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CUBIC SYMMETRIC GRAPHS OF ORDER 10p3

Mohsen Ghasemi

Abstract. An automorphism group of a graph is said to be s-regular if

it acts regularly on the set of s-arcs in the graph. A graph is s-regular
if its full automorphism group is s-regular. In the present paper, all s-

regular cubic graphs of order 10p3 are classified for each s ≥ 1 and each

prime p.

1. Introduction

Throughout this paper, we consider finite connected graphs without loops or
multiple edges. For a graph X, every edge of X gives rise to a pair of opposite
arcs. By V (X), E(X), A(X) and Aut(X), we denote the vertex set, the edge
set, the arc set and the automorphism group of the graph X, respectively. The
neighborhood of a vertex v ∈ V (X), denoted by N(v), is the set of vertices
adjacent to v in X. Let a group G act on a set Ω, and let α ∈ Ω. We denote
by Gα the stabilizer of α in G, that is, the subgroup of G fixing α. The group
G is said to be semiregular if Gα = 1 for each α ∈ Ω, and regular if G is

semiregular and transitive on Ω. A graph X̃ is called a covering of a graph X

with projection p : X̃ → X if there is a surjection p : V (X̃)→ V (X) such that
p|N(ṽ) : N(ṽ) → N(v) is a bijection for any vertex v ∈ V (X) and ṽ ∈ p−1(v).

The graph X̃ is called the covering graph and X the base graph. A covering

X̃ of X with a projection p is said to be regular (or K-covering) if there is a

semiregular subgroup K of the automorphism group Aut(X̃) such that graph

X is isomorphic to the quotient graph X̃/K, say by h, and the quotient map

X̃ → X̃/K is the composition ph of p and h (for the purpose of this paper, all
functions are composed from left to right). If K is cyclic or elementary abelian,

then X̃ is called a cyclic or an elementary abelian covering of X, respectively.

If X̃ is connected, then K is the covering transformation group. The fibre of

an edge or a vertex is its preimage under p. An automorphism of X̃ is said to
be fibre-preserving if it maps a fibre to a fibre, while an element of the covering
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transformation group fixes each fibre setwise. The set of all fibre-preserving
automorphisms forms a group called the fibre-preserving group.

An s-arc in a graph X is an ordered (s+ 1)-tuple (v0, v1, . . . , vs) of vertices
of X such that vi−1 is adjacent to vi for 1 ≤ i ≤ s and vi−1 6= vi+1 for
1 ≤ i < s; in other words, it is a directed walk of length s which never includes
a backtracking. A graph X is said to be s-arc-transitive if Aut(X) is transitive
on the set of s-arcs in X. In particular, 0-arc-transitive means vertex-transitive,
and 1-arc-transitive means arc-transitive or symmetric. A graph X is said to
be edge-transitive if Aut(X) is transitive on E(X) and half-arc-transitive if
X is vertex-transitive and edge-transitive, but not arc-transitive. A subgroup
of the automorphism group of a graph X is said to be s-regular if it acts
regularly on the set of s-arcs of X. In particular, if the subgroup is the full
automorphism group Aut(X) of X, then X is said to be s-regular. Thus, if a
graph X is s-regular, then Aut(X) is transitive on the set of s-arcs and the only
automorphism fixing an s-arc is the identity automorphism of X. A regular
edge- but not vertex-transitive graph will be referred to as a semisymmetric
graph.

Clearly, a cycle is s-arc-transitive for any s ≥ 0. Tutte [40, 41] showed that
every finite connected cubic symmetric graph is s-regular for some s ≥ 1 and
that this s is at most five. Djoković and Miller [10] constructed an infinite
family of cubic 2-regular graphs, and Conder and Praeger [7] constructed two
infinite families of cubic s-regular graphs for s = 2 or 4. Several different types
of infinite families of tetravalent 1-regular graphs have also been constructed
in [29, 33, 38]. The first cubic 1-regular graph was constructed by Frucht [20]
and an infinitely many cubic 1-regular graphs of girth 6 were constructed later
by Miller [37]. From Cheng and Oxley’s classification of symmetric graphs of
order 2p [5], it can be shown that Miller’s construction contains all cubic 1-
regular graphs of order 2p, where p ≥ 13 is a prime congruent to 1 modulo
3. Marušič and Xu [36] showed a way to construct a cubic 1-regular graph
Y from a tetravalent half-arc-transitive graph X with girth 3 by letting the
triangles of X be the vertices in Y with two triangles being adjacent whenever
they share a common vertex in X. Using Marušič and Xu’s result, Miller’s
construction can be generalized to graphs of order 2n, where n ≥ 13 is odd
such that 3 divides ϕ(n), the Euler function (see [2, 35]). It may be shown that
all cubic 1-regular Cayley graphs on the dihedral groups (see [35]) are exactly
those graphs generalized by Miller’s construction. Additionally, more cubic
1-regular graphs were constructed by Feng and Kwak [12, 13, 14]. Also, as
shown in [35] or in [34], one can see an importance in studying cubic 1-regular
graphs in connection with chiral (that is, regular and irreflexible) maps on a
surface by means of tetravalent half-arc-transitive graphs or in connection with
symmetries of hexagonal molecular graphs on the torus.

Regular coverings of a graph have received considerable attention. For ex-
ample, consider the complete graph K4, the complete bipartite graph K3,3,
the hypercube Q3 or the Petersen graph O3 as graph X. The s-regular cyclic
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or elementary abelian coverings of X, whose fibre-preserving groups are arc-
transitive, have been classified for each 1 ≤ s ≤ 5 in refs. [15, 16, 17, 19]. As
an application of these classifications, all s-regular cubic graphs of orders 4p,
4p2, 6p, 6p2, 8p, 8p2, 10p, and 10p2 have been constructed for each 1 ≤ s ≤ 5
and each prime p in refs. [15, 16, 17].

Malnič et al. [28] classified the cubic semisymmetric cyclic coverings of the
bipartite graph K3,3 when the fibre-preserving group contains an edge- but not
vertex-transitive subgroup. Using the covering technique, cubic semisymmetric
graphs of orders 8p2, 6p2 and 2p3 were classified in [1, 23, 30]. Some general
methods of elementary abelian coverings were developed in [11, 26, 27]. Using
the covering technique, Malnič and Potočnik [32] classified the vertex-transitive
elementary abelian coverings of the Petersen graph when the fibre-preserving
group is vertex-transitive. To investigate the s-regular Zp2 × Zp-, G1(p) =

〈a, b | cmap = bp = cp = 1, c = [a, b], ac = ca, bc = cb〉- or G2(p) = 〈a, b | ap2 =
bp = 1, [a, b] = ap〉-coverings of the Petersen graph O3, we will assume that the
fibre-preserving group is arc-transitive. Since the s-regular cyclic or elementary
abelian coverings of the Petersen graph O3 are classified for each 1 ≤ s ≤ 5 in
[16], we only classify the s-regular Zp2 × Zp-, G1(p) = 〈a, b | ap = bp = cp =

1, c = [a, b], ac = ca, bc = cb〉- and G2(p) = 〈a, b | ap2 = bp = 1, [a, b] = ap〉-
coverings of the Petersen graph O3 for each 1 ≤ s ≤ 5. As an application
of these classifications, this paper provides a classification of s-regular cubic
graphs of order 10p3 for each 1 ≤ s ≤ 5 and each prime p.

The following theorem is the main result of this paper.

Theorem 1.1. A graph X is a cubic connected symmetric graph of order 10p3

for some prime p if and only if X is isomorphic to C80.1 (p = 2, 3-regular),
C1250.1 (p = 5, 2-regular) or C1250.2 (p = 5, 3-regular).

2. Preliminaries related to coverings

Let X be a graph and K a finite group. By a−1 we mean the reverse arc to
an arc a. A voltage assignment (or K-voltage assignment) of X is a function

φ : A(X)→ K with the property that φ(a−1) = φ(a)
−1

for each arc a ∈ A(X).
The values of φ are called voltages and K the voltage group. The graph X×φK
derived from a voltage assignment φ : A(X) → K has vertex set V (X) × K
and edge set E(X)×K so that an edge (e, g) of X ×φ K joins a vertex (u, g)
to (v, φ(a)g) for a = (u, v) ∈ A(X) and g ∈ K, where e = uv.

Clearly, the derived graph X×φK is a covering of X with the first coordinate
projection p : X×φK → X, which is called the natural projection. By defining

(u, g
′
)g := (u, g

′
g) for any g ∈ K and (u, g

′
) ∈ V (X ×φ K), K becomes a

subgroup of Aut(X×φK) which acts semiregularly on V (X×φK). Therefore,
X×φK can be viewed as a K-covering. For each u ∈ V (X) and uv ∈ E(X), the
vertex set {(u, g) | g ∈ K} is the fibre of u and the edge set {(u, g)(v, φ(a)g) | g ∈
K} is the fibre of uv, where a = (u, v). Conversely, each regular covering X̃ of
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X with a covering transformation group K can be derived from a K-voltage
assignment. Given a spanning tree T of the graph X, a voltage assignment φ
is said to be T-reduced if the voltages on the tree arcs are the identity. Gross

and Tucker [21] showed that every regular covering X̃ of a graph X can be
derived from a T -reduced voltage assignment φ with respect to an arbitrary
fixed spanning tree T of X. It is clear that if φ is reduced, the derived graph
X ×φK is connected if and only if the voltages on the cotree arcs generate the
voltage group K.

Let X̃ be a K-covering of X with a projection p. If α ∈ Aut(X) and α̃ ∈
Aut(X̃) satisfy α̃p = pα, we call α̃ a lift of α, and α the projection of α̃.
Concepts such as a lift of a subgroup of Aut(X) or a projection of a subgroup

of Aut(X̃) are self-explanatory. The lifts and the projections of such subgroups

are, of course, subgroups in Aut(X̃) and in Aut(X), respectively. In particular,

if the covering graph X̃ is connected, then the covering transformation group

K is the lift of the trivial group, that is, K={α̃ ∈ Aut(X̃): p = α̃p}. Clearly,
if α̃ is a lift of α, then Kα̃ are all the lifts of α.

Let X ×φ K → X be a connected K-covering derived from a T -reduced
voltage assignment φ. The problem of whether an automorphism α of X lifts
or not can be grasped in terms of voltages as follows. Observe that a voltage
assignment on arcs extends to a voltage assignment on walks in a natural
way. Given α ∈ Aut(X), we define a function ᾱ from the set of voltages on
fundamental closed walks based at a fixed vertex v ∈ V (X) to the voltage
group K by

(φ(C))ᾱ = φ(Cα),

where C ranges over all fundamental closed walks at v, and φ(C) and φ(Cα)
are the voltages on C and Cα, respectively. Note that if K is abelian, ᾱ does
not depend on the choice of the base vertex, and the fundamental closed walks
at v can be substituted by the fundamental cycles generated by the cotree arcs
of X.

The next proposition is a special case of [24, Theorem 3.5].

Proposition 2.1. Let X ×φ K → X be a connected K-covering derived from
a T -reduced voltage assignment φ. Then an automorphism α of X lifts if and
only if ᾱ extends to an automorphism of K.

For more results on the lifts of automorphisms of X, we refer the reader to
[3, 4, 9, 25, 31]. Let X be a graph and let N be a subgroup of Aut(X). Denote
by XN the quotient graph corresponding to the orbits of N , that is, the graph
having the orbits of N as vertices with two orbits adjacent in XN whenever
there is an edge between these orbits in X. In view of [22, Theorem 9], we have
the following.

Proposition 2.2. Let X be a cubic connected symmetric graph and G an
s-regular subgroup of Aut(X) for some s ≥ 1. If a normal subgroup N of
G has more than two orbits, then it is semiregular and G/N is an s-regular
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subgroup of Aut(XN ), where XN is the quotient graph of X corresponding to
the orbits of N . Furthermore, X is a regular covering of XN with the covering
transformation group N .

Two coverings X̃1 and X̃2 of X with projections p1 and p2, respectively, are

said to be equivalent if there exists a graph isomorphism α̃ : X̃1 → X̃2 such
that α̃p2 = p1. We quote the following proposition.

Proposition 2.3 ([39]). Two connected regular coverings X×φK and X×ψK,
where φ and ψ are T -reduced, are equivalent if and only if there exists an
automorphism σ ∈ Aut(K) such that φ(u, v)σ = ψ(u, v) for any cotree arc
(u, v) of X.

3. Regular coverings of O3 and related classification

As it is well-known, there are exactly five nonisomorphic groups of order p3,
which may be given in the following presentation.

(i) For abelian cases:
G1 = Zp3 ;
G2 = Zp × Zp × Zp;
G3 = Zp2 × Zp;
(ii) For non-abelian cases:
G1(p) = 〈a, b | ap = bp = cp = 1, c = [a, b], ac = ca, bc = cb〉;
G2(p) = 〈a, b | ap2 = bp = 1, [a, b] = ap〉.
Recall that since the s-regular cyclic or elementary abelian coverings of the

Petersen graph O3 are classified for each 1 ≤ s ≤ 5 in [16], we only classify
the s-regular Zp2 ×Zp-, G1(p)- or G2(p)-coverings of the Petersen graph O3 for
each 1 ≤ s ≤ 5. As an application of these classifications, we classify s-regular
cubic graphs of order 10p3 for each 1 ≤ s ≤ 5 and each prime p.

By O3 we denote the Petersen graph with vertex set {a, b, c, d, e, u, v, w, x, y}.
Let T be a spanning tree of O3, as shown by dashed lines in Fig. 1. Let φ be a
such voltage assignment defined by φ = 1 on T and φ = z1, z2, z3, z4, z5, and z6

on the cotree arcs (u,v), (a, c), (a,d), (b, e), (b,v), and (c,w), respectively.
Let α = (abcde)(uvwxy), β = (vay)(bcx)(wde), and γ = (ex)(bw)(cd).
Then α, β, and γ are automorphisms of O3.

Denote by i1i2 · · · is a directed cycle having vertices i1, i2, . . ., is in a con-
secutive order. There are six fundamental cycles auvwxyu, aceyu, adxyu,
auyxdbeyu, auyxdbvwxyu, and auyecwxyu in O3, which are generated by
the five cotree arcs (u,v), (a, c), (a,d), (b, e), (b,v), and (c,w), respectively.
Each cycle is mapped to a cycle of the same length under the actions of α, β,
and γ. We list all these cycles and their voltages in Table 1, in which C denotes
a fundamental cycle of O3 and φ(C) denotes the voltage of C. Also note that
for abelian cases we use additive symbol.

By Conder [6], there is only one cubic connected symmetric graph of order
80, namely, a 3-regular graph C80.1. Also for p = 3, there is no cubic symmetric
graph of order 10× 33. Thus we may assume that p ≥ 5.
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Figure 1. The Petersen graph (O3) with voltage assignment φ.

Table 1. Fundamental cycles and their images with corre-
sponding voltages

C φ(C) Cα φ(Cα)

auvwxyu z1 bvwxyuv z5z1z
−1
5

aceyu z2 bdauv z−1
3 z1z

−1
5

adxyu z3 beyuv z4z1z
−1
5

auyxdbeyu z4 bvuyecauv z5z
−1
1 z−1

2 z1z
−1
5

auyxdbvwxyu z5 bvuyecwxyuv z5z
−1
1 z6z1z

−1
5

auyecwxyu z6 bvuadxyuv z5z
−1
1 z3z1z

−1
5

Cβ φ(Cβ) Cγ φ(Cγ)

yuadbvu z3z5z
−1
1 auvbeyu z1z

−1
5 z4

yxwvu z−1
1 adxyu z3

yebvu z−1
4 z5z

−1
1 aceyu z2

yuvbecwvu z1z
−1
5 z4z6z

−1
1 auyecwxyu z6

yuvbecadbvu z1z
−1
5 z4z

−1
2 z3z5z

−1
1 auyecwvbeyu z6z

−1
5 z4

yuvwxdbvu z1z5z
−1
1 auyxdbeyu z4

Lemma 3.1. There is no connected regular covering of the Petersen graph O3

whose covering transformation group K is isomorphic to Zp2 × Zp ∼= 〈a〉 × 〈b〉
with o(a) = p2 and o(b) = p and whose fibre-preserving group is arc-transitive.

Proof. Let X̃ = O3×φ (Zp2×Zp) be a covering graph of the graph O3 satisfying
the hypotheses in the theorem, where p is a prime and φ = 1 on the spanning
tree T , which is depicted by dashed lines in Fig. 1. We assign voltages z1, z2,
z3, z4, z5 and z6 to the cotree arcs as shown in Fig. 1, where zi ∈ K (i=1, 2, 3,
4, 5, 6). Note that the vertices of O3 are labeled by a, b, c, d, e, u, v, w, x,

and y. By the hypotheses, the fibre-preserving group, say L̃, of the covering
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graph O3 ×φ (Zp2 × Zp) acts arc-transitively on O3 ×φ (Zp2 × Zp). Hence the

projection of L̃, say L, is arc-transitive on the base graph O3. Clearly, L is also
vertex-transitive on O3. Thus α, β ∈ L and so α and β lift to automorphisms
of O3×φ (Zp2 ×Zp). Also, since O3×φ (Zp2 ×Zp) is assumed to be connected,
Zp2 × Zp = 〈z1, z2, z3, z4, z5, z6〉.

Consider the mapping ᾱ from the set {z1, z2, z3, z4, z5, z6} of voltages of
the six fundamental cycles of O3 to the group Zp2 × Zp, which is defined by
(φ(C))ᾱ = φ(Cα), where C ranges over the six fundamental cycles. From
Table 1, one can see that zᾱ1 = z1, zᾱ2 = z−1

3 z1z
−1
5 , zᾱ3 = z4z1z

−1
5 , zᾱ4 = z−1

2 ,
zᾱ5 = z6, and zᾱ6 = z3. Similarly, we can define β̄ and γ̄. Since α, β ∈ L,
Proposition 2.1 implies that ᾱ and β̄ can be extended to automorphisms of
Zp2×Zp. We denote by α∗ and β∗ these extended automorphisms, respectively.

By Table 1, zα
∗

4 = z−1
2 , zα

∗

5 = z6, zα
∗

6 = z3 and zβ
∗

2 = z−1
1 , implying that

o(z3) = o(z5) = o(z6) and o(z1) = o(z2) = o(z4), where o(z) denotes the order
of z ∈ K. Assume that K = 〈z1, z5〉. Suppose that o(z1) = p2 and o(z5) = p.
If 〈z1〉∩〈z5〉 6= ∅, then 〈z5〉 is a subgroup of 〈z1〉 and K = 〈z1〉, a contradiction.
Thus 〈z1〉 ∩ 〈z5〉 = ∅. By Proposition 2.3, one may let z1 = a and z5 = b and

hence z2 = zi1z
j
5, z3 = zm1 z

n
5 , z4 = zl1z

k
5 , and z6 = zx1 z

y
5 , where i,m, l, x ∈ Zp2

and j, n, k, y ∈ Zp. By considering the image of z2 = zi1z
j
5, and z3 = zm1 z

n
5

under α∗, we conclude that z−1
3 z1z

−1
5 = zi1z

j
6 and z4z1z

−1
5 = zm1 z

n
6 . Therefore,

we have the following:
(1) 1−m = i+ jx (mod p2),
(2) −n− 1 = jy,
(3) 1 + l = m+ nx (mod p2),
(4) k − 1 = ny.
As shown in the above equations, in what follows, all equations (unless

specified with modulo p2) are to be taken mod p, but the symbol mod p is
omitted. This should cause no confusion. Similarly, by considering the image
of z4 = zl1z

k
5 and z6 = zx1 z

y
5 under α∗, we have the following:

(5) −i = l + kx (mod p2),
(6) −j = ky,
(7) m = x+ yx (mod p2),
(8) n = y2.
By (8), n = y2. Thus by (2) and (4), we have −y2 − 1 = jy and k− 1 = y3.

Now by (6), we have −y2−1 = −(y3 + 1)y2, so y = 1. This implies that n = 1,
k = 2, and j = −2. By (7) and (3), m = 2x, and l = 3x − 1, respectively.
So by (1), i = 1 and hence by (5), x = 0 or 5 = 0 (mod p). If x = 0, then

l = −1 and m = 0. By considering the image of z2 = zi1z
j
5 under β∗, we

have −1 = im − i + jl − ji + jm and ni + i + kj − j2 + nj = 0. Therefore,
4 = 0 (by −1 = im − i + jl − ji + jm), a contradiction. If 5 = 0 (mod p),
then −1 = 2x − 1 − 2(3x − 1) + 2 − 4x (by −1 = im − i + jl − ji + jm). So
x = 1/2 = 3 and hence m = 1 and l = 2. Now by ni + i + kj − j2 + nj = 0,
8 = 0, a contradiction.
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For the case when o(z1) = p and o(z5) = p2, we have a similar contradiction.
Now let o(z1) = o(z5) = p2. Then 〈z1〉 ∩ 〈z5〉 = 〈zp1〉 = 〈zp5〉, and hence
zrp1 = zp5 for some r ∈ Z∗

p. By Proposition 2.3, one may let z1 = a, z5 = arb,

z2 = zi−jr1 zj5, z3 = zm−nr
1 zn5 , z4 = zl−kr1 zk5 , and z6 = zx−yr1 zy5 . Considering the

image of z2 = zi−jr1 zj5 under α∗ and β∗, by Table 1, z−1
3 z1z

−1
5 = zi−jr1 zj6 and

z−1
1 = zi−jr3 zi−jr5 z−i+jr1 zj4z

−j
2 zj3, which implies the following equations:

(1) 1−m− r = i− jr + jx (mod p2),
(2) −n− 1 = jy.

Also, by considering the image z3 = zm−nr
1 zn5 and z4 = zl−kr1 zk5 under α∗

and z6 = zx−yr1 zy5 under α∗ and β∗, we have the following:
(3) 1 + l − r = m− nr + nx (mod p2),
(4) k − 1 = ny,
(5) −i = l − kr + kx (mod p2),
(6) −j = ky,
(7) m = x− ry + yx (mod p2),
(8) n = y2,
(9) 1 = xn+ x− ryn− ry + yk − yj + yn.
By (6), −jy = ky2. Now by (2), n + 1 = ky2. By (7) and (4), k = y3 + 1.

Thus n + 1 = (y3 + 1)y2 = y5 + y2. So y2 + 1 = y5 + y2. This implies that
y = 1, and hence n = 1, k = 2 and j = −2. Now by (1), (3), (5), and (9), we
have the following equations:

(a) 1−m− r = i+ 2r − 2x,
(b) 1 + l = m+ x,
(c) −i = l − 2r + 2x,
(d) m = 2x− r.
By (b), l = m+ x− 1. So by (d), we have l = 3x− r − 1 and hence by (c),

i = 3r−5x+1. Now by (a), one has x = r. Now by (8), 4 = 0, a contradiction.
Now assume that |〈z1, z5〉| = p. Thus 〈z1〉 = 〈z5〉. It follows that 〈z1〉 =

〈z2〉 = 〈z3〉 = 〈z4〉 = 〈z5〉 = 〈z6〉. Therefore, K is generated by one of the zi
(1 ≤ i ≤ 6), a contradiction.

Finally, assume that |〈z1, z5〉| = p2. Since α lifts, by Table 1, |〈z1, z6〉| = p2.
Since |〈z1, z5〉| = p2 by Proposition 2.3, we may assume that z1 = a. X is
connected and hence one of the z2, z3, z4 or z6 must be equal to b. If z3 = b
or z5 = b, then K = 〈z1, z5〉 or K = 〈z1, z6〉, a contradiction. Thus z2 = b
or z4 = b. Without loss of generality, we may assume that z2 = b. So K =
〈z1, z2〉 = 〈z1, z4〉. Thus 〈z1〉∩〈z2〉 = 〈zp1〉 = 〈zp2〉, and 〈z1〉∩〈z4〉 = 〈zp1〉 = 〈zp4〉,
and hence zr

′
p

1 = zp2 and zrp1 = zp4 for some r, r
′ ∈ Z∗

p. By Proposition 2.3,

one may let z1 = a, z2 = ar
′

b, z4 = arb, z3 = ai−jrbj , z5 = am−nrbn, and
z6 = ax−yrby. By considering the image of z5 = am−nrbn and z6 = ax−yrby

under α∗, one has z6 = zm−nr
1 z−n2 and z3 = zx−ry1 z−y2 . Therefore, we have the

following equations:
(1) y = −n,
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(2) j = −y.
Similarly, by considering the image of z3 = ai−jrbj under α∗, we get 1−n =

−j. So 1 = 0, a contradiction. �

Lemma 3.2. There is no connected regular covering of the Petersen graph O3

whose covering transformation group K is isomorphic to G1(p) = 〈a, b | ap =
bp = cp = 1, c = [a, b], ac = ca, bc = cb〉 and whose fibre-preserving group is
arc-transitive.

Proof. Let X̃ = O3 ×φ G1(p) be a covering graph of the graph O3 satisfying
the hypotheses in the theorem, where p is a prime and φ = 1 on the spanning
tree T depicted by dashed lines in Fig. 1. Since X is connected, K can be
generated by z1, z2, z3, z4, z5, and z6. By the hypotheses, the fibre-preserving

subgroup, say L̃, of the covering graph O3 ×φ G1(p) acts arc-transitively on

O3 ×φ G1(p). Hence the projection, say L of L̃, is arc-transitive on the base
graph O3. Thus α, β ∈ L. It follows that α and β lift. Since α, β ∈ L,
Proposition 2.1 implies that ᾱ and β̄ can be extended to automorphisms of
〈a, b | ap = bp = cp = 1, c = [a, b], ac = ca, bc = cb〉. We denote by α∗ and β∗

these extended automorphisms, respectively. By Table 1, zα
∗

6 = z5z
−1
1 z3z1z

−1
5

and zα
∗

5 = z5z
−1
1 z6z1z

−1
5 . Also zα

∗

4 = z5z
−1
1 z−1

2 z1z
−1
5 and zβ

∗

2 = z−1
1 . Thus

o(z3) = o(z5) = o(z6) and o(z1) = o(z2) = o(z4), where o(z) denotes the order
of z ∈ K.

First assume that K = 〈z1, z2〉 and z1 = ai
′

bj
′

ck
′

, z2 = al
′

bm
′

cn
′

. Since

ai
′

bj
′

ck
′

7→ a, al
′

bm
′

cn
′

7→ b extend to automorphism of K, by Proposition 2.3,
one may let z1 = a, z2 = b, z3 = aibjck, z4 = albmcn, z5 = afbgcr, and
z6 = axbycz (i, j, k, l,m, n, f, g, r, x, y, z ∈ Zp).

Now by Table 1, (z1)α
∗

= (a)α
∗

= z5z1z
−1
5 = afbgcrac−rb−ga−f . By con-

sidering bjai = c−ijaibj , we have (a)α
∗

= ac−g and

(z2)α
∗

= (b)α
∗

= z−1
3 z1z

−1
5 = c−kb−ja−iac−rb−ga−f

= c−ka1−ib−jc−rb−ga−fc(1−i)j

= c−ka1−ic−rc(1−i)ja−fb−j−gc−f(j+g)

= a1−i−fb−j−gc−k−r+(1−i)j−f(j+g).

Therefore one can get (c)α
∗

= [aα
∗
, bα

∗
] = c−j−g. Now since c belongs to Z(K),

we have (ai)α
∗

= aic−gi. Also, since [a1−i−f , b−j−g] belongs to Z(K), one has

(bj)α
∗

= (a1−i−fb−j−gc−k−r+(1−i)j−f(j+g))j

= (a1−i−fb(−j−g))jc(−k−r+(1−i)j−f(j+g))j

= a(1−i−f)jb(−j−g)j [b(−j−g), a1−i−f ]
j(j−1)

2 c(−k−r+(1−i)j−f(j+g))j

= a(1−i−f)jb(−j−g)jc(j+g)(1−i−f)
j(j−1)

2 c(−k−r+(1−i)j−f(j+g))j .
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By (z3)α
∗

= (aibjck)α
∗

= z4z1z
−1
5 and (z5)α

∗
= (afbgcr)α

∗
= z5z

−1
1 z6z1z

−1
5 ,

we have

aic−gia(1−i−f)jb(−j−g)jc(j+g)(1−i−f)
j(j−1)

2 c(−k−r+(1−i)j−f(j+g))jck(−j−g)

= al+1−fbm−gcf(m−g)cn−r−m

and

afc−gfa(1−i−f)gb(−j−g)gc(j+g)(1−i−f)
g(g−1)

2 c(−k−r+(1−i)j−f(j+g))gc(−j−g)r

= afbgcra−1axbyczac−rb−ga−f

= axbyc−gx−y+yf+z.

Hence by considering the powers of a and b, we have the following:
(1) i+ (1− i− f)j = l + 1− f ,
(2) (−j − g)j = m− g,
(3) f + (1− i− f)g = x,
(4) (−j − g)g = y.
By similar argument considering the image z4 = albmcn and z6 = axbycz

under α∗, and also the image z3 = aibjck, z4 = albmcn and z5 = afbgcr under
β∗, we have the following:

(5) (−j − g)m = −1,
(6) (−j − g)y = j,
(7) i(i+ f − 1)− j = f − l − 1,
(8) i(g + j) = g −m,
(9) (i+ f − 1)l −m = x+ l − f ,
(10) (g + j)l = −g +m+ y,
(11) (g + j)f = j +m− 1.
By (2) and (8), (j + g)j = i(g + j). So (g + j)(j − i) = 0 and hence g = −j

or j = i. If j = −g, then by (5), 1 = 0, a contradiction. Thus i = j. By
considering (2), (4), and (10), we have (g + j)l = −(j + g)j − (g + j)g. So
(j + g)(l + j + g) = 0. It follows that l = −j − g. Now since i = j, by (7)
and (9), we have (i + f − 1)(−g) − (j + m) = x − 1. Now by considering (3),
−f = j+m−1 and hence by (11), −f = (g+ j)f . Thus f = 0 or g+ j+1 = 0.
If f = 0, then by (11), j = 1 − m. Now by i = j and (1), l = −m2 and so
g = m2 + m − 1. By (5), m = 1. Therefore, l = −1, j = 0, i = 0, and g = 1.
So by (3) and (4), x = 1 and y = −1. Hence by (6), 1 = 0, a contradiction.
Thus g = −j−1 and since l = −j− g, we have l = 1. Also by (4), (5), and (6),
we have y = g, m = −1, and y = j. It follows that j = −1/2. So i = −1/2,
y = −1/2 and g = −1/2. Now by (7), f = 13/6 and so by (3), x = 5/2. Thus
by (11), −13/6 = −5/2, a contradiction.

Now assume that |〈z1, z2〉| = p. Thus 〈z1〉 = 〈z2〉. Since α lifts, by Table 1,
〈z1〉 = 〈z4〉. Without loss of generality, we may suppose that K = 〈z1, z5〉
since X is connected. By Proposition 2.3, one may let z1 = a, z5 = b,
z2 = ai, z4 = aj , z3 = axbycz, and z6 = albmcn, where (i, p) = 1 and
(j, p) = 1. Now by Table 1, (z1)α

∗
= (a)α

∗
= z5z1z

−1
5 = ac−1, and (z5)α

∗
=
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(b)α
∗

= z5z
−1
1 z6z1z

−1
5 = albmcnc1−lc−1−m. So cα

∗
= cm, (ai)α

∗
= aic−i

and (bj)α
∗

= aljbmjc−lm(
j(j−1)

2 )cnjc(1−l)jc(−1−m)j . By (z2)α
∗

= z−1
3 z1z

−1
5 and

(z4)α
∗

= z5z
−1
1 z−1

2 z1z
−1
5 , we have aic−i = a1−xb−y−1c−zc(1−x)y and ajc−j =

a−ici. Therefore, by considering the powers of a and b, we have the following:
(1) i = 1− x,
(2) −y − 1 = 0,
(3) j = −i,
(4) −i = −z + (1− x)y.
Similarly, by considering the image z2 = ai and z4 = aj under β∗, we have

the following equations:
(5) (y + 1)i = 0,
(6) (x− 1)j = l + j,
(7) (y + 1)j = m− 1.
By (2), j = −1 and so i = 1, by (3). Now by (1), x = 0. Also by (5) and

(7), y = −1 and m = 1. Now by (4) and (6), z = 0 and l = 2. Then

z1 = a, z2 = a, z3 = b−1, z4 = a−1, z5 = b, z6 = a2bcn.

Since α lifts, it follows that 2 = 0, a contradiction.
Finally, assume that |〈z1, z2〉| = p2. Since α lifts, |〈z1, z4〉| = p2. By Propo-

sition 2.3, we may assume that z1 = a and z2 = aicj . Since X̃ is connected,
it implies that z3 = b, z5 = b or z6 = b. Without loss of generality, we may

assume that z3 = b. Thus K = 〈z1, z3〉, and z4 = ai
′

cj
′

, z5 = albmcn, and
z6 = axbycf . Now by Table 1, (z1)α

∗
= (a)α

∗
= z5z1z

−1
5 = ac−m and (z3)α

∗
=

(b)α
∗

= z4z1z
−1
5 = ai

′
+1−lb−mcj

′
−n−ml. Therefore, one get (c)α

∗
= c−m.

Clearly, (ai)α
∗

= aic−mi and since [ai
′
+1−l, b−m] belongs to Z(K), we have

(bj)α
∗

= a(i
′
+1−l)jb−mjcm(i

′
+1−l)( j(j−1)

2 )cj(j
′
−n−ml). By (z2)α

∗
= (aicj)α

∗
=

z−1
3 z1z

−1
5 , one has aic−mic−mj = a−l+1b−m−1c1−nc−l(1+m) so by considering

the power of b in (z5)α
∗

= z5z
−1
1 z6z1z

−1
5 and (z6)α

∗
= z5z

−1
1 z3z1z

−1
5 , one has

−m2 = y and −my = 1. Since m = −1 and y = −1, it follows that −1 = 1, a
contradiction. �

Lemma 3.3. There is no connected regular covering of the Petersen O3 whose

covering transformation group K is isomorphic to G2(p) = 〈a, b | ap2 = bp =
1, [a, b] = ap〉 and whose fibre-preserving group is arc-transitive.

Proof. By the same reasoning as before, α and β lift. Obviously, any automor-
phism of K is of the form a 7→ aibj , b 7→ arpb, where i ∈ Z∗

p2 and j, r ∈ Zp.
Since Aut(K) acts transitively on elements of order p2, one may let z1 = a,
z2 = aibj , z3 = ambn, z4 = akbl, z5 = afbg, and z6 = axby.

Now by Table 1, (z1)α
∗

= (a)α
∗

= z5z1z
−1
5 = afbgab−ga−f . By considering

bjai = ai−ijpbj , we have (a)α
∗

= a1−gp. Now assume that (b)α
∗

= ak
′
pb. Then

(bj)α
∗

= ak
′
pjbj since ak

′
p ∈ Z(K). By (z2)α

∗
= (aibj)α

∗
= z−1

3 z1z
−1
5 and
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(z3)α
∗

= z4z1z
−1
5 , we have ai−igpak

′
pjbj = a(1−m)+(1−m)npa−f−f(n+g)pb−n−g

and a(1−gp)mak
′
pnbn = ak+1−lpa−f+f(l−g)pbl−g. Therefore, we have the follow-

ing:
(1) i = 1−m− f ,
(2) j = −n− g,
(3) n = l − g.
As shown in the above equations, in what follows, all equations are to be

taken mod p, but the symbol mod p is to be omitted. This should cause no
confusion. By similar argument considering the image z5 = afbg and z6 = axby

under α∗, and also the image z2 = aibj and z3 = ambn under β∗, we have the
following:

(4) f = x,
(5) g = y,
(6) x = m,
(7) y = n,
(8) (n+ g)i+ j = 0,
(9) (n+ g)m+ n = g − l.
By (2), n + g = −j, so by (8), −ij + j = 0. It follows that j = 0 or i = 1.

If j = 0, then by (2), n = −g. Since n = g by (5) and (7), one has g = 0. So
n = 0 and hence y = 0 and l = 0. This is a contradiction to the fact that X is
connected. Thus i = 1, and so by (1), m = −f . But by (4) and (6), f = m,
and hence m = f = 0. Now by (3) and (9), (n+ g)m+ n = −n, and so n = 0.
Therefore, y = g = l = 0, a contradiction. �

4. The cubic symmetric graphs of order 10p3

Lemma 4.1. Let p be a prime and let X be a connected cubic symmetric graph
of order 10p3. If p is one of 7, 11, 13, 17, 19, 23, 29, 31, 47, 59, 79, 239, or
479, then every minimal normal subgroup of A is an elementary abelian group.

Proof. Since X is at most 5-regular, |A| | 25 ·3·5·p3. Let N be a minimal normal
subgroup of A. If N is not an elementary abelian group, then N ∼= T1×· · ·×Tn,
where Ti ∼= Tj (1 ≤ i, j ≤ n). By considering the order of A, one has n = 1.
Now by checking the simple groups of order less than 1025 in [8], N ∼= A5,
L2(7), L2(11), L2(16) or L2(31) and |N | = 22 · 3 · 5, 23 · 3 · 7, 22 · 3 · 5 · 11,
24 · 3 · 5 · 17 or 25 · 3 · 5 · 31. Clearly, N is not transitive on V (X) and hence
by Proposition 2.2, N is semiregualr on V (X), a contradiction. So N is an
elementary abelian 2-, 3-, 5-, or p-group, respectively. �

Lemma 4.2. Let X be a connected cubic symmetric graph of order 10 · 73.
Also let P be a Sylow 7-subgroup of A. Then P CA.

Proof. Suppose to the contrary that P is not normal in A. Since X is at most 5-
regular, |A| = 2s ·3·5·p3 (1 ≤ s ≤ 5). Now let N be a minimal normal subgroup
of A. Then by Lemma 4.1, N is an elementary abelian 2-, 3-, 5-, or 7-group,
respectively. Clearly, N cannot be an elementary abelian 2- nor 3-group. Now
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assume that N is an elementary abelian 5-group. Then |XN | = 2 · 73. By [18,
Theorem 3.2], XN is 1-regular or 2-regular. Also, if XN is 1-regular, then
XN
∼= Cay(D2·73 , {a, ab, ab−λ}), where λ is of the element of order 3 in Z∗

73 ,

or XN
∼= Cay(G1, {a, ab, ab−kc}), where G1 = 〈a, b, c | a2 = b7

2

= c7 = [b, c] =
1, aba = b−1, aca = c−1〉, and k is the element of order 3 in Z∗

7. Moreover, if
XN is 2-regular, then XN

∼= Cay(G2, {a, ab, ac}), where G2 = 〈a, b, c, d | a2 =
b7 = c7 = d7 = [a, d] = [b, d] = [c, d] = 1, d = [b, c], aba = b−1, aca = c−1〉. If
XN is 1-regular, then A/N = Aut(XN ). Also, Aut(G,S) = Aut(XN )1

∼= Z3,
where G ∼= D2·73 or G1. Thus XN is a normal Cayley graph. So G C A/N ,
where G ∼= H/N . Thus H C A and we have |H| = 2 · 5 · 73. Now P is
characteristic in H and so P C A, a contradiction. If XN is 2-regular, then
|Aut(XN ) : A/N | ≤ 2. Also, Aut(G2, S) = Aut(XN )1

∼= S3 and hence XN is a
normal Cayley graph. If A/N = Aut(XN ), then G2 C A/N , where G2

∼= G/N .
Clearly, a Sylow 7-subgroup of A is normal in A, a contradiction. Now assume
that |Aut(XN )| = 2|A/N |. So |A/N | = 2 · 3 · 73 and hence a Sylow 7-subgroup
of Aut(XN ) is a Sylow 7-subgroup of A/N . It is easy to see that P C A, a
contradiction. Now assume that N is an elementary abelian 7-group. Thus
|V (XN )| = 10, 10 · 7 or 10 · 72. If |V (XN )| = 10, then P C A, a contradiction.
Thus |V (XN )| = 10 · 7 or 10 · 72. By [16, Theorem 5.1], there are no cubic
symmetric graphs of orders 10 · 7 and 10 · 72, a contradiction. �

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. For p = 2, by Conder [6], there exists only one con-
nected cubic symmetric graph of order 10 × 23, namely, the cubic 3-regular
graph C80.1, and for p = 3, there is no cubic symmetric graph of order 10×33.
Also if p = 5, then there are two cubic connected symmetric graphs of order
1250, which are the 2-regular graph C1250.1 and the 3-regular graph C1250.2.
Thus we may assume that p ≥ 7.

Let A = Aut(X) and let P be a Sylow p-subgroup of A. Then |P | = p3 and
|A : NA(P )| = 1 + np, where NA(P ) is the normalizer of P in A. To prove the
theorem, it suffices to show that P CA by [16, Theorem 4.4], Proposition 2.2,
and Lemmas 3.1, 3.2, and 3.3. Suppose to the contrary that P is not normal in
A. Then 1 +np ≥ 8 since p ≥ 7. Since X is at most 5-regular, |A| | 25 ·3 ·5 ·p3.
It follows that np is one of the following:

7, 11, 14 = 2 × 7, 19, 23, 29, 31, 39 = 3 × 13, 47, 59, 79, 95 = 5 × 19,
119 = 17× 7, 159 = 3× 53, 239, 479. Thus there are five possible cases:

1) p = 7, 11, 19, 23, 29, 31, 47, 59, 79, 239, 479 and n = 1;
2) p = 7 and n = 2 or 17;
3) p = 13, 53 and n = 3;
4) p = 17 and n = 7;
5) p = 19 and n = 5.

Case I. p = 7, 11, 19, 23, 29, 31, 47, 59, 79, 239, 479 and n = 1.
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Let H = NA(P ). By considering the right multiplication action of A on the
set of right cosets of H in A, |A/HA| | (p+ 1)!, where HA is the largest normal
subgroup of A in H. This forces p2 | |HA|. Let L be a Sylow p-subgroup of
HA. First let p = 7 or p = 11. So |A| = 2s · 3 · 5 · 73 or 2s · 3 · 5 · 113 (1 ≤ s ≤ 5).
Now let N be a minimal normal subgroup of A. Then by Lemma 4.1, N is an
elementary abelian 2-, 3-, 5-, 7, or 11-group, respectively. Clearly, N cannot
be an elementary abelian 2- nor 3-group. Now assume that N is an elementary
abelian 5-group. Then |XN | = 2p3. If p = 7, then |X| = 10 · 73. Now by
Lemma 4.2, a Sylow 7-subgroup of A is normal in A, a contradiction. Also for
p = 11, by [18, Theorem 3.2], XN is 2-regular and XN

∼= Cay(G, {a, ab, ac}),
where G = 〈a, b, c, d | a2 = b11 = c11 = d11 = [a, d] = [b, d] = [c, d] = 1, d =
[b, c], aba = b−1, aca = c−1〉. Also, Aut(G,S) = Aut(XN )1

∼= S3. Thus XN is
a normal Cayley graph. Clearly, |Aut(XN ) : A/N | ≤ 2. If A/N = Aut(XN ),
then G C A/N , where G ∼= G1/N . Clearly, a Sylow 11-subgroup of A is normal
in A. Now assume that |Aut(XN )| = 2|A/N |. So |A/N | = 2 · 3 · 113 and hence
a Sylow 11-subgroup of Aut(XN ) is a Sylow 11-subgroup of A/N . It is easy
to see that a Sylow 11-subgroup is normal in A, a contradiction. Now assume
that N is an elementary abelian 7- or 11-group. Thus |V (XN )| = 10, 10p or
10p2, where p = 7 or p = 11. If |V (XN )| = 10, then a Sylow 7-subgroup or a
Sylow 11-subgroup is normal in A, a contradiction. Thus |V (XN )| = 10p or
10p2, where p = 7 or p = 11. By [16, Theorem 5.1], XN must be a Coxeter-
Frucht graph of order 110, which is 3-regular. Thus |V (XN )| = 10 × 11 and
|A/N | | |Aut(XN )| = 23 · 3 · 5 · 11. Now assume that Y = XN and let T/N
be a minimal normal subgroup of A/N . If T/N is not an elementary abelian
group, then T/N ∼= T1 × T2 × · · · × Tn, where Ti ∼= Tj (1 ≤ i, j ≤ n). By
considering the order of A, one has n = 1. Now by checking the simple groups
of order less than 1025 in [8], N ∼= A5 or L2(11). Hence T/N is an elementary
abelian 2-, 3-, 5-, or 11-group. Clearly, T/N cannot be elementary abelian 2-
nor 3-group. If T/N is an elementary abelian 5-group, then |YT/N | = 2 · 11.
But by [6], there is no symmetric graph of order 22, a contradiction. Finally,
if T/N is an elementary abelian 11-group, then |T/N | = 11. So |T | = 113 and
hence a Sylow 11-subgroup is normal in A, a contradiction.

Now let p > 11. L is characteristic in HA and so L C A. Also, L ∼= Zp2 or
Zp×Zp. By Proposition 2.2, the quotient graph XL of X corresponding to the
orbits of L is a cubic connected symmetric graph of order 10p or 10p2. By [16,
Theorem 5.1], p 6= 19, 23, 29, 31, 47, 59, 79, 119, 239, nor 479.

Case II. p = 7 and n = 2 or 17.
In this case, |A : NA(P )| = 15 or 120. So |A| = 3 · 5 · |NA(P )| or |A| =

23 · 3 · 5 · |NA(P )|. First assume that |A| = 3 · 5 · |NA(P )|. Now let N be a
minimal normal subgroup of A. By Lemma 4.1, N is an elementary abelian
2-, 3-, 5-, or 7-group, respectively. Clearly, N cannot be an elementary abelian
2- nor 3-group. Now assume that N is an elementary abelian 5-group. Then
|XN | = 2 · 73 and so |X| = 10 · 73. Now by Lemma 4.2, a Sylow 7-subgroup
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of A is normal in A, a contradiction. Now assume that N is an elementary
abelian 7-group. Thus |V (XN )| = 10, 10 · 7 or 10 · 72. If |V (XN )| = 10, then
a Sylow 7-subgroup is normal in A, a contradiction. So |V (XN )| = 10 · 7 or
10 · 72. By [16, Theorem 5.1], there are no symmetric graphs of these orders, a
contradiction. Now assume that |A| = 23 · 3 · 5 · |NA(P )|. Clearly, X is at least
3-regular. Now let N be a minimal normal subgroup of A. By Lemma 4.1, N
is an elementary abelian 2-, 3-, 5-, or 7-group, respectively. Clearly, N cannot
be an elementary abelian 2- nor 3-group. Thus N is an elementary abelian
5- or 7-group. Now assume that N is an elementary abelian 5-group. Then
|XN | = 2 · 73 and so |X| = 10 · 73. By Lemma 4.2, a Sylow 7-subgroup of A
is normal in A, a contradiction. Now assume that N is an elementary abelian
7-group. Then |V (XN )| = 10 · 7, 10 · 72, or 10. Since X is at least 3-regular,
by Proposition 2.2, XN is at least 3-regular. By [16, Theorem 5.1], there are
no at least 3-regular graphs of orders 10 · 7 nor 10 · 72. So |V (XN )| = 10, but
in this case, a Sylow 7-subgroup of A is normal in A, a contradiction.

Case III. p = 13, 53 and n = 3.
In this case, |A : NA(P )| = 40 or 160. So |A| = 23 · 5 · |NA(P )| or 25 ·

5 · |NA(P )|. First assume that |A| = 23 · 5 · |NA(P )|. Clearly, X is at least
3-regular. Now let N be a minimal normal subgroup of A. By Lemma 4.1, N
is an elementary abelian 2-, 3-, 5-, or 13-group, respectively. Clearly, N cannot
be an elementary abelian 2- nor 3-group. Now let N be a 5- or 13-group.
Then |V (XN )| = 2 · 133, 10 · 13, 10 · 132, or 10. Since X is at least 3-regular,
by Proposition 2.2, XN is at least 3-regular. By [18, Theorem 3.2] and [16,
Theorem 5.1], there are no at least 3-regular graphs of orders 2 ·133, 10 ·13, nor
10 ·132. So |V (XN )| = 10, but in this case, a Sylow 13-subgroup of A is normal
in A, a contradiction. Now assume that |A| = 25 · 5 · |NA(P )|. Clearly, X is
5-regular. Now let N be a minimal normal subgroup of A. By Lemma 4.1, N
is an elementary abelian 2-, 3-, 5-, or 53-group, respectively. Clearly, N cannot
be an elementary abelian 2- nor 3-group. Now let N be an elementary abelian
5- or 53-group. Then |V (XN )| = 2 · 533, 10 · 53, 10 · 532, or 10. Since X is
5-regular, by Proposition 2.2, XN is 5-regular. By [18, Theorem 3.2] and [16,
Theorem 5.1], there are no 5-regular graphs of orders 2 · 533, 10 · 53, 10 nor
10 · 532, a contradiction.

Case IV. p = 17 and n = 7.
In this case, |A : NA(P )| = 120 and |A| = 23 · 3 · 5 · |NA(P )|. Clearly,

X is at least 3-regular. Now let N be a minimal normal subgroup of A. By
Lemma 4.1, N is an elementary abelian 2-, 3-, 5-, or 17-group, respectively.
Clearly, N cannot be an elementary abelian 2- nor 3-group. Now let N be a
5- or 17-group. Then |V (XN )| = 2 · 173, 10 · 17, 10 · 172, or 10. Since X is
at least 3-regular, by Proposition 2.2, XN is at least 3-regular. Now by [16,
Theorem 5.1] and [18, Theorem 3.2], there are no at least 3-regular graphs of
orders 2 · 173, 10 · 17, nor 10 · 172. So |V (XN )| = 10, but in this case, a Sylow
7-subgroup of A is normal in A, a contradiction.
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Case V. p = 19 and n = 5.
In this case, |A : NA(P )| = 96 and |A| = 25 · 3 · |NA(P )|. Clearly, X is

5-regular. Now let N be a minimal normal subgroup of A. By Lemma 4.1,
N is an elementary abelian 2-, 3-, 5-, or 19-group, respectively. Clearly, N
cannot be an elementary abelian 2- nor 3-group. Now let N be an elementary
abelian 5- or 19-group. Then |V (XN )| = 2 · 193, 10 · 19, 10 · 192, or 10. Since
X is 5-regular, by Proposition 2.2, XN is 5-regular. Now by [16, Theorem 5.1]
and [18, Theorem 3.2], there are no 5-regular graphs of orders 2 · 193, 10 · 19,
10 · 192 nor 10, a contradiction. �
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