_{N} the quotient graph corresponding to the orbits of N, that is, the graph having the orbits of N as vertices with two orbits adjacent in X_{N} whenever there is an edge between these orbits in X. In view of [22, Theorem 9], we have the following.
Proposition 2.2. Let X be a cubic connected symmetric graph and G an s-regular subgroup of $\operatorname{Aut}(X)$ for some $s \geq 1$. If a normal subgroup N of G has more than two orbits, then it is semiregular and G / N is an s-regular
subgroup of $\operatorname{Aut}\left(X_{N}\right)$, where X_{N} is the quotient graph of X corresponding to the orbits of N. Furthermore, X is a regular covering of X_{N} with the covering transformation group N.

Two coverings \widetilde{X}_{1} and \widetilde{X}_{2} of X with projections p_{1} and p_{2}, respectively, are said to be equivalent if there exists a graph isomorphism $\tilde{\alpha}: \widetilde{X}_{1} \rightarrow \widetilde{X}_{2}$ such that $\tilde{\alpha} p_{2}=p_{1}$. We quote the following proposition.
Proposition 2.3 ([39]). Two connected regular coverings $X \times{ }_{\phi} K$ and $X \times_{\psi} K$, where ϕ and ψ are T-reduced, are equivalent if and only if there exists an automorphism $\sigma \in \operatorname{Aut}(K)$ such that $\phi(u, v)^{\sigma}=\psi(u, v)$ for any cotree arc (u, v) of X.

3. Regular coverings of O_{3} and related classification

As it is well-known, there are exactly five nonisomorphic groups of order p^{3}, which may be given in the following presentation.
(i) For abelian cases:
$G_{1}=\mathbb{Z}_{p^{3}}$;
$G_{2}=\mathbb{Z}_{p} \times \mathbb{Z}_{p} \times \mathbb{Z}_{p} ;$
$G_{3}=\mathbb{Z}_{p^{2}} \times \mathbb{Z}_{p}$;
(ii) For non-abelian cases:
$G_{1}(p)=\left\langle a, b \mid a^{p}=b^{p}=c^{p}=1, c=[a, b], a c=c a, b c=c b\right\rangle ;$
$G_{2}(p)=\left\langle a, b \mid a^{p^{2}}=b^{p}=1,[a, b]=a^{p}\right\rangle$.
Recall that since the s-regular cyclic or elementary abelian coverings of the Petersen graph O_{3} are classified for each $1 \leq s \leq 5$ in [16], we only classify the s-regular $\mathbb{Z}_{p^{2}} \times \mathbb{Z}_{p^{-}}, G_{1}(p)$ - or $G_{2}(p)$-coverings of the Petersen graph O_{3} for each $1 \leq s \leq 5$. As an application of these classifications, we classify s-regular cubic graphs of order $10 p^{3}$ for each $1 \leq s \leq 5$ and each prime p.

By O_{3} we denote the Petersen graph with vertex set $\{a, b, c, d, e, u, v, w, x, y\}$. Let T be a spanning tree of O_{3}, as shown by dashed lines in Fig. 1. Let ϕ be a such voltage assignment defined by $\phi=1$ on T and $\phi=z_{1}, z_{2}, z_{3}, z_{4}, z_{5}$, and z_{6} on the cotree $\operatorname{arcs}(\mathbf{u}, \mathbf{v}),(\mathbf{a}, \mathbf{c}),(\mathbf{a}, \mathbf{d}),(\mathbf{b}, \mathbf{e}),(\mathbf{b}, \mathbf{v})$, and (\mathbf{c}, \mathbf{w}), respectively. Let $\alpha=(\mathbf{a b c d e})(\mathbf{u v w x y}), \beta=($ vay $)(\mathbf{b c x})(\mathbf{w d e})$, and $\gamma=(\mathbf{e x})(\mathbf{b w})(\mathbf{c d})$. Then α, β, and γ are automorphisms of O_{3}.

Denote by $i_{1} i_{2} \cdots i_{s}$ a directed cycle having vertices $i_{1}, i_{2}, \ldots, i_{s}$ in a consecutive order. There are six fundamental cycles auvwxyu, aceyu, adxyu, auyxdbeyu, auyxdbvwxyu, and auyecwxyu in O_{3}, which are generated by the five cotree $\operatorname{arcs}(\mathbf{u}, \mathbf{v}),(\mathbf{a}, \mathbf{c}),(\mathbf{a}, \mathbf{d}),(\mathbf{b}, \mathbf{e}),(\mathbf{b}, \mathbf{v})$, and (\mathbf{c}, \mathbf{w}), respectively. Each cycle is mapped to a cycle of the same length under the actions of α, β, and γ. We list all these cycles and their voltages in Table 1, in which C denotes a fundamental cycle of O_{3} and $\phi(C)$ denotes the voltage of C. Also note that for abelian cases we use additive symbol.

By Conder [6], there is only one cubic connected symmetric graph of order 80 , namely, a 3 -regular graph $C 80.1$. Also for $p=3$, there is no cubic symmetric graph of order 10×3^{3}. Thus we may assume that $p \geq 5$.

Figure 1. The Petersen graph $\left(O_{3}\right)$ with voltage assignment ϕ.
Table 1. Fundamental cycles and their images with corresponding voltages

C	$\phi(C)$	C^{α}	$\phi\left(C^{\alpha}\right)$
auvwxyu	z_{1}	bvwxyuv	$z_{5} z_{1} z_{5}^{-1}$
aceyu	z_{2}	bdauv	$z_{3}^{-1} z_{1} z_{5}^{-1}$
adxyu	z_{3}	beyuv	$z_{4} z_{1} z_{5}^{-1}$
auyxdbeyu	z_{4}	bvuyecauv	$z_{5} z_{1}^{-1} z_{2}^{-1} z_{1} z_{5}^{-1}$
auyxdbvwxyu	z_{5}	bvuyecwxyuv	$z_{5} z_{1}^{-1} z_{6} z_{1} z_{5}^{-1}$
auyecwxyu	z_{6}	bvuadxyuv	$z_{5} z_{1}^{-1} z_{3} z_{1} z_{5}^{-1}$
C^{β}	$\phi\left(C^{\beta}\right)$	C^{γ}	$\phi\left(C^{\gamma}\right)$
yuadbvu	$z_{3} z_{5} z_{1}^{-1}$	auvbeyu	$z_{1} z_{5}^{-1} z_{4}$
yxwvu	z_{1}^{-1}	adxyu	z_{3}
yebvu	$z_{4}^{-1} z_{5} z_{1}^{-1}$	aceyu	z_{2}
yuvbecwvu	$z_{1} z_{5}^{-1} z_{4} z_{6} z_{1}^{-1}$	auyecwxyu	z_{6}
yuvbecadbvu	$z_{1} z_{5}^{-1} z_{4} z_{2}^{-1} z_{3} z_{5} z_{1}^{-1}$	auyecwvbeyu	$z_{6} z_{5}^{-1} z_{4}$
yuvwxdbvu	$z_{1} z_{5} z_{1}^{-1}$	auyxdbeyu	z_{4}

Lemma 3.1. There is no connected regular covering of the Petersen graph O_{3} whose covering transformation group K is isomorphic to $\mathbb{Z}_{p^{2}} \times \mathbb{Z}_{p} \cong\langle a\rangle \times\langle b\rangle$ with $o(a)=p^{2}$ and $o(b)=p$ and whose fibre-preserving group is arc-transitive.
Proof. Let $\widetilde{X}=O_{3} \times{ }_{\phi}\left(\mathbb{Z}_{p^{2}} \times \mathbb{Z}_{p}\right)$ be a covering graph of the graph O_{3} satisfying the hypotheses in the theorem, where p is a prime and $\phi=1$ on the spanning tree T, which is depicted by dashed lines in Fig. 1. We assign voltages z_{1}, z_{2}, z_{3}, z_{4}, z_{5} and z_{6} to the cotree arcs as shown in Fig. 1, where $z_{i} \in K(i=1,2,3$, $4,5,6)$. Note that the vertices of O_{3} are labeled by $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{e}, \mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{x}$, and \mathbf{y}. By the hypotheses, the fibre-preserving group, say \widetilde{L}, of the covering
graph $O_{3} \times_{\phi}\left(\mathbb{Z}_{p^{2}} \times \mathbb{Z}_{p}\right)$ acts arc-transitively on $O_{3} \times_{\phi}\left(\mathbb{Z}_{p^{2}} \times \mathbb{Z}_{p}\right)$. Hence the projection of \widetilde{L}, say L, is arc-transitive on the base graph O_{3}. Clearly, L is also vertex-transitive on O_{3}. Thus $\alpha, \beta \in L$ and so α and β lift to automorphisms of $O_{3} \times_{\phi}\left(\mathbb{Z}_{p^{2}} \times \mathbb{Z}_{p}\right)$. Also, since $O_{3} \times_{\phi}\left(\mathbb{Z}_{p^{2}} \times \mathbb{Z}_{p}\right)$ is assumed to be connected, $\mathbb{Z}_{p^{2}} \times \mathbb{Z}_{p}=\left\langle z_{1}, z_{2}, z_{3}, z_{4}, z_{5}, z_{6}\right\rangle$.

Consider the mapping $\bar{\alpha}$ from the set $\left\{z_{1}, z_{2}, z_{3}, z_{4}, z_{5}, z_{6}\right\}$ of voltages of the six fundamental cycles of O_{3} to the group $\mathbb{Z}_{p^{2}} \times \mathbb{Z}_{p}$, which is defined by $(\phi(C))^{\bar{\alpha}}=\phi\left(C^{\alpha}\right)$, where C ranges over the six fundamental cycles. From Table 1, one can see that $z_{1}^{\bar{\alpha}}=z_{1}, z_{2}^{\bar{\alpha}}=z_{3}^{-1} z_{1} z_{5}^{-1}, z_{3}^{\bar{\alpha}}=z_{4} z_{1} z_{5}^{-1}, z_{4}^{\bar{\alpha}}=z_{2}^{-1}$, $z_{5}^{\bar{\alpha}}=z_{6}$, and $z_{6}^{\bar{\alpha}}=z_{3}$. Similarly, we can define $\bar{\beta}$ and $\bar{\gamma}$. Since $\alpha, \beta \in L$, Proposition 2.1 implies that $\bar{\alpha}$ and $\bar{\beta}$ can be extended to automorphisms of $\mathbb{Z}_{p^{2}} \times \mathbb{Z}_{p}$. We denote by α^{*} and β^{*} these extended automorphisms, respectively. By Table $1, z_{4}^{\alpha^{*}}=z_{2}^{-1}, z_{5}^{\alpha^{*}}=z_{6}, z_{6}^{\alpha^{*}}=z_{3}$ and $z_{2}^{\beta^{*}}=z_{1}^{-1}$, implying that $o\left(z_{3}\right)=o\left(z_{5}\right)=o\left(z_{6}\right)$ and $o\left(z_{1}\right)=o\left(z_{2}\right)=o\left(z_{4}\right)$, where $o(z)$ denotes the order of $z \in K$. Assume that $K=\left\langle z_{1}, z_{5}\right\rangle$. Suppose that $o\left(z_{1}\right)=p^{2}$ and $o\left(z_{5}\right)=p$. If $\left\langle z_{1}\right\rangle \cap\left\langle z_{5}\right\rangle \neq \emptyset$, then $\left\langle z_{5}\right\rangle$ is a subgroup of $\left\langle z_{1}\right\rangle$ and $K=\left\langle z_{1}\right\rangle$, a contradiction. Thus $\left\langle z_{1}\right\rangle \cap\left\langle z_{5}\right\rangle=\emptyset$. By Proposition 2.3, one may let $z_{1}=a$ and $z_{5}=b$ and hence $z_{2}=z_{1}^{i} z_{5}^{j}, z_{3}=z_{1}^{m} z_{5}^{n}, z_{4}=z_{1}^{l} z_{5}^{k}$, and $z_{6}=z_{1}^{x} z_{5}^{y}$, where $i, m, l, x \in \mathbb{Z}_{p^{2}}$ and $j, n, k, y \in \mathbb{Z}_{p}$. By considering the image of $z_{2}=z_{1}^{i} z_{5}^{j}$, and $z_{3}=z_{1}^{m} z_{5}^{n}$ under α^{*}, we conclude that $z_{3}^{-1} z_{1} z_{5}^{-1}=z_{1}^{i} z_{6}^{j}$ and $z_{4} z_{1} z_{5}^{-1}=z_{1}^{m} z_{6}^{n}$. Therefore, we have the following:
(1) $1-m=i+j x \quad\left(\bmod p^{2}\right)$,
(2) $-n-1=j y$,
(3) $1+l=m+n x \quad\left(\bmod p^{2}\right)$,
(4) $k-1=n y$.

As shown in the above equations, in what follows, all equations (unless specified with modulo p^{2}) are to be taken $\bmod p$, but the symbol $\bmod p$ is omitted. This should cause no confusion. Similarly, by considering the image of $z_{4}=z_{1}^{l} z_{5}^{k}$ and $z_{6}=z_{1}^{x} z_{5}^{y}$ under α^{*}, we have the following:
(5) $-i=l+k x \quad\left(\bmod p^{2}\right)$,
(6) $-j=k y$,
(7) $m=x+y x \quad\left(\bmod p^{2}\right)$,
(8) $n=y^{2}$.

By (8), $n=y^{2}$. Thus by (2) and (4), we have $-y^{2}-1=j y$ and $k-1=y^{3}$. Now by (6), we have $-y^{2}-1=-\left(y^{3}+1\right) y^{2}$, so $y=1$. This implies that $n=1$, $k=2$, and $j=-2$. By (7) and (3), $m=2 x$, and $l=3 x-1$, respectively. So by (1), $i=1$ and hence by (5), $x=0$ or $5=0(\bmod p)$. If $x=0$, then $l=-1$ and $m=0$. By considering the image of $z_{2}=z_{1}^{i} z_{5}^{j}$ under β^{*}, we have $-1=i m-i+j l-j i+j m$ and $n i+i+k j-j^{2}+n j=0$. Therefore, $4=0($ by $-1=i m-i+j l-j i+j m)$, a contradiction. If $5=0(\bmod p)$, then $-1=2 x-1-2(3 x-1)+2-4 x$ (by $-1=i m-i+j l-j i+j m$). So $x=1 / 2=3$ and hence $m=1$ and $l=2$. Now by $n i+i+k j-j^{2}+n j=0$, $8=0$, a contradiction.

For the case when $o\left(z_{1}\right)=p$ and $o\left(z_{5}\right)=p^{2}$, we have a similar contradiction. Now let $o\left(z_{1}\right)=o\left(z_{5}\right)=p^{2}$. Then $\left\langle z_{1}\right\rangle \cap\left\langle z_{5}\right\rangle=\left\langle z_{1}^{p}\right\rangle=\left\langle z_{5}^{p}\right\rangle$, and hence $z_{1}^{r p}=z_{5}^{p}$ for some $r \in \mathbb{Z}_{p}^{*}$. By Proposition 2.3, one may let $z_{1}=a, z_{5}=a^{r} b$, $z_{2}=z_{1}^{i-j r} z_{5}^{j}, z_{3}=z_{1}^{m-n r} z_{5}^{n}, z_{4}=z_{1}^{l-k r} z_{5}^{k}$, and $z_{6}=z_{1}^{x-y r} z_{5}^{y}$. Considering the image of $z_{2}=z_{1}^{i-j r} z_{5}^{j}$ under α^{*} and β^{*}, by Table $1, z_{3}^{-1} z_{1} z_{5}^{-1}=z_{1}^{i-j r} z_{6}^{j}$ and $z_{1}^{-1}=z_{3}^{i-j r} z_{5}^{i-j r} z_{1}^{-i+j r} z_{4}^{j} z_{2}^{-j} z_{3}^{j}$, which implies the following equations:
(1) $1-m-r=i-j r+j x\left(\bmod p^{2}\right)$,
(2) $-n-1=j y$.

Also, by considering the image $z_{3}=z_{1}^{m-n r} z_{5}^{n}$ and $z_{4}=z_{1}^{l-k r} z_{5}^{k}$ under α^{*} and $z_{6}=z_{1}^{x-y r} z_{5}^{y}$ under α^{*} and β^{*}, we have the following:
(3) $1+l-r=m-n r+n x \quad\left(\bmod p^{2}\right)$,
(4) $k-1=n y$,
(5) $-i=l-k r+k x \quad\left(\bmod p^{2}\right)$,
(6) $-j=k y$,
(7) $m=x-r y+y x \quad\left(\bmod p^{2}\right)$,
(8) $n=y^{2}$,
(9) $1=x n+x-r y n-r y+y k-y j+y n$.

By (6), $-j y=k y^{2}$. Now by (2), $n+1=k y^{2}$. By (7) and (4), $k=y^{3}+1$. Thus $n+1=\left(y^{3}+1\right) y^{2}=y^{5}+y^{2}$. So $y^{2}+1=y^{5}+y^{2}$. This implies that $y=1$, and hence $n=1, k=2$ and $j=-2$. Now by (1), (3), (5), and (9), we have the following equations:
(a) $1-m-r=i+2 r-2 x$,
(b) $1+l=m+x$,
(c) $-i=l-2 r+2 x$,
(d) $m=2 x-r$.

By (b), $l=m+x-1$. So by (d), we have $l=3 x-r-1$ and hence by (c), $i=3 r-5 x+1$. Now by (a), one has $x=r$. Now by (8), $4=0$, a contradiction.

Now assume that $\left|\left\langle z_{1}, z_{5}\right\rangle\right|=p$. Thus $\left\langle z_{1}\right\rangle=\left\langle z_{5}\right\rangle$. It follows that $\left\langle z_{1}\right\rangle=$ $\left\langle z_{2}\right\rangle=\left\langle z_{3}\right\rangle=\left\langle z_{4}\right\rangle=\left\langle z_{5}\right\rangle=\left\langle z_{6}\right\rangle$. Therefore, K is generated by one of the z_{i} ($1 \leq i \leq 6$), a contradiction.

Finally, assume that $\left|\left\langle z_{1}, z_{5}\right\rangle\right|=p^{2}$. Since α lifts, by Table $1,\left|\left\langle z_{1}, z_{6}\right\rangle\right|=p^{2}$. Since $\left|\left\langle z_{1}, z_{5}\right\rangle\right|=p^{2}$ by Proposition 2.3, we may assume that $z_{1}=a . X$ is connected and hence one of the z_{2}, z_{3}, z_{4} or z_{6} must be equal to b. If $z_{3}=b$ or $z_{5}=b$, then $K=\left\langle z_{1}, z_{5}\right\rangle$ or $K=\left\langle z_{1}, z_{6}\right\rangle$, a contradiction. Thus $z_{2}=b$ or $z_{4}=b$. Without loss of generality, we may assume that $z_{2}=b$. So $K=$ $\left\langle z_{1}, z_{2}\right\rangle=\left\langle z_{1}, z_{4}\right\rangle$. Thus $\left\langle z_{1}\right\rangle \cap\left\langle z_{2}\right\rangle=\left\langle z_{1}^{p}\right\rangle=\left\langle z_{2}^{p}\right\rangle$, and $\left\langle z_{1}\right\rangle \cap\left\langle z_{4}\right\rangle=\left\langle z_{1}^{p}\right\rangle=\left\langle z_{4}^{p}\right\rangle$, and hence $z_{1}^{r^{\prime} p}=z_{2}^{p}$ and $z_{1}^{r p}=z_{4}^{p}$ for some $r, r^{\prime} \in \mathbb{Z}_{p}^{*}$. By Proposition 2.3, one may let $z_{1}=a, z_{2}=a^{r^{\prime}} b, z_{4}=a^{r} b, z_{3}=a^{i-j r} b^{j}, z_{5}=a^{m-n r} b^{n}$, and $z_{6}=a^{x-y r} b^{y}$. By considering the image of $z_{5}=a^{m-n r} b^{n}$ and $z_{6}=a^{x-y r} b^{y}$ under α^{*}, one has $z_{6}=z_{1}^{m-n r} z_{2}^{-n}$ and $z_{3}=z_{1}^{x-r y} z_{2}^{-y}$. Therefore, we have the following equations:
(1) $y=-n$,
(2) $j=-y$.

Similarly, by considering the image of $z_{3}=a^{i-j r} b^{j}$ under α^{*}, we get $1-n=$ $-j$. So $1=0$, a contradiction.

Lemma 3.2. There is no connected regular covering of the Petersen graph O_{3} whose covering transformation group K is isomorphic to $G_{1}(p)=\langle a, b| a^{p}=$ $\left.b^{p}=c^{p}=1, c=[a, b], a c=c a, b c=c b\right\rangle$ and whose fibre-preserving group is arc-transitive.

Proof. Let $\widetilde{X}=O_{3} \times_{\phi} G_{1}(p)$ be a covering graph of the graph O_{3} satisfying the hypotheses in the theorem, where p is a prime and $\phi=1$ on the spanning tree T depicted by dashed lines in Fig. 1. Since X is connected, K can be generated by $z_{1}, z_{2}, z_{3}, z_{4}, z_{5}$, and z_{6}. By the hypotheses, the fibre-preserving subgroup, say \widetilde{L}, of the covering graph $O_{3} \times{ }_{\phi} G_{1}(p)$ acts arc-transitively on $O_{3} \times_{\phi} G_{1}(p)$. Hence the projection, say L of \widetilde{L}, is arc-transitive on the base graph O_{3}. Thus $\alpha, \beta \in L$. It follows that α and β lift. Since $\alpha, \beta \in L$, Proposition 2.1 implies that $\bar{\alpha}$ and $\bar{\beta}$ can be extended to automorphisms of $\left\langle a, b \mid a^{p}=b^{p}=c^{p}=1, c=[a, b], a c=c a, b c=c b\right\rangle$. We denote by α^{*} and β^{*} these extended automorphisms, respectively. By Table 1, $z_{6}^{\alpha^{*}}=z_{5} z_{1}^{-1} z_{3} z_{1} z_{5}^{-1}$ and $z_{5}^{\alpha^{*}}=z_{5} z_{1}^{-1} z_{6} z_{1} z_{5}^{-1}$. Also $z_{4}^{\alpha^{*}}=z_{5} z_{1}^{-1} z_{2}^{-1} z_{1} z_{5}^{-1}$ and $z_{2}^{\beta^{*}}=z_{1}^{-1}$. Thus $o\left(z_{3}\right)=o\left(z_{5}\right)=o\left(z_{6}\right)$ and $o\left(z_{1}\right)=o\left(z_{2}\right)=o\left(z_{4}\right)$, where $o(z)$ denotes the order of $z \in K$.

First assume that $K=\left\langle z_{1}, z_{2}\right\rangle$ and $z_{1}=a^{i^{\prime}} b^{j^{\prime}} c^{k^{\prime}}, z_{2}=a^{l^{\prime}} b^{m^{\prime}} c^{n^{\prime}}$. Since $a^{i^{\prime}} b^{j^{\prime}} c^{k^{\prime}} \mapsto a, a^{l^{\prime}} b^{m^{\prime}} c^{n^{\prime}} \mapsto b$ extend to automorphism of K, by Proposition 2.3, one may let $z_{1}=a, z_{2}=b, z_{3}=a^{i} b^{j} c^{k}, z_{4}=a^{l} b^{m} c^{n}, z_{5}=a^{f} b^{g} c^{r}$, and $z_{6}=a^{x} b^{y} c^{z}\left(i, j, k, l, m, n, f, g, r, x, y, z \in \mathbb{Z}_{p}\right)$.

Now by Table $1,\left(z_{1}\right)^{\alpha^{*}}=(a)^{\alpha^{*}}=z_{5} z_{1} z_{5}^{-1}=a^{f} b^{g} c^{r} a c^{-r} b^{-g} a^{-f}$. By considering $b^{j} a^{i}=c^{-i j} a^{i} b^{j}$, we have $(a)^{\alpha^{*}}=a c^{-g}$ and

$$
\begin{aligned}
\left(z_{2}\right)^{\alpha^{*}} & =(b)^{\alpha^{*}}=z_{3}^{-1} z_{1} z_{5}^{-1}=c^{-k} b^{-j} a^{-i} a c^{-r} b^{-g} a^{-f} \\
& =c^{-k} a^{1-i} b^{-j} c^{-r} b^{-g} a^{-f} c^{(1-i) j} \\
& =c^{-k} a^{1-i} c^{-r} c^{(1-i) j} a^{-f} b^{-j-g} c^{-f(j+g)} \\
& =a^{1-i-f} b^{-j-g} c^{-k-r+(1-i) j-f(j+g)}
\end{aligned}
$$

Therefore one can get $(c)^{\alpha^{*}}=\left[a^{\alpha^{*}}, b^{\alpha^{*}}\right]=c^{-j-g}$. Now since c belongs to $Z(K)$, we have $\left(a^{i}\right)^{\alpha^{*}}=a^{i} c^{-g i}$. Also, since $\left[a^{1-i-f}, b^{-j-g}\right]$ belongs to $Z(K)$, one has

$$
\begin{aligned}
\left(b^{j}\right)^{\alpha^{*}} & =\left(a^{1-i-f} b^{-j-g} c^{-k-r+(1-i) j-f(j+g)}\right)^{j} \\
& =\left(a^{1-i-f} b^{(-j-g)}\right)^{j} c^{(-k-r+(1-i) j-f(j+g)) j} \\
& =a^{(1-i-f) j} b^{(-j-g) j}\left[b^{(-j-g)}, a^{1-i-f}\right]^{\frac{j(j-1)}{2}} c^{(-k-r+(1-i) j-f(j+g)) j} \\
& =a^{(1-i-f) j} b^{(-j-g) j} c^{(j+g)(1-i-f) \frac{j(j-1)}{2}} c^{(-k-r+(1-i) j-f(j+g)) j} .
\end{aligned}
$$

By $\left(z_{3}\right)^{\alpha^{*}}=\left(a^{i} b^{j} c^{k}\right)^{\alpha^{*}}=z_{4} z_{1} z_{5}^{-1}$ and $\left(z_{5}\right)^{\alpha^{*}}=\left(a^{f} b^{g} c^{r}\right)^{\alpha^{*}}=z_{5} z_{1}^{-1} z_{6} z_{1} z_{5}^{-1}$, we have

$$
\begin{aligned}
& a^{i} c^{-g i} a^{(1-i-f) j} b^{(-j-g) j} c^{(j+g)(1-i-f) \frac{j(j-1)}{2}} c^{(-k-r+(1-i) j-f(j+g)) j} c^{k(-j-g)} \\
= & a^{l+1-f} b^{m-g} c^{f(m-g)} c^{n-r-m}
\end{aligned}
$$

and

$$
\begin{aligned}
& a^{f} c^{-g f} a^{(1-i-f) g} b^{(-j-g) g} c^{(j+g)(1-i-f) \frac{g(g-1)}{2}} c^{(-k-r+(1-i) j-f(j+g)) g} c^{(-j-g) r} \\
= & a^{f} b^{g} c^{r} a^{-1} a^{x} b^{y} c^{z} a c^{-r} b^{-g} a^{-f} \\
= & a^{x} b^{y} c^{-g x-y+y f+z} .
\end{aligned}
$$

Hence by considering the powers of a and b, we have the following:
(1) $i+(1-i-f) j=l+1-f$,
(2) $(-j-g) j=m-g$,
(3) $f+(1-i-f) g=x$,
(4) $(-j-g) g=y$.

By similar argument considering the image $z_{4}=a^{l} b^{m} c^{n}$ and $z_{6}=a^{x} b^{y} c^{z}$ under α^{*}, and also the image $z_{3}=a^{i} b^{j} c^{k}, z_{4}=a^{l} b^{m} c^{n}$ and $z_{5}=a^{f} b^{g} c^{r}$ under β^{*}, we have the following:
(5) $(-j-g) m=-1$,
(6) $(-j-g) y=j$,
(7) $i(i+f-1)-j=f-l-1$,
(8) $i(g+j)=g-m$,
(9) $(i+f-1) l-m=x+l-f$,
(10) $(g+j) l=-g+m+y$,
(11) $(g+j) f=j+m-1$.

By (2) and $(8),(j+g) j=i(g+j)$. So $(g+j)(j-i)=0$ and hence $g=-j$ or $j=i$. If $j=-g$, then by (5), $1=0$, a contradiction. Thus $i=j$. By considering (2), (4), and (10), we have $(g+j) l=-(j+g) j-(g+j) g$. So $(j+g)(l+j+g)=0$. It follows that $l=-j-g$. Now since $i=j$, by (7) and (9), we have $(i+f-1)(-g)-(j+m)=x-1$. Now by considering (3), $-f=j+m-1$ and hence by $(11),-f=(g+j) f$. Thus $f=0$ or $g+j+1=0$. If $f=0$, then by (11), $j=1-m$. Now by $i=j$ and (1), $l=-m^{2}$ and so $g=m^{2}+m-1$. By (5), $m=1$. Therefore, $l=-1, j=0, i=0$, and $g=1$. So by (3) and (4), $x=1$ and $y=-1$. Hence by (6), $1=0$, a contradiction. Thus $g=-j-1$ and since $l=-j-g$, we have $l=1$. Also by (4), (5), and (6), we have $y=g, m=-1$, and $y=j$. It follows that $j=-1 / 2$. So $i=-1 / 2$, $y=-1 / 2$ and $g=-1 / 2$. Now by (7), $f=13 / 6$ and so by (3), $x=5 / 2$. Thus by $(11),-13 / 6=-5 / 2$, a contradiction.

Now assume that $\left|\left\langle z_{1}, z_{2}\right\rangle\right|=p$. Thus $\left\langle z_{1}\right\rangle=\left\langle z_{2}\right\rangle$. Since α lifts, by Table 1, $\left\langle z_{1}\right\rangle=\left\langle z_{4}\right\rangle$. Without loss of generality, we may suppose that $K=\left\langle z_{1}, z_{5}\right\rangle$ since X is connected. By Proposition 2.3, one may let $z_{1}=a, z_{5}=b$, $z_{2}=a^{i}, z_{4}=a^{j}, z_{3}=a^{x} b^{y} c^{z}$, and $z_{6}=a^{l} b^{m} c^{n}$, where $(i, p)=1$ and $(j, p)=1$. Now by Table $1,\left(z_{1}\right)^{\alpha^{*}}=(a)^{\alpha^{*}}=z_{5} z_{1} z_{5}^{-1}=a c^{-1}$, and $\left(z_{5}\right)^{\alpha^{*}}=$
$(b)^{\alpha^{*}}=z_{5} z_{1}^{-1} z_{6} z_{1} z_{5}^{-1}=a^{l} b^{m} c^{n} c^{1-l} c^{-1-m}$. So $c^{\alpha^{*}}=c^{m},\left(a^{i}\right)^{\alpha^{*}}=a^{i} c^{-i}$ and $\left(b^{j}\right)^{\alpha^{*}}=a^{l j} b^{m j} c^{-l m\left(\frac{j(j-1)}{2}\right)} c^{n j} c^{(1-l) j} c^{(-1-m) j}$. By $\left(z_{2}\right)^{\alpha^{*}}=z_{3}^{-1} z_{1} z_{5}^{-1}$ and $\left(z_{4}\right)^{\alpha^{*}}=z_{5} z_{1}^{-1} z_{2}^{-1} z_{1} z_{5}^{-1}$, we have $a^{i} c^{-i}=a^{1-x} b^{-y-1} c^{-z} c^{(1-x) y}$ and $a^{j} c^{-j}=$ $a^{-i} c^{i}$. Therefore, by considering the powers of a and b, we have the following:
(1) $i=1-x$,
(2) $-y-1=0$,
(3) $j=-i$,
(4) $-i=-z+(1-x) y$.

Similarly, by considering the image $z_{2}=a^{i}$ and $z_{4}=a^{j}$ under β^{*}, we have the following equations:
(5) $(y+1) i=0$,
(6) $(x-1) j=l+j$,
(7) $(y+1) j=m-1$.

By (2), $j=-1$ and so $i=1$, by (3). Now by (1), $x=0$. Also by (5) and (7), $y=-1$ and $m=1$. Now by (4) and (6), $z=0$ and $l=2$. Then

$$
z_{1}=a, z_{2}=a, z_{3}=b^{-1}, z_{4}=a^{-1}, z_{5}=b, z_{6}=a^{2} b c^{n}
$$

Since α lifts, it follows that $2=0$, a contradiction.
Finally, assume that $\left|\left\langle z_{1}, z_{2}\right\rangle\right|=p^{2}$. Since α lifts, $\left|\left\langle z_{1}, z_{4}\right\rangle\right|=p^{2}$. By Proposition 2.3, we may assume that $z_{1}=a$ and $z_{2}=a^{i} c^{j}$. Since \widetilde{X} is connected, it implies that $z_{3}=b, z_{5}=b$ or $z_{6}=b$. Without loss of generality, we may assume that $z_{3}=b$. Thus $K=\left\langle z_{1}, z_{3}\right\rangle$, and $z_{4}=a^{i^{\prime}} c^{j^{\prime}}, z_{5}=a^{l} b^{m} c^{n}$, and $z_{6}=a^{x} b^{y} c^{f}$. Now by Table $1,\left(z_{1}\right)^{\alpha^{*}}=(a)^{\alpha^{*}}=z_{5} z_{1} z_{5}^{-1}=a c^{-m}$ and $\left(z_{3}\right)^{\alpha^{*}}=$ $(b)^{\alpha^{*}}=z_{4} z_{1} z_{5}^{-1}=a^{i^{\prime}+1-l} b^{-m} c^{j^{\prime}-n-m l}$. Therefore, one get $(c)^{\alpha^{*}}=c^{-m}$. Clearly, $\left(a^{i}\right)^{\alpha^{*}}=a^{i} c^{-m i}$ and since $\left[a^{i+1-l}, b^{-m}\right]$ belongs to $Z(K)$, we have $\left(b^{j}\right)^{\alpha^{*}}=a^{\left(i^{\prime}+1-l\right) j} b^{-m j} c^{m\left(i^{\prime}+1-l\right)}\left(\frac{j(j-1)}{2}\right) c^{j\left(j^{\prime}-n-m l\right)}$. By $\left(z_{2}\right)^{\alpha^{*}}=\left(a^{i} c^{j}\right)^{\alpha^{*}}=$ $z_{3}^{-1} z_{1} z_{5}^{-1}$, one has $a^{i} c^{-m i} c^{-m j}=a^{-l+1} b^{-m-1} c^{1-n} c^{-l(1+m)}$ so by considering the power of b in $\left(z_{5}\right)^{\alpha^{*}}=z_{5} z_{1}^{-1} z_{6} z_{1} z_{5}^{-1}$ and $\left(z_{6}\right)^{\alpha^{*}}=z_{5} z_{1}^{-1} z_{3} z_{1} z_{5}^{-1}$, one has $-m^{2}=y$ and $-m y=1$. Since $m=-1$ and $y=-1$, it follows that $-1=1$, a contradiction.

Lemma 3.3. There is no connected regular covering of the Petersen O_{3} whose covering transformation group K is isomorphic to $G_{2}(p)=\langle a, b| a^{p^{2}}=b^{p}=$ $\left.1,[a, b]=a^{p}\right\rangle$ and whose fibre-preserving group is arc-transitive.

Proof. By the same reasoning as before, α and β lift. Obviously, any automorphism of K is of the form $a \mapsto a^{i} b^{j}, b \mapsto a^{r p} b$, where $i \in \mathbb{Z}_{p^{2}}^{*}$ and $j, r \in \mathbb{Z}_{p}$. Since $\operatorname{Aut}(K)$ acts transitively on elements of order p^{2}, one may let $z_{1}=a$, $z_{2}=a^{i} b^{j}, z_{3}=a^{m} b^{n}, z_{4}=a^{k} b^{l}, z_{5}=a^{f} b^{g}$, and $z_{6}=a^{x} b^{y}$.

Now by Table $1,\left(z_{1}\right)^{\alpha^{*}}=(a)^{\alpha^{*}}=z_{5} z_{1} z_{5}^{-1}=a^{f} b^{g} a b^{-g} a^{-f}$. By considering $b^{j} a^{i}=a^{i-i j p} b^{j}$, we have $(a)^{\alpha^{*}}=a^{1-g p}$. Now assume that $(b)^{\alpha^{*}}=a^{k^{\prime} p} b$. Then $\left(b^{j}\right)^{\alpha^{*}}=a^{k^{\prime} p j} b^{j}$ since $a^{k^{\prime} p} \in Z(K)$. By $\left(z_{2}\right)^{\alpha^{*}}=\left(a^{i} b^{j}\right)^{\alpha^{*}}=z_{3}^{-1} z_{1} z_{5}^{-1}$ and
$\left(z_{3}\right)^{\alpha^{*}}=z_{4} z_{1} z_{5}^{-1}$, we have $a^{i-i g p} a^{k^{\prime} p j} b^{j}=a^{(1-m)+(1-m) n p} a^{-f-f(n+g) p} b^{-n-g}$ and $a^{(1-g p) m} a^{k^{\prime} p n} b^{n}=a^{k+1-l p} a^{-f+f(l-g) p} b^{l-g}$. Therefore, we have the following:
(1) $i=1-m-f$,
(2) $j=-n-g$,
(3) $n=l-g$.

As shown in the above equations, in what follows, all equations are to be taken $\bmod p$, but the symbol $\bmod p$ is to be omitted. This should cause no confusion. By similar argument considering the image $z_{5}=a^{f} b^{g}$ and $z_{6}=a^{x} b^{y}$ under α^{*}, and also the image $z_{2}=a^{i} b^{j}$ and $z_{3}=a^{m} b^{n}$ under β^{*}, we have the following:
(4) $f=x$,
(5) $g=y$,
(6) $x=m$,
(7) $y=n$,
(8) $(n+g) i+j=0$,
(9) $(n+g) m+n=g-l$.

By (2), $n+g=-j$, so by (8), $-i j+j=0$. It follows that $j=0$ or $i=1$. If $j=0$, then by (2), $n=-g$. Since $n=g$ by (5) and (7), one has $g=0$. So $n=0$ and hence $y=0$ and $l=0$. This is a contradiction to the fact that X is connected. Thus $i=1$, and so by (1), $m=-f$. But by (4) and (6), $f=m$, and hence $m=f=0$. Now by (3) and (9), $(n+g) m+n=-n$, and so $n=0$. Therefore, $y=g=l=0$, a contradiction.

4. The cubic symmetric graphs of order $10 p^{3}$

Lemma 4.1. Let p be a prime and let X be a connected cubic symmetric graph of order $10 p^{3}$. If p is one of $7,11,13,17,19,23,29,31,47,59,79,239$, or 479, then every minimal normal subgroup of A is an elementary abelian group.

Proof. Since X is at most 5 -regular, $|A| \mid 2^{5} \cdot 3 \cdot 5 \cdot p^{3}$. Let N be a minimal normal subgroup of A. If N is not an elementary abelian group, then $N \cong T_{1} \times \cdots \times T_{n}$, where $T_{i} \cong T_{j}(1 \leq i, j \leq n)$. By considering the order of A, one has $n=1$. Now by checking the simple groups of order less than 10^{25} in [8], $N \cong A_{5}$, $L_{2}(7), L_{2}(11), L_{2}(16)$ or $L_{2}(31)$ and $|N|=2^{2} \cdot 3 \cdot 5,2^{3} \cdot 3 \cdot 7,2^{2} \cdot 3 \cdot 5 \cdot 11$, $2^{4} \cdot 3 \cdot 5 \cdot 17$ or $2^{5} \cdot 3 \cdot 5 \cdot 31$. Clearly, N is not transitive on $V(X)$ and hence by Proposition $2.2, N$ is semiregualr on $V(X)$, a contradiction. So N is an elementary abelian 2 -, 3 -, 5 -, or p-group, respectively.

Lemma 4.2. Let X be a connected cubic symmetric graph of order $10 \cdot 7^{3}$. Also let P be a Sylow 7-subgroup of A. Then $P \triangleleft A$.

Proof. Suppose to the contrary that P is not normal in A. Since X is at most 5 regular, $|A|=2^{s} \cdot 3 \cdot 5 \cdot p^{3}(1 \leq s \leq 5)$. Now let N be a minimal normal subgroup of A. Then by Lemma $4.1, N$ is an elementary abelian 2 -, 3 -, 5 -, or 7 -group, respectively. Clearly, N cannot be an elementary abelian 2 - nor 3 -group. Now
assume that N is an elementary abelian 5-group. Then $\left|X_{N}\right|=2 \cdot 7^{3}$. By [18, Theorem 3.2], X_{N} is 1-regular or 2-regular. Also, if X_{N} is 1-regular, then $X_{N} \cong \operatorname{Cay}\left(D_{2 \cdot 7^{3}},\left\{a, a b, a b^{-\lambda}\right\}\right)$, where λ is of the element of order 3 in $\mathbb{Z}_{7^{3}}^{*}$, or $X_{N} \cong \operatorname{Cay}\left(G_{1},\left\{a, a b, a b^{-k} c\right\}\right)$, where $G_{1}=\langle a, b, c| a^{2}=b^{7^{2}}=c^{7}=[b, c]=$ $\left.1, a b a=b^{-1}, a c a=c^{-1}\right\rangle$, and k is the element of order 3 in \mathbb{Z}_{7}^{*}. Moreover, if X_{N} is 2-regular, then $X_{N} \cong \operatorname{Cay}\left(G_{2},\{a, a b, a c\}\right)$, where $G_{2}=\langle a, b, c, d| a^{2}=$ $\left.b^{7}=c^{7}=d^{7}=[a, d]=[b, d]=[c, d]=1, d=[b, c], a b a=b^{-1}, a c a=c^{-1}\right\rangle$. If X_{N} is 1-regular, then $A / N=\operatorname{Aut}\left(X_{N}\right)$. Also, $\operatorname{Aut}(G, S)=\operatorname{Aut}\left(X_{N}\right)_{1} \cong \mathbb{Z}_{3}$, where $G \cong D_{2.7^{3}}$ or G_{1}. Thus X_{N} is a normal Cayley graph. So $G \triangleleft A / N$, where $G \cong H / N$. Thus $H \triangleleft A$ and we have $|H|=2 \cdot 5 \cdot 7^{3}$. Now P is characteristic in H and so $P \triangleleft A$, a contradiction. If X_{N} is 2-regular, then $\left|\operatorname{Aut}\left(X_{N}\right): A / N\right| \leq 2$. Also, $\operatorname{Aut}\left(G_{2}, S\right)=\operatorname{Aut}\left(X_{N}\right)_{1} \cong S_{3}$ and hence X_{N} is a normal Cayley graph. If $A / N=\operatorname{Aut}\left(X_{N}\right)$, then $G_{2} \triangleleft A / N$, where $G_{2} \cong G / N$. Clearly, a Sylow 7 -subgroup of A is normal in A, a contradiction. Now assume that $\left|\operatorname{Aut}\left(X_{N}\right)\right|=2|A / N|$. So $|A / N|=2 \cdot 3 \cdot 7^{3}$ and hence a Sylow 7-subgroup of $\operatorname{Aut}\left(X_{N}\right)$ is a Sylow 7 -subgroup of A / N. It is easy to see that $P \triangleleft A$, a contradiction. Now assume that N is an elementary abelian 7 -group. Thus $\left|V\left(X_{N}\right)\right|=10,10 \cdot 7$ or $10 \cdot 7^{2}$. If $\left|V\left(X_{N}\right)\right|=10$, then $P \triangleleft A$, a contradiction. Thus $\left|V\left(X_{N}\right)\right|=10 \cdot 7$ or $10 \cdot 7^{2}$. By [16, Theorem 5.1], there are no cubic symmetric graphs of orders $10 \cdot 7$ and $10 \cdot 7^{2}$, a contradiction.

We are now ready to prove Theorem 1.1.
Proof of Theorem 1.1. For $p=2$, by Conder [6], there exists only one connected cubic symmetric graph of order 10×2^{3}, namely, the cubic 3-regular graph $C 80.1$, and for $p=3$, there is no cubic symmetric graph of order 10×3^{3}. Also if $p=5$, then there are two cubic connected symmetric graphs of order 1250 , which are the 2-regular graph $C 1250.1$ and the 3-regular graph $C 1250.2$. Thus we may assume that $p \geq 7$.

Let $A=\operatorname{Aut}(X)$ and let P be a Sylow p-subgroup of A. Then $|P|=p^{3}$ and $\left|A: N_{A}(P)\right|=1+n p$, where $N_{A}(P)$ is the normalizer of P in A. To prove the theorem, it suffices to show that $P \triangleleft A$ by [16, Theorem 4.4], Proposition 2.2, and Lemmas 3.1, 3.2, and 3.3. Suppose to the contrary that P is not normal in A. Then $1+n p \geq 8$ since $p \geq 7$. Since X is at most 5 -regular, $|A| \mid 2^{5} \cdot 3 \cdot 5 \cdot p^{3}$. It follows that $n p$ is one of the following:
$7,11,14=2 \times 7,19,23,29,31,39=3 \times 13,47,59,79,95=5 \times 19$, $119=17 \times 7,159=3 \times 53,239,479$. Thus there are five possible cases:

1) $p=7,11,19,23,29,31,47,59,79,239,479$ and $n=1$;
2) $p=7$ and $n=2$ or 17 ;
3) $p=13,53$ and $n=3$;
4) $p=17$ and $n=7$;
5) $p=19$ and $n=5$.

Case I. $p=7,11,19,23,29,31,47,59,79,239,479$ and $n=1$.

Let $H=N_{A}(P)$. By considering the right multiplication action of A on the set of right cosets of H in $A,\left|A / H_{A}\right| \mid(p+1)$!, where H_{A} is the largest normal subgroup of A in H. This forces $p^{2}| | H_{A} \mid$. Let L be a Sylow p-subgroup of H_{A}. First let $p=7$ or $p=11$. So $|A|=2^{s} \cdot 3 \cdot 5 \cdot 7^{3}$ or $2^{s} \cdot 3 \cdot 5 \cdot 11^{3}(1 \leq s \leq 5)$. Now let N be a minimal normal subgroup of A. Then by Lemma 4.1, N is an elementary abelian $2-, 3-5$-, 7 , or 11-group, respectively. Clearly, N cannot be an elementary abelian 2 - nor 3 -group. Now assume that N is an elementary abelian 5 -group. Then $\left|X_{N}\right|=2 p^{3}$. If $p=7$, then $|X|=10 \cdot 7^{3}$. Now by Lemma 4.2, a Sylow 7 -subgroup of A is normal in A, a contradiction. Also for $p=11$, by [18, Theorem 3.2], X_{N} is 2-regular and $X_{N} \cong \operatorname{Cay}(G,\{a, a b, a c\})$, where $G=\langle a, b, c, d| a^{2}=b^{11}=c^{11}=d^{11}=[a, d]=[b, d]=[c, d]=1, d=$ $\left.[b, c], a b a=b^{-1}, a c a=c^{-1}\right\rangle$. Also, $\operatorname{Aut}(G, S)=\operatorname{Aut}\left(X_{N}\right)_{1} \cong S_{3}$. Thus X_{N} is a normal Cayley graph. Clearly, $\left|\operatorname{Aut}\left(X_{N}\right): A / N\right| \leq 2$. If $A / N=\operatorname{Aut}\left(X_{N}\right)$, then $G \triangleleft A / N$, where $G \cong G_{1} / N$. Clearly, a Sylow 11-subgroup of A is normal in A. Now assume that $\left|\operatorname{Aut}\left(X_{N}\right)\right|=2|A / N|$. So $|A / N|=2 \cdot 3 \cdot 11^{3}$ and hence a Sylow 11-subgroup of $\operatorname{Aut}\left(X_{N}\right)$ is a Sylow 11-subgroup of A / N. It is easy to see that a Sylow 11-subgroup is normal in A, a contradiction. Now assume that N is an elementary abelian 7 - or 11-group. Thus $\left|V\left(X_{N}\right)\right|=10,10 p$ or $10 p^{2}$, where $p=7$ or $p=11$. If $\left|V\left(X_{N}\right)\right|=10$, then a Sylow 7 -subgroup or a Sylow 11-subgroup is normal in A, a contradiction. Thus $\left|V\left(X_{N}\right)\right|=10 p$ or $10 p^{2}$, where $p=7$ or $p=11$. By [16, Theorem 5.1], X_{N} must be a CoxeterFrucht graph of order 110, which is 3-regular. Thus $\left|V\left(X_{N}\right)\right|=10 \times 11$ and $|A / N|\left|\left|\operatorname{Aut}\left(X_{N}\right)\right|=2^{3} \cdot 3 \cdot 5 \cdot 11\right.$. Now assume that $Y=X_{N}$ and let T / N be a minimal normal subgroup of A / N. If T / N is not an elementary abelian group, then $T / N \cong T_{1} \times T_{2} \times \cdots \times T_{n}$, where $T_{i} \cong T_{j}(1 \leq i, j \leq n)$. By considering the order of A, one has $n=1$. Now by checking the simple groups of order less than 10^{25} in $[8], N \cong A_{5}$ or $L_{2}(11)$. Hence T / N is an elementary abelian 2-, 3-, 5-, or 11-group. Clearly, T / N cannot be elementary abelian 2nor 3-group. If T / N is an elementary abelian 5-group, then $\left|Y_{T / N}\right|=2 \cdot 11$. But by [6], there is no symmetric graph of order 22, a contradiction. Finally, if T / N is an elementary abelian 11-group, then $|T / N|=11$. So $|T|=11^{3}$ and hence a Sylow 11 -subgroup is normal in A, a contradiction.

Now let $p>11$. L is characteristic in H_{A} and so $L \triangleleft A$. Also, $L \cong \mathbb{Z}_{p^{2}}$ or $\mathbb{Z}_{p} \times \mathbb{Z}_{p}$. By Proposition 2.2, the quotient graph X_{L} of X corresponding to the orbits of L is a cubic connected symmetric graph of order $10 p$ or $10 p^{2}$. By [16, Theorem 5.1], $p \neq 19,23,29,31,47,59,79,119,239$, nor 479.

Case II. $p=7$ and $n=2$ or 17 .
In this case, $\left|A: N_{A}(P)\right|=15$ or 120 . So $|A|=3 \cdot 5 \cdot\left|N_{A}(P)\right|$ or $|A|=$ $2^{3} \cdot 3 \cdot 5 \cdot\left|N_{A}(P)\right|$. First assume that $|A|=3 \cdot 5 \cdot\left|N_{A}(P)\right|$. Now let N be a minimal normal subgroup of A. By Lemma 4.1, N is an elementary abelian 2 -, 3 -, 5 -, or 7 -group, respectively. Clearly, N cannot be an elementary abelian 2 - nor 3 -group. Now assume that N is an elementary abelian 5 -group. Then $\left|X_{N}\right|=2 \cdot 7^{3}$ and so $|X|=10 \cdot 7^{3}$. Now by Lemma 4.2, a Sylow 7 -subgroup
of A is normal in A, a contradiction. Now assume that N is an elementary abelian 7-group. Thus $\left|V\left(X_{N}\right)\right|=10,10 \cdot 7$ or $10 \cdot 7^{2}$. If $\left|V\left(X_{N}\right)\right|=10$, then a Sylow 7 -subgroup is normal in A, a contradiction. So $\left|V\left(X_{N}\right)\right|=10 \cdot 7$ or $10 \cdot 7^{2}$. By [16, Theorem 5.1], there are no symmetric graphs of these orders, a contradiction. Now assume that $|A|=2^{3} \cdot 3 \cdot 5 \cdot\left|N_{A}(P)\right|$. Clearly, X is at least 3 -regular. Now let N be a minimal normal subgroup of A. By Lemma 4.1, N is an elementary abelian 2 -, 3 -, 5 -, or 7 -group, respectively. Clearly, N cannot be an elementary abelian 2 - nor 3 -group. Thus N is an elementary abelian 5 - or 7 -group. Now assume that N is an elementary abelian 5 -group. Then $\left|X_{N}\right|=2 \cdot 7^{3}$ and so $|X|=10 \cdot 7^{3}$. By Lemma 4.2, a Sylow 7 -subgroup of A is normal in A, a contradiction. Now assume that N is an elementary abelian 7 -group. Then $\left|V\left(X_{N}\right)\right|=10 \cdot 7,10 \cdot 7^{2}$, or 10 . Since X is at least 3 -regular, by Proposition 2.2, X_{N} is at least 3-regular. By [16, Theorem 5.1], there are no at least 3-regular graphs of orders $10 \cdot 7$ nor $10 \cdot 7^{2}$. So $\left|V\left(X_{N}\right)\right|=10$, but in this case, a Sylow 7 -subgroup of A is normal in A, a contradiction.

Case III. $p=13,53$ and $n=3$.
In this case, $\left|A: N_{A}(P)\right|=40$ or 160 . So $|A|=2^{3} \cdot 5 \cdot\left|N_{A}(P)\right|$ or 2^{5}. $5 \cdot\left|N_{A}(P)\right|$. First assume that $|A|=2^{3} \cdot 5 \cdot\left|N_{A}(P)\right|$. Clearly, X is at least 3 -regular. Now let N be a minimal normal subgroup of A. By Lemma 4.1, N is an elementary abelian 2 -, 3 -, 5 -, or 13 -group, respectively. Clearly, N cannot be an elementary abelian 2 - nor 3 -group. Now let N be a 5 - or 13 -group. Then $\left|V\left(X_{N}\right)\right|=2 \cdot 13^{3}, 10 \cdot 13,10 \cdot 13^{2}$, or 10 . Since X is at least 3-regular, by Proposition $2.2, X_{N}$ is at least 3 -regular. By [18, Theorem 3.2] and [16, Theorem 5.1], there are no at least 3 -regular graphs of orders $2 \cdot 13^{3}, 10 \cdot 13$, nor $10 \cdot 13^{2}$. So $\left|V\left(X_{N}\right)\right|=10$, but in this case, a Sylow 13 -subgroup of A is normal in A, a contradiction. Now assume that $|A|=2^{5} \cdot 5 \cdot\left|N_{A}(P)\right|$. Clearly, X is 5 -regular. Now let N be a minimal normal subgroup of A. By Lemma 4.1, N is an elementary abelian 2 -, 3 -, 5 -, or 53 -group, respectively. Clearly, N cannot be an elementary abelian 2 - nor 3 -group. Now let N be an elementary abelian 5 - or 53 -group. Then $\left|V\left(X_{N}\right)\right|=2 \cdot 53^{3}, 10 \cdot 53,10 \cdot 53^{2}$, or 10 . Since X is 5 -regular, by Proposition 2.2, X_{N} is 5 -regular. By [18, Theorem 3.2] and [16, Theorem 5.1], there are no 5 -regular graphs of orders $2 \cdot 53^{3}, 10 \cdot 53,10$ nor $10 \cdot 53^{2}$, a contradiction.

Case IV. $p=17$ and $n=7$.
In this case, $\left|A: N_{A}(P)\right|=120$ and $|A|=2^{3} \cdot 3 \cdot 5 \cdot\left|N_{A}(P)\right|$. Clearly, X is at least 3 -regular. Now let N be a minimal normal subgroup of A. By Lemma $4.1, N$ is an elementary abelian $2-, 3-, 5$-, or 17 -group, respectively. Clearly, N cannot be an elementary abelian 2- nor 3 -group. Now let N be a 5 - or 17 -group. Then $\left|V\left(X_{N}\right)\right|=2 \cdot 17^{3}, 10 \cdot 17,10 \cdot 17^{2}$, or 10 . Since X is at least 3 -regular, by Proposition $2.2, X_{N}$ is at least 3-regular. Now by [16, Theorem 5.1] and [18, Theorem 3.2], there are no at least 3-regular graphs of orders $2 \cdot 17^{3}, 10 \cdot 17$, nor $10 \cdot 17^{2}$. So $\left|V\left(X_{N}\right)\right|=10$, but in this case, a Sylow 7 -subgroup of A is normal in A, a contradiction.

Case V. $p=19$ and $n=5$.
In this case, $\left|A: N_{A}(P)\right|=96$ and $|A|=2^{5} \cdot 3 \cdot\left|N_{A}(P)\right|$. Clearly, X is 5 -regular. Now let N be a minimal normal subgroup of A. By Lemma 4.1, N is an elementary abelian 2-, 3 -, 5 -, or 19 -group, respectively. Clearly, N cannot be an elementary abelian 2 - nor 3 -group. Now let N be an elementary abelian 5- or 19-group. Then $\left|V\left(X_{N}\right)\right|=2 \cdot 19^{3}, 10 \cdot 19,10 \cdot 19^{2}$, or 10 . Since X is 5 -regular, by Proposition 2.2, X_{N} is 5 -regular. Now by [16, Theorem 5.1] and [18, Theorem 3.2], there are no 5-regular graphs of orders $2 \cdot 19^{3}, 10 \cdot 19$, $10 \cdot 19^{2}$ nor 10 , a contradiction.

References

[1] M. Alaeiyan and M. Ghasemi, Cubic edge-transitive graphs of order $8 p^{2}$, Bull. Austral. Math. Soc. 77 (2008), no. 2, 315-323.
[2] B. Alspach, D. Marušič, and L. Nowitz, Constructing graphs which are 1/2-transitive, J. Austral. Math. Soc. Ser. A 56 (1994), no. 3, 391-402.
[3] D. Archdeacon, P. Gvozdnjak, and J. Širan, Constructing and forbidding automorphisms in lifted maps, Math. Slovaca 47 (1997), no. 2, 113-129.
[4] D. Archdeacon, R. B. Richter, J. Širan, and M. Škoviera, Branched coverings of maps and lifts of map homomorphisms, Australas. J. Combin. 9 (1994), 109-121.
[5] Y. Cheng and J. Oxley, On weakly symmetric graphs of order twice a prime, J. Combin. Theory Ser. B 42 (1987), no. 2, 196-211.
[6] M. D. E. Conder, Trivalent (cubic) symmetric graphs on up to 2048 vertices, http: //www.math.auckland.ac.nz/ conder/ (2006).
[7] M. D. E. Conder and C. E. Praeger, Remarks on path-transitivity in finite graphs, European J. Combin. 17 (1996), no. 4, 371-378.
[8] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, Atlas of Finite Groups, Clareandon Press, Oxford, 1985.
[9] D. Ž. Djoković, Automorphisms of graphs and coverings, J. Combin. Theory ser. B 16 (1974), 243-247.
[10] D. Ž. Djoković and G. L. Miller, Regular groups of automorphisms of cubic graphs, J. Combin. Theory Ser. B 29 (1980), no. 2, 195-230.
[11] S. F. Du, J. H. Kwak, and M. Y. Xu, Linear criteria for lifting automorphisms of elementary abelian regular coverings, Linear Algebra Appl. 373 (2003), 101-119.
[12] Y. Q. Feng and J. H. Kwak, Constructing an infinite family of cubic 1-regular graphs, European J. Combin. 23 (2002), no. 5, 559-565.
[13] _ An infinite family of cubic one-regular graphs with unsolvable automorphism groups, Discrete Math. 269 (2003), no. 1-3, 281-286.
[14] , One-regular cubic graphs of order a small number times a prime or a prime square, J. Aust. Math. Soc. 76 (2004), no. 3, 345-356.
[15] , Cubic symmetric graphs of order a small number times a prime or a prime square, J. Combin. Theory Ser. B 97 (2007), no. 4, 627-646.
[16] , Classifying cubic symmetric graphs of order 10 p or $10 p^{2}$, Sci. China Ser. A 49 (2006), no. 3, 300-319.
[17] Y. Q. Feng, J. H. Kwak, and K. S. Wang, Classifying cubic symmetric graphs of order $8 p$ or $8 p^{2}$, European J. Combin. 26 (2005), no. 7, 1033-1052.
[18] Y. Q. Feng, J. H. Kwak, and M. Y. Xu, Cubic s-regular graphs of order $2 p^{3}$, J. Graph Theory 52 (2006), no. 4, 341-352.
[19] Y. Q. Feng and K. S. Wang, s-regular cyclic coverings of the three-dimensional hypercube Q_{3}, European J. Combin. 24 (2003), no. 6, 719-731.
[20] R. Frucht, A one-regular graph of degree three, Canad. J. Math. 4 (1952), 240-247.
[21] J. L. Gross and T. W. Tucker, Generating all graph coverings by permutation voltage assignment, Discrete Math. 18 (1977), no. 3, 273-283.
[22] P. Lorimer, Vertex-transitive graphs: symmetric graphs of prime valency, J. Graph Theory 8 (1984), no. 1, 55-68.
[23] Z. P. Lu, C. Q. Wang, and M. Y. Xu, On semisymmetric cubic graphs of order $6 p^{2}$, Sci. China Ser. A 47 (2004), no. 1, 1-17.
[24] A. Malnič, Group actions, coverings and lifts of automorphisms, Discrete Math. 182 (1998), no. 1-3, 203-218.
[25] A. Malnič and D. Marušič, Imprimitive graphs and graph coverings, in: D. Jungnickel, S. A. Vanstone (Eds.), Coding Theory, Design Theory, Group Theory: Proc. M. Hall Memorial Conf., J. Wiley and Sons, New York, 1993, pp. 221-229.
[26] A. Malnič, D. Marušič, and P. Potočnik, On cubic graphs admitting an edge-transitive solvable group, J. Algebraic Combin. 20 (2004), no. 1, 99-113.
[27] , Elementary abelian covers of graphs, J. Algebraic Combin. 20 (2004), no. 1, 71-97.
[28] A. Malnič, D. Marušič, P. Potočnik, and C. Q. Wang, An infinite family of cubic edge-but not vertex-transitive graphs, Discrete Math. 280 (2004), no. 1-3, 133-148.
[29] A. Malnič, D. Marušič, and N. Seifter, Constructing infinite one-regular graphs, European J. Combin. 20 (1999), no. 8, 845-853.
[30] A. Malnič, D. Marušič, and C. Q. Wang, Cubic edge-transitive graphs of order $2 p^{3}$, Discrete Math. 274 (2004), no. 1-3, 187-198.
[31] A. Malnič, R. Nedela, and M. Škoviera, Lifting graph automorphisms by voltage assignments, European J. Combin. 21 (2000), no. 6, 927-947.
[32] A. Malnič and P. Potočnik, Invariant subspaces, duality, and covers of the Petersen graph, European J. Combin. 27 (2006), no. 6, 971-989.
[33] D. Marušič, A family of one-regular graphs of valency 4, European J. Combin. 18 (1997), no. 1, 59-64.
[34] D. Marušič and R. Nedela, Maps and half-transitive graphs of valency 4, European J. Combin. 19 (1998), no. 3, 345-354.
[35] D. Marušič and T. Pisanski, Symmetries of hexagonal molecular graphs on the torus, Croat Chemica Acta 73 (2000), 969-981.
[36] D. Marušič and M. Y. Xu, A 1/2-transitive graph of valency 4 with a nonsolvable group of automorphisms, J. Graph Theory 25 (1997), 133-138.
[37] R. C. Miller, The trivalent symmetric graphs of girth at most six, J. Combin. Theory Ser. B 10 (1971), 163-182.
[38] N. Seifter and V. I. Trofimov, Automorphism groups of covering graphs, J. Combin. Theory Ser. B 71 (1997), no. 1, 67-72.
[39] M. Škoviera, A construction to the theory of voltage groups, Discrete Math. 61 (1986), 281-292.
[40] W. T. Tutte, A family of cubical graphs, Proc. Camb. Phil. Soc. 43 (1947), 459-474.
[41] \qquad On the symmetry of cubic graphs, Canad. J. Math. 11 (1959), 621-624.

Department of Mathematics
University of Urmia
URmia 57135, Iran
E-mail address: m.ghasemi@urmia.ac.ir

