J. Korean Math. Soc. **58** (2021), No. 1, pp. 123–132 https://doi.org/10.4134/JKMS.j190867 pISSN: 0304-9914 / eISSN: 2234-3008

RESTRICTION OF SCALARS AND CUBIC TWISTS OF ELLIPTIC CURVES

DONGHO BYEON, KEUNYOUNG JEONG, AND NAYOUNG KIM

ABSTRACT. Let K be a number field and L a finite abelian extension of K. Let E be an elliptic curve defined over K. The restriction of scalars $\operatorname{Res}_K^L E$ decomposes (up to isogeny) into abelian varieties over K

$$\operatorname{Res}_K^L E \sim \bigoplus_{F \in S} A_F,$$

where S is the set of cyclic extensions of K in L. It is known that if L is a quadratic extension, then A_L is the quadratic twist of E. In this paper, we consider the case that K is a number field containing a primitive third root of unity, $L = K(\sqrt[3]{D})$ is the cyclic cubic extension of K for some $D \in K^{\times}/(K^{\times})^3$, $E = E_a : y^2 = x^3 + a$ is an elliptic curve with *j*-invariant 0 defined over K, and $E_a^D : y^2 = x^3 + aD^2$ is the cubic twist of E_a . In this case, we prove A_L is isogenous over K to $E_a^D \times E_a^{D^2}$ and a property of the Selmer rank of A_L , which is a cubic analogue of a theorem of Mazur and Rubin on quadratic twists.

1. Introduction

Let K be a number field and L a finite abelian extension of K. Let E be an elliptic curve defined over K. The restriction of scalars $\operatorname{Res}_{K}^{L}E$ (for the definition, see §2) of E from L to K decomposes (up to isogeny) into abelian varieties over K

$$\operatorname{Res}_{K}^{L} E \sim \bigoplus_{F \in S} A_{F},$$

where S is the set of cyclic extensions of K in L (for details, see $\S2$ or $[1, \S3]$).

In [1], Mazur and Rubin studied the Selmer rank of E/L by using the Selmer ranks of A_F . In [2], as an application to the simplest case that L is a quadratic extension, they obtained many remarkable results on the Selmer rank of E/L. We note that if L is a quadratic extension, then A_L is the quadratic twist of E(for an example of the proof, see [4, §2.1.2 and §2.2.2]).

In this paper, we consider the next simple case that K is a number field containing a primitive third root of unity, $L = K(\sqrt[3]{D})$ is the cyclic cubic

 $\odot 2021$ Korean Mathematical Society

Received December 26, 2019; Accepted April 24, 2020.

²⁰¹⁰ Mathematics Subject Classification. 11G05.

Key words and phrases. Elliptic curve, cubic twist, restriction of scalars.

extension of K for some $D \in K^{\times}/(K^{\times})^3$ and $E = E_a : y^2 = x^3 + a$ is an elliptic curve with *j*-invariant 0 defined over K. In this case, we prove the following theorem.

Theorem 1.1. Let K be a number field containing a primitive third root of unity and $L = K(\sqrt[3]{D})$ the cyclic cubic extension of K for some $D \in K^{\times}/(K^{\times})^3$. Let $E = E_a : y^2 = x^3 + a$ be an elliptic curve with *j*-invariant 0 defined over K and $E_a^D : y^2 = x^3 + aD^2$ the cubic twist of E_a . Then A_L is isogenous over K to $E_a^D \times E_a^{D^2}$.

Let $G := \operatorname{Gal}(L/K)$ be the Galois group L over K. If $F \in S$, let ρ_F be the unique faithful irreducible rational representation of $\operatorname{Gal}(F/K)$. Since the correspondence $F \leftrightarrow \rho_F$ is a bijection between S and the set of irreducible rational representations of G, the semisimple group ring $\mathbb{Q}[G]$ decomposes

$$\mathbb{Q}[G] \cong \bigoplus_{F \in S} \mathbb{Q}[G]_F,$$

where $\mathbb{Q}[G]_F$ is the ρ_F -isotypic component of $\mathbb{Q}[G]$. As a field, $\mathbb{Q}[G]_F$ is isomorphic to the cyclotomic field of [F:K]-th roots of unity.

Suppose that L is a cyclic extension of K with a prime degree p. Since $\mathbb{Q}[G]_L$ is isomorphic to the p-th cyclotomic field, the maximal order of $\mathbb{Q}[G]_L$ has the unique prime ideal above p, which we denote by \mathfrak{p} . Let $\mathrm{Sel}_p(E/K)$ be the p-Selmer group of E/K and $\mathrm{Sel}_{\mathfrak{p}}(A_L/K)$ the \mathfrak{p} -Selmer group of A_L/K (see §2 for the definitions). Define the Selmer ranks

$$d_p(E/K) := \dim_{\mathbb{F}_p} \mathrm{Sel}_p(E/K),$$

$$d_p(A_L/K) := \dim_{\mathbb{F}_p} \mathrm{Sel}_p(A_L/K).$$

In our case, we prove the following theorem on the Selmer rank of A_L , which is a cubic analogue of [2, Theorem 1.4] on quadratic twists.

Theorem 1.2. Let K be a number field containing a primitive third root of unity, $L = K(\sqrt[3]{D})$ the cyclic cubic extension of K for some $D \in K^{\times}/(K^{\times})^3$ and $\mathfrak{f}(L/K)$ the conductor of L/K. Let $E = E_a : y^2 = x^3 + a$ be an elliptic curve with *j*-invariant 0 defined over K. If $d_3(E_a/K) = r$ and $E_a(K)[3] = 0$, then

$$|\{L = K(\sqrt[3]{D}) : d_{\mathfrak{p}}(A_L/K) = r \text{ and } N_{K/\mathbb{Q}}\mathfrak{f}(L/K) < X\}| \gg \frac{X}{(\log X)^{5/6}}.$$

2. Preliminaries

Let L be a finite abelian extension of a number field K with Galois group $G := \operatorname{Gal}(L/K)$. Let \overline{K} be an algebraic closure of K with Galois group $G_K := \operatorname{Gal}(\overline{K}/K)$. Let E be an elliptic curve defined over K. Then the definition of the restriction of scalars ([5, §1.3] or [4, Definition 2.2]) of E from L to K is following.

Definition 2.1. The restriction of scalars of E from L to K, denoted by $\operatorname{Res}_{K}^{L}E$, is a commutative algebraic group over K along with a homomorphism

$$\eta_{L/K} : \operatorname{Res}_K^L E \to E$$

defined over L, with the universal property that for every variety X over K, the map

$$\operatorname{Hom}_K(X, \operatorname{Res}_K^L E) \to \operatorname{Hom}_L(X, E)$$
 defined by $f \mapsto \eta_{L/K} \circ f$

is an isomorphism.

Suppose \mathcal{I} is a free \mathbb{Z} -module of finite rank with a continuous right action of G_K and there is a ring homomorphism $\mathbb{Z} \to \operatorname{End}_K(E)$. A twist of a power of E denoted by $\mathcal{I} \otimes_{\mathbb{Z}} E$ is defined in [3, Definition 1.1].

Definition 2.2. Let $s := \operatorname{rank}_{\mathbb{Z}}(\mathcal{I})$ and fix an \mathbb{Z} -module isomorphism $j : \mathbb{Z}^s \xrightarrow{\sim} \mathcal{I}$. Let $c_{\mathcal{I}} \in H^1(K, \operatorname{Aut}_{\bar{K}}(E^s))$ be the image of the cocycle $(\gamma \mapsto j^{-1} \circ j^{\gamma})$ under the composition

$$H^1(K, \operatorname{GL}_s(\mathbb{Z})) \to H^1(K, \operatorname{Aut}_K(E^s)) \to H^1(K, \operatorname{Aut}_{\bar{K}}(E^s))$$

induced by the homomorphism $\mathbb{Z} \to \operatorname{End}_K(E)$. Define $\mathcal{I} \otimes_{\mathbb{Z}} E$ to be the twist of E^s by the cocycle $c_{\mathcal{I}}$, i.e., $\mathcal{I} \otimes_{\mathbb{Z}} E$ is the unique commutative algebraic group over K with an isomorphism $\phi : E^s \xrightarrow{\sim} \mathcal{I} \otimes_{\mathbb{Z}} E$ defined over \overline{K} such that for every $\gamma \in G_K$,

$$c_{\mathcal{I}}(\gamma) = \phi^{-1} \circ \phi^{\gamma}.$$

Definition 2.3. For every cyclic extension F of K in L, define

$$\mathcal{I}_F := \mathbb{Q}[G]_F \cap \mathbb{Z}[G] \text{ and } A_F := \mathcal{I}_F \otimes_{\mathbb{Z}} E.$$

We note that $A_K = E$ and $\operatorname{Res}_K^L(E)$ is isogenous to $\bigoplus_{F \in S} A_F$ by [1, Theorem 3.5].

From the universal property of $\operatorname{Res}_{K}^{L} E$, for each $\sigma \in G$, there is

 $\sigma_{L/K,E} \in \operatorname{Hom}_K(\operatorname{Res}_K^L E, \operatorname{Res}_K^L E)$

such that $\eta_{L/K} \circ \sigma_{L/K,E} = \eta_{L/K}^{\sigma}$. So we have the following ring homomorphism

$$\theta_E: \mathbb{Z}[G] \to \operatorname{End}_K(\operatorname{Res}_K^L E) \text{ defined by } \alpha = \sum_{\sigma \in G} a_\sigma \, \sigma \mapsto a_\sigma \, \sigma_{L/K,E}$$

We denote $\theta_E(\alpha)$ by $\alpha_E \in \operatorname{End}_K(\operatorname{Res}_K^L E)$.

Proposition 2.4 ([3, Proposition 4.2(i)]). If $\mathbb{Z}[G]/\mathcal{I}$ is a projective \mathbb{Z} -module, then

$$\mathcal{I} \otimes_{\mathbb{Z}} E = \bigcap_{\alpha \in \mathcal{I}^{\perp}} \ker \left(\alpha_E : \operatorname{Res}_K^L E \to \operatorname{Res}_K^L E \right),$$

where \mathcal{I}^{\perp} is the ideal of $\mathbb{Z}[G]$ defined by $\mathcal{I}^{\perp} := \{ \alpha \in \mathbb{Z}[G] : \alpha \mathcal{I} = 0 \}.$

Lemma 2.5 ([3, Lemma 5.4(i)]). Let F/K be cyclic of degree n with a generator σ . Then

$$\mathcal{I}_F = \Psi_n(\sigma) \mathbb{Z}[G] \quad and \quad \mathcal{I}_F^{\perp} = \Phi_n(\sigma) \mathbb{Z}[G],$$

where $\Phi_n \in \mathbb{Z}[x]$ is the n-th cyclotomic polynomial and $\Psi_n(x) = (x^n - 1)/\Phi_n(x) \in \mathbb{Z}[x]$.

Suppose that L is a cyclic extension of K with a prime degree p and \mathfrak{p} is the unique prime ideal of $\mathbb{Q}[G]_L$ above p.

Definition 2.6. For every prime v of K, let $H^1_{\mathcal{E}}(K_v, E[p])$ denote the image of the Kummer injection

$$E(K_v)/pE(K_v) \hookrightarrow H^1(K_v, E[p])$$

and let $H^1_{\mathcal{A}}(K_v, A_L[\mathfrak{p}])$ denote the image of the Kummer injection

$$A_L(K_v)/\mathfrak{p}A_L(K_v) \hookrightarrow H^1(K_v, A_L[\mathfrak{p}]).$$

Definition 2.7. Define the Selmer groups

$$\operatorname{Sel}_{p}(E/K) := \operatorname{ker}\left(H^{1}(K, E[p]) \longrightarrow \bigoplus_{v} H^{1}(K_{v}, E[p])/H^{1}_{\mathcal{E}}(K_{v}, E[p])\right) \text{ and}$$
$$\operatorname{Sel}_{\mathfrak{p}}(A_{L}/K) := \operatorname{ker}\left(H^{1}(K, A_{L}[\mathfrak{p}]) \longrightarrow \bigoplus_{v} H^{1}(K_{v}, A_{L}[\mathfrak{p}])/H^{1}_{\mathcal{A}}(K_{v}, A_{L}[\mathfrak{p}])\right).$$

We note that there is a natural identification of G_K -modules $E[p] = A_L[\mathfrak{p}]$ inside $\operatorname{Res}_K^L E$ (cf. [1, Proposition 4.1 and Remark 4.2]).

Definition 2.8. For every prime v of K, define

$$\delta_v(E, L/K) := \dim_{\mathbb{F}_p} \left(H^1_{\mathcal{E}}(K_v, E[p]) / H^1_{\mathcal{E} \cap \mathcal{A}}(K_v, E[p]) \right),$$

where $H^1_{\mathcal{E}\cap\mathcal{A}}(K_v, E[p]) := H^1_{\mathcal{E}}(K_v, E[p]) \cap H^1_{\mathcal{A}}(K_v, E[p]).$

Proposition 2.9 ([1, Corollary 4.6]). Suppose that S is a set of primes of K containing all primes above p, all primes ramified in L/K, and all primes where E has bad reduction. Then

$$d_p(E/K) \equiv d_{\mathfrak{p}}(A_L/K) + \sum_{v \in \mathcal{S}} \delta_v(E, L/K) \pmod{2}.$$

3. Proof of Theorem 1.1

For the rest of this paper, let K be a number field containing a primitive third root of unity ω , $L = K(\sqrt[3]{D})$ the cyclic cubic extension of K for some $D \in K^{\times}/(K^{\times})^3$, $E_a : y^2 = x^3 + a$ an elliptic curve with *j*-invariant 0 defined over K, and $E_a^D : y^2 = x^3 + aD^2$ the cubic twist of E_a .

Proposition 3.1. If we define isomorphisms over L

$$\phi_1 : E_a \xrightarrow{\sim} E_a^D \ by \ (x, y) \mapsto (D^{\frac{4}{3}}x, Dy),$$

$$\phi_2 : E_a \xrightarrow{\sim} E_a^{D^2} \ by \ (x, y) \mapsto (D^{\frac{4}{3}}x, D^2y),$$

and G_K -invariant subgroup of $E_a \times E_a^D \times E_a^{D^2}$

$$T_a^L := \langle \{ (P, \phi_1(P), \phi_2(P))^{\gamma} \in E_a \times E_a^D \times E_a^{D^2} | \, 3P = 0, \ \gamma \in G_K \} \rangle_{\mathcal{A}}$$

then

$$\operatorname{Res}_{K}^{L} E_{a} = (E_{a} \times E_{a}^{D} \times E_{a}^{D^{2}})/T_{a}^{L}$$

with the following homomorphisms

$$\eta_{L/K}: (E_a \times E_a^D \times E_a^{D^2})/T_a^L \to E_a \quad defined \ by \ (P,Q,R) \mapsto P + \phi_1^{-1}(Q) + \phi_2^{-1}(R).$$

Proof. We will show that $(E_a \times E_a^D \times E_a^{D^2})/T_a^L$ satisfies the universal property of $\operatorname{Res}_K^L E_a$ with $\eta_{L/K}$ in Definition 2.1. Suppose X is a variety over K and $\varphi \in \operatorname{Hom}_L(X, E_a)$. Let $[3]^{-1} : E_a \to E_a/E_a[3]$ be the inverse map of the induced isomorphism from multiplication by 3, let

$$\lambda: E_a / E_a[3] \to (E_a \times E_a^D \times E_a^{D^2}) / T_a^L$$

defined by $P \mapsto (P, \phi_1(P), \phi_2(P)) \pmod{T_a^L}$, and let σ be the generator of $\operatorname{Gal}(L/K)$ which maps $\sqrt[3]{D}$ to $\sqrt[3]{D} \omega$. Define

$$\tilde{\varphi} := \lambda \circ [3]^{-1} \circ \varphi + (\lambda \circ [3]^{-1} \circ \varphi)^{\sigma} + (\lambda \circ [3]^{-1} \circ \varphi)^{\sigma^2} \\ \in \operatorname{Hom}_K (X, (E_a \times E_a^D \times E_a^{D^2}) / T_a^L).$$

Then we have

$$\eta_{L/K} \circ \lambda \circ [3]^{-1} \circ \varphi = \varphi,$$

$$\eta_{L/K} \circ (\lambda \circ [3]^{-1} \circ \varphi)^{\sigma} = 0 \quad (\text{because } \phi_1^{\sigma} = [\omega]\phi_1, \ \phi_2^{\sigma} = [\omega]^2 \phi_2$$

and $[1] + [\omega] + [\omega]^2 = [0]),$

 $\eta_{L/K} \circ (\lambda \circ [3]^{-1} \circ \varphi)^{\sigma^2} = 0 \quad \text{(by the same reason)},$

where $[\omega] : (x, y) \mapsto (\omega^2 x, y)$ is an endomorphism of E_a , E_a^D , and $E_a^{D^2}$. Thus $\eta_{L/K} \circ \tilde{\varphi} = \varphi$. For any $(P, Q, R) \in (E_a \times E^D \times E^{D^2})/T^L$, we have

$$(P,Q,R) \stackrel{(\lambda \circ [3]^{-1} \circ \eta_{L/K})^{\sigma^2}}{\longmapsto} \qquad \left(P' + [\omega]\phi_1^{-1}(Q') + [\omega]^2\phi_2^{-1}(R'), \\ [\omega]^2\phi_1(P') + Q' + [\omega]\phi_1(\phi_2^{-1}(R')), \\ [\omega]\phi_2(P') + [\omega]^2\phi_2(\phi_1^{-1}(Q')) + R'\right) \pmod{T_a^L},$$

where P' (resp. Q',R') is an element satisfying [3]P'=P (resp. $[3]Q'=Q,\,[3]R'=R).$ So

$$(\lambda \circ [3]^{-1} \circ \eta_{L/K}) + (\lambda \circ [3]^{-1} \circ \eta_{L/K})^{\sigma} + (\lambda \circ [3]^{-1} \circ \eta_{L/K})^{\sigma^2} = \mathrm{id}.$$

Hence for every $f \in \operatorname{Hom}_K(X, (E_a \times E_a^D \times E_a^{D^2})/T_a^L)$, we have

$$\begin{aligned} &(\eta_{L/K} \circ f) \\ &= (\lambda \circ [3]^{-1} \circ \eta_{L/K} \circ f) + (\lambda \circ [3]^{-1} \circ \eta_{L/K} \circ f)^{\sigma} + (\lambda \circ [3]^{-1} \circ \eta_{L/K} \circ f)^{\sigma^2} \\ &= (\lambda \circ [3]^{-1} \circ \eta_{L/K}) \circ f + (\lambda \circ [3]^{-1} \circ \eta_{L/K})^{\sigma} \circ f + (\lambda \circ [3]^{-1} \circ \eta_{L/K})^{\sigma^2} \circ f \\ &= f. \end{aligned}$$

Thus the map

$$\operatorname{Hom}_{K}\left(X, (E_{a} \times E_{a}^{D} \times E_{a}^{D^{2}})/T_{a}^{L}\right) \to \operatorname{Hom}_{L}(X, E_{a})$$

defined by $f \mapsto \eta_{L/K} \circ f$ is an isomorphism.

Proposition 3.2. Let $A_L = \mathcal{I}_L \otimes_{\mathbb{Z}} E_a$ in Definition 2.3. Then there is a surjective morphism over K with a finite kernel

$$\theta: E_a^D \times E_a^{D^2} \to A_L.$$

Proof. We continue the notations K, L, σ , E_a , E_a^D , T_a^L , $\eta_{L/K}$, $\tilde{\cdot}$ in Proposition 3.1 and its proof. Recall that $\operatorname{Res}_K^L E_a$ is $(E_a \times E_a^D \times E_a^{D^2}) / T_a^L$ with the homomorphism $\eta_{L/K}$. Note that for the $\sigma \in \operatorname{Gal}(L/K)$, its induced endomorphism $\sigma_{E_a} \in \operatorname{End}_K(\operatorname{Res}_K^L E_a)$ is precisely

$$\sigma_{E_a}(P,Q,R) = \widetilde{\eta_{L/K}^{\sigma}}(P,Q,R) = (P, \, [\omega]^2 Q, \, [\omega]R),$$

and hence $\Phi_3(\sigma)_{E_a}$ is given by

$$\Phi_3(\sigma)_{E_a}(P,Q,R) = (\sigma^2 + \sigma + 1)_{E_a}(P,Q,R) = (3P, 0, 0).$$

Thus by Proposition 2.4 and Lemma 2.5, we have

 $A_{L} := \mathcal{I}_{L} \otimes_{\mathbb{Z}} E_{a} = \ker \left(\Phi_{3}(\sigma)_{E_{a}} : \operatorname{Res}_{K}^{L} E_{a} \to \operatorname{Res}_{K}^{L} E_{a} \right)$ = $\{ (P, Q, R) \in (E_{a} \times E_{a}^{D} \times E_{a}^{D^{2}}) / T_{a}^{L} \mid (3P, 0, 0) \equiv (0, 0, 0) \pmod{T_{a}^{L}} \}$ = $\{ (P, Q, R) \in (E_{a} \times E_{a}^{D} \times E_{a}^{D^{2}}) / T_{a}^{L} \mid P \in E_{a}[3] \}.$

Define

 $\theta: E_a^D \times E_a^{D^2} \to A_L$ by $(Q, R) \mapsto (0, Q, R)$.

Then θ is a morphism over K with a finite kernel. For $(P, Q, R) \in A_L$,

 $(P,Q,R) = (P, \phi_1(P), \phi_2(P)) + (0, Q - \phi_1(P), R - \phi_2(P))$

$$\equiv (0, Q - \phi_1(P), R - \phi_2(P)) \pmod{T_a^L}.$$

Thus θ is surjective.

Proof of Theorem 1.1. It follows from Proposition 3.1.

4. Proof of Theorem 1.2

To compare $d_3(E_a/K)$ and $d_p(A_L/K)$, we apply [2, §2 and §3] to our case. By [1, Proposition 5.2], we have the following lemma which is same to [2, Lemma 2.9].

Lemma 4.1. Let v be a prime of K, w a prime of L above v and N_{L_w/K_v} : $E_a(L_w) \to E_a(K_v)$ the norm map. Under the isomorphism $H^1_{\mathcal{E}}(K_v, E_a[3]) \cong E_a(K_v)/3E_a(K_v)$, we have

$$H^1_{\mathcal{E}\cap\mathcal{A}}(K_v, E_a[3]) \cong N_{L_w/K_v}E_a(L_w)/3E_a(K_v).$$

Remark. In [2, Definition 2.6], $\delta_v(E, L/K)$ is defined by

$$\dim_{\mathbb{F}_p} E(K_v) / N_{L_w/K_v} E(L_w),$$

where p = 2. By Lemma 4.1, [2, Definition 2.6] is same to Definition 2.8 for our case.

By Lemma 4.1, we have the following lemmas which are similar to [2, Lemma 2.10 and Lemma 2.11].

Lemma 4.2. Let Δ_{E_a} be the discriminant of E_a . If at least one of the following conditions (i)-(iv) holds:

(i) v splits in L/K,

(ii) $v \nmid 3\infty$ and $E_a(K_v)[3] = 0$,

(iii) v is real and $(\Delta_{E_a})_v < 0$,

(iv) v is a prime where E_a has good reduction and v is unramified in L/K, then $H^1_{\mathcal{E}}(K_v, E_a[3]) = H^1_{\mathcal{A}}(K_v, E_a[3])$ and $\delta_v(E_a, L/K) = 0$.

Proof. See the proof of [2, Lemma 2.10].

Lemma 4.3. If $v \nmid 3\infty$, E_a has good reduction at v and v is ramified in L/K, then

$$H^1_{\mathcal{E}\cap\mathcal{A}}(K_v, E_a[3]) = 0 \quad and \quad \delta_v(E_a, L/K) = \dim_{\mathbb{F}_3}(E_a(K_v)[3]).$$

Proof. See the proof of [2, Lemma 2.11]

By Proposition 2.9, Lemma 4.2, and Lemma 4.3, we have the following proposition which is similar to [2, Proposition 3.3].

Proposition 4.4. Suppose that all of the following primes split in L/K:

- all primes where E_a has bad reduction,
- all primes above 3,
- all real places v with $(\Delta_{E_a})_v > 0$.

Let \mathcal{T} be the set of (finite) primes \mathfrak{q} of K such that L/K is ramified at \mathfrak{q} and $E_a(K_{\mathfrak{q}})[3] \neq 0.$ Let

$$\operatorname{loc}_{\mathcal{T}}: H^1(K, E_a[3]) \to \bigoplus_{\mathfrak{q} \in \mathcal{T}} H^1(K_{\mathfrak{q}}, E_a[3])$$

and

$$V_T := \operatorname{loc}_{\mathcal{T}}(\operatorname{Sel}_3(E_a/K)) \subset \bigoplus_{\mathfrak{q} \in \mathcal{T}} H^1_{\mathcal{E}}(K_{\mathfrak{q}}, E_a[3]).$$

Then we have

$$d_{\mathfrak{p}}(A_L/K) = d_3(E_a/K) - \dim_{\mathbb{F}_3} V_{\mathcal{T}} + d$$

for some *d* satisfying

$$0 \le d \le \dim_{\mathbb{F}_3} \left(\bigoplus_{\mathfrak{q} \in \mathcal{T}} H^1_{\mathcal{E}}(K_{\mathfrak{q}}, E_a[3]) / V_{\mathcal{T}} \right) \text{ and}$$
$$d \equiv \dim_{\mathbb{F}_3} \left(\bigoplus_{\mathfrak{q} \in \mathcal{T}} H^1_{\mathcal{E}}(K_{\mathfrak{q}}, E_a[3]) / V_{\mathcal{T}} \right) \pmod{2}.$$

Proof. Define strict and relaxed 3-Selmer groups $\mathcal{S}_{\mathcal{T}} \subset \mathcal{S}^{\mathcal{T}} \subset H^1(K, E_a[3])$ by the exactness of

$$\begin{array}{rcl} 0 \to & \mathcal{S}^{\mathcal{T}} \to & H^{1}(K, E_{a}[3]) \to \bigoplus_{\mathfrak{q} \notin \mathcal{T}} H^{1}(K_{\mathfrak{q}}, E_{a}[3]) / H^{1}_{\mathcal{E}}(K_{\mathfrak{q}}, E_{a}[3]) \ \text{and} \\ 0 \to & \mathcal{S}_{\mathcal{T}} \to & \mathcal{S}^{\mathcal{T}} \longrightarrow \bigoplus_{\mathfrak{q} \in \mathcal{T}} H^{1}(K_{\mathfrak{q}}, E_{a}[3]). \end{array}$$

Then we have $\mathcal{S}_{\mathcal{T}} \subset \operatorname{Sel}_p(E_a/K) \subset \mathcal{S}^{\mathcal{T}}$. By Lemma 4.2 we also have $\mathcal{S}_{\mathcal{T}} \subset$

 $\begin{aligned} \operatorname{Sel}_{\mathfrak{p}}(A_L/K) \subset \mathcal{S}^{\mathcal{T}} \text{ and by Lemma 4.3 we have } \operatorname{Sel}_{\mathfrak{p}}(E_a/K) \cap \operatorname{Sel}_{\mathfrak{p}}(A_L/K) &= \mathcal{S}_{\mathcal{T}}. \\ \operatorname{Let} V_{\mathcal{T}}^{\mathcal{I}} &:= \operatorname{loc}_{\mathcal{T}}(\operatorname{Sel}_{\mathfrak{p}}(A_L/K)) \subset \bigoplus_{\mathfrak{q}\in\mathcal{T}} H^1_{\mathcal{A}}(K_{\mathfrak{q}}, E_a[3]) \text{ and } d := \operatorname{dim}_{\mathbb{F}_3} V_{\mathcal{T}}^{\mathcal{I}}. \end{aligned}$

Then the theorem follows from the same argument in the proof of [2, Proposition 3.3].

By Proposition 4.4, we have the following proposition which is similar to [2, Corollary 3.4].

Proposition 4.5. Suppose $E_a, L/K$, and \mathcal{T} are as in Proposition 4.4. (a) If $\dim_{\mathbb{F}_p}(\bigoplus_{\mathfrak{q}\in\mathcal{T}} H^1_{\mathcal{E}}(K_{\mathfrak{q}}, E_a[3])/V_{\mathcal{T}}) \leq 1$, then

$$d_{\mathfrak{p}}(A_L/K) = d_p(E_a/K) - 2\dim_{\mathbb{F}_p} V_{\mathcal{T}} + \sum_{\mathfrak{q}\in\mathcal{T}} \dim_{\mathbb{F}_p} H^1_{\mathcal{E}}(K_{\mathfrak{q}}, E_a[3]).$$

(b) If
$$E(K_{\mathfrak{q}})[3] = 0$$
 for every $\mathfrak{q} \in \mathcal{T}$, then $d_{\mathfrak{p}}(A_L/K) = d_3(E_a/K)$.

Proof. For (a), see the proof of [2, Corollary 3.4(i)]. (b) follows from (a) because \mathcal{T} is empty in this case.

Let $M := K(E_a[3])$ and \mathfrak{S} be the set of elements of order 2 in $\operatorname{Gal}(M/K)$.

Lemma 4.6. Suppose that $E_a(K)[3] = 0$. Then $\operatorname{Gal}(M/K) \cong \mathbb{Z}/2\mathbb{Z}$ or $\mathbb{Z}/6\mathbb{Z}$, depending on whether $K \ni \sqrt[3]{-4a}$ or not, so $|\mathfrak{S}| = 1$.

Proof. The lemma follows from

$$E_{a}[3] = \{O, (0, \pm\sqrt{a}), (\sqrt[3]{-4a}, \pm\sqrt{-3a}), (\sqrt[3]{-4a}\omega, \pm\sqrt{-3a}), (\sqrt[3]{-4a}\omega^{2}, \pm\sqrt{-3a})\}.$$

Let $N := K(27\Delta_{E_a}\infty)$ be the ray class field of K modulo $27\Delta_{E_a}$ and all infinite primes. Define a set of primes of K

 $\mathcal{P} := \{ v : v \text{ is unramified in } NM/K \text{ and } \operatorname{Frob}_v(M/K) \subset \mathfrak{S} \},\$

where $\operatorname{Frob}_v(M/K)$ denotes the Frobenius conjugacy class of v in $\operatorname{Gal}(M/K)$, and two sets of ideals $\mathcal{N}_1 \subset \mathcal{N}$ of K

$$\mathcal{N} := \{ \mathfrak{a} : \mathfrak{a} \text{ is a cubefree product of primes in } \mathcal{P} \},\$$

$$\mathcal{N}_1 := \{ \mathfrak{a} \in \mathcal{N} : [\mathfrak{a}, N/K] = 1 \},\$$

where $[\cdot, N/K]$ denotes the global Artin symbol.

Lemma 4.7 ([2, Lemma 4.1]). There is a constant c such that

$$|\{\mathfrak{a} \in \mathcal{N}_1 : N_{K/\mathbb{Q}}\mathfrak{a} < X\}| = (c+o(1))\frac{X}{(\log X)^{1-|\mathfrak{S}|/[M:K]}}.$$

Proposition 4.8. Suppose that $E_a(K)[3] = 0$. For $\mathfrak{a} \in \mathcal{N}_1$, there is a cyclic cubic extension L/K of conductor \mathfrak{a} such that $d_{\mathfrak{p}}(A_L/K) = d_3(E_a/K)$.

Proof. Fix $\mathfrak{a} \in \mathcal{N}_1$. Then \mathfrak{a} is principal, with a totally positive generator $\alpha \equiv 1 \pmod{27\Delta_{E_a}}$. Let $L := K(\sqrt[3]{\alpha})$. Then all primes above 3, all primes of bad reduction, and all infinite primes split in L/K. If v ramifies in L/K, then $v|\mathfrak{a}$, so $v \in \mathcal{P}$. Thus the Frobenius of v in $\operatorname{Gal}(M/K)$ has order 2, which shows that $E_a(K_v)[3] = 0$. Now the proposition follows from Proposition 4.5(b).

Proof of Theorem 1.2. It follows from Lemma 4.6, Lemma 4.7 and Proposition 4.8. $\hfill \Box$

References

- B. Mazur and K. Rubin, Finding large Selmer rank via an arithmetic theory of local constants, Ann. of Math. (2) 166 (2007), no. 2, 579-612. https://doi.org/10.4007/ annals.2007.166.579
- [2] _____, Ranks of twists of elliptic curves and Hilbert's tenth problem, Invent. Math. 181 (2010), no. 3, 541–575. https://doi.org/10.1007/s00222-010-0252-0
- [3] B. Mazur, K. Rubin, and A. Silverberg, Twisting commutative algebraic groups, J. Algebra 314 (2007), no. 1, 419–438. https://doi.org/10.1016/j.jalgebra.2007.02.052
- [4] A. Silverberg, Applications to cryptography of twisting commutative algebraic groups, Discrete Appl. Math. 156 (2008), no. 16, 3122-3138. https://doi.org/10.1016/j.dam. 2008.01.024
- [5] A. Weil, Adeles and Algebraic Groups, Progress in Mathematics, 23, Birkhäuser, Boston, MA, 1982.

Dongho Byeon Department of Mathematical Sciences Seoul National University Seoul 08826, Korea *Email address*: dhbyeon@snu.ac.kr

KEUNYOUNG JEONG DEPARTMENT OF MATHEMATICAL SCIENCES ULSAN NATIONAL INSTITUTE OF SCIENCE AND TECHNOLOGY ULSAN 44919, KOREA Email address: kyjeong@unist.ac.kr

NAYOUNG KIM DEPARTMENT OF MATHEMATICAL SCIENCES SEOUL NATIONAL UNIVERSITY SEOUL 08826, KOREA Email address: na0@snu.ac.kr