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RESTRICTION OF SCALARS AND CUBIC TWISTS OF
ELLIPTIC CURVES

DoNncHO BYEON, KEUNYOUNG JEONG, AND NAYOUNG Kim

ABSTRACT. Let K be a number field and L a finite abelian extension of
K. Let E be an elliptic curve defined over K. The restriction of scalars
Res];{E decomposes (up to isogeny) into abelian varieties over K
ReskE ~ @ AF,
FeSs

where S is the set of cyclic extensions of K in L. It is known that if L is
a quadratic extension, then Ay, is the quadratic twist of E. In this paper,
we consider the case that K is a number field containing a primitive third
root of unity, L = K( \375) is the cyclic cubic extension of K for some
D e KX/(K*)3, E = Eq : y> = 2% + a is an elliptic curve with j-
invariant 0 defined over K, and EP : y2 = 23 + aD? is the cubic twist of

2
E,. In this case, we prove Ay, is isogenous over K to EP x EP™ and a
property of the Selmer rank of Ay, which is a cubic analogue of a theorem
of Mazur and Rubin on quadratic twists.

1. Introduction

Let K be a number field and L a finite abelian extension of K. Let F be
an elliptic curve defined over K. The restriction of scalars Resk E (for the
definition, see §2) of F from L to K decomposes (up to isogeny) into abelian
varieties over K

Res%(E ~ @ Ap,
Fes
where S is the set of cyclic extensions of K in L (for details, see §2 or [1, §3]).

In [1], Mazur and Rubin studied the Selmer rank of E/L by using the Selmer
ranks of Ap. In [2], as an application to the simplest case that L is a quadratic
extension, they obtained many remarkable results on the Selmer rank of E/L.
We note that if L is a quadratic extension, then Ay, is the quadratic twist of E
(for an example of the proof, see [4, §2.1.2 and §2.2.2]).

In this paper, we consider the next simple case that K is a number field
containing a primitive third root of unity, L = K (\3/5) is the cyclic cubic
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extension of K for some D € K*/(K*)3 and E = E, : y*> = 2° + a is an
elliptic curve with j-invariant 0 defined over K. In this case, we prove the
following theorem.

Theorem 1.1. Let K be a number field containing a primitive third root
of unity and L = K(¥/D) the cyclic cubic estension of K for some D €
KX/(K*)3. Let E = E, : y*> = 2° + a be an elliptic curve with j-invariant 0
defined over K and EP : y? = 23 + aD? the cubic twist of E,. Then Ar is
isogenous over K to EP x EEQ,

Let G := Gal(L/K) be the Galois group L over K. If F' € S, let pp be
the unique faithful irreducible rational representation of Gal(F/K). Since the
correspondence F' <+ pp is a bijection between S and the set of irreducible
rational representations of G, the semisimple group ring Q[G] decomposes

Ql6) = P Gl
FeS
where Q[G]F is the pp-isotypic component of Q[G]. As a field, Q[G]F is iso-
morphic to the cyclotomic field of [F': K]-th roots of unity.

Suppose that L is a cyclic extension of K with a prime degree p. Since
Q[G] L is isomorphic to the p-th cyclotomic field, the maximal order of Q[G]L,
has the unique prime ideal above p, which we denote by p. Let Sel,(E/K) be
the p-Selmer group of E/K and Sel,(Ar/K) the p-Selmer group of Ar/K (see
§2 for the definitions). Define the Selmer ranks

dp(E/K) := dimg,Sel,(E/K),
dp(AL/K) = dim]FpSelp(AL/K).

In our case, we prove the following theorem on the Selmer rank of Ay, which
is a cubic analogue of [2, Theorem 1.4] on quadratic twists.

Theorem 1.2. Let K be a number field containing a primitive third root of
unity, L = K(3/D) the cyclic cubic extension of K for some D € K*/(K*)3
and §(L/K) the conductor of L/K. Let E = E, : y*> = x> + a be an elliptic
curve with j-invariant 0 defined over K. If d3(E,/K) = r and E,(K)[3] =0,
then

{L = K(VD): dy(AL/K) = r and Niof(L/K) < X}| > (log X)5/6°

2. Preliminaries

Let L be a finite abelian extension of a number field K with Galois group
G := Gal(L/K). Let K be an algebraic closure of K with Galois group G :=
Gal(K/K). Let E be an elliptic curve defined over K. Then the definition of
the restriction of scalars ([5, §1.3] or [4, Definition 2.2]) of E from L to K is
following.
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Definition 2.1. The restriction of scalars of F from L to K, denoted by
Resf(E , is a commutative algebraic group over K along with a homomorphism
NL/K : ReSﬁE — F
defined over L, with the universal property that for every variety X over K,

the map
Hompg (X, Resj E) — Homy (X, E) defined by f+ np ko f
is an isomorphism.

Suppose Z is a free Z-module of finite rank with a continuous right action
of Gk and there is a ring homomorphism Z — Endg (F). A twist of a power
of E denoted by Z ®z E is defined in [3, Definition 1.1].

Definition 2.2. Let s := rankz(Z) and fix an Z-module isomorphism j : Z* =
ZI. Let cz € HY(K,Autgz(E®)) be the image of the cocycle (y — j=1 o j7)
under the composition

HY(K,GL4(Z)) —» HY(K, Autg (E®)) — H' (K, Autz (E®))

induced by the homomorphism Z — Endk (F). Define Z ®7 E to be the twist
of E*® by the cocycle cz, i.e., Z®yz FE is the unique commutative algebraic group
over K with an isomorphism ¢ : E* = T ®z F defined over K such that for
every v € Gk,

cz(y) =¢ o g
Definition 2.3. For every cyclic extension F' of K in L, define
Ip = Q[G]F n Z[G] and Arp:=7Ir Qz FE.

We note that Ax = F and Resk (E) is isogenous to @ res Ar by [1, Theorem
3.5].
From the universal property of Resf(E7 for each o € G, there is

oL/K.E € Homp (Resk E, Resk E)
such that 0y xoor/k g = nZ/K. So we have the following ring homomorphism
0 : Z|G] — Endg (Resk E) defined by a = Z Ug O Ug OL /K, B
oceG

We denote 05 () by ag € Endg (Resk E).

Proposition 2.4 ([3, Proposition 4.2(1)]). If Z[G]/Z is a projective Z-module,
then

IT®z E= ﬂ ker (ap : Resk E — Resk E),

e+

where Tt is the ideal of Z|G] defined by I+ := {a € Z[G] : oZ = 0}.
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Lemma 2.5 ([3, Lemma 5.4(i)]). Let F'/K be cyclic of degree n with a generator
o. Then
Ir =V, (0)Z[G] and Iy = ®,(0)Z[G],
where ®,, € Z[x] is the n-th cyclotomic polynomial and ¥, (x) = (2" —1)/P,(x)
€ Z[z].
Suppose that L is a cyclic extension of K with a prime degree p and p is the
unique prime ideal of Q[G] above p.

Definition 2.6. For every prime v of K, let H}(K,, E[p]) denote the image
of the Kummer injection

E(K,)/pE(K,) = H' (K., E[p])
and let HY(K,, AL[p]) denote the image of the Kummer injection
AL () [pAL(Ky) < HY (K, ALlp]).
Definition 2.7. Define the Selmer groups
Sely(E/K) := ker(H' (K, E[p]) — EDH" (Ko, Elp])/Hi (Ko, E[p])) and

Sely(Ar/K) = ker (H' (K, Ar[p]) — @DH" (K, Ar[p])/H}4(K,, AL[p])).

We note that there is a natural identification of Gx-modules E[p] = Ap[p]
inside Res% E (cf. [1, Proposition 4.1 and Remark 4.2]).

Definition 2.8. For every prime v of K, define
8u(E, L/K) := dimg, (Hg(Ky, E[p])/Hén s (Ko, Elp))) ,
where H}, (K., Elp)) := HNK,. Elp]) 0 HY (K, E[p).

Proposition 2.9 ([1, Corollary 4.6]). Suppose that S is a set of primes of
K containing all primes above p, all primes ramified in L/K, and all primes
where E has bad reduction. Then

dp(E/K) = dy(AL/K) + Y 6,(E,L/K) (mod 2).
vES

3. Proof of Theorem 1.1

For the rest of this paper, let K be a number field containing a primitive
third root of unity w, L = K(¥/D) the cyclic cubic extension of K for some
D€ K*X/(K*)3, E, : 4> = 2° + a an elliptic curve with j-invariant 0 defined
over K, and EP : y? = 23 4+ aD? the cubic twist of F,,.

Proposition 3.1. If we define isomorphisms over L
¢1: Eq = EP by (z,y) — (D3z, Dy),
621 Ba = ED" by (2,y) = (D3, D?),
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and G i -invariant subgroup of E, x EP x Etf’z
TL .= ({ (P, $1(P), ¢2(P))" € E, x EP x EP*|3P =0, v € Gk}),
then
2
Resk E, = (E, x EP x EP™)/TE
with the following homomorphisms

MLk (Bax EPxEP*Y/TE = E, defined by (P,Q, R) — P+¢7(Q)+¢5 ' (R).

Proof. We will show that (E, x EP x EP*)/TL satisfies the universal property
of Resf(Ea with 17/x in Definition 2.1. Suppose X is a variety over K and
¢ € Homp(X,E,). Let [3]7! : E, — E,/E,[3] be the inverse map of the
induced isomorphism from multiplication by 3, let
X: E, /E,[3] = (E, x EP x EP*)/TF
defined by P — (P, ¢1(P),¢2(P)) (mod TF), and let o be the generator of
Gal(L/K) which maps V/D to ¥/Dw. Define
g=rof3]Top + (Ao[3] 7 op)” + (Ao 3] o)
€ Homg (X, (E, x EP x EP*)/ TE).

Then we have

Ny o Ao lop =0,
NL/K © (Ao [3}*1 0p)? =0 (because ¢ = [w]p1, ¢ = [w]zgzbg
and [1] + [w] + [w]* = [0]),
2
nex o (Ao[3] T op)” =0 (by the same reason),
where [w] : (z,y) — (w?x,7) is an endomorphism of E,, EP and EaDz. Thus

NL/K O P = ¢.
2
For any (P,Q, R) € (E, x EP x EP™)/TL, we have

(P,Q,R) ™% P+¢7HQ) + ¢5 ' (R)
By P+ o7 Q) + 63 (R)
2 (P +671(Q) + 63 ' (R)),

o1(P') + Q'+ én(e3 " (R),
¢2(P') + ¢z(¢1‘1(Q’)) +R')  (mod T}/,

(P,Q,R) (>\O[3]T:>7]L/K)U ( (Q/) [W]QS;l(RI),
[w]o (P')+Q + [wP¢1(e5 H(R)),
[W2g2(P) + [w]d2(¢7 Q")) + R')  (mod T;),



128 D. BYEON, K. JEONG, AND N. KIM

2
(Ao o k)7
—

(P + [wlér (@) + [w]*63 ' (R),
W21 (P") + Q' + [w]ér (3 (R)),
[wléa(P') + [w]*é2(61 (@) + R')  (mod T,
where P’ (resp. ', R’) is an element satisfying [3]P’ = P (resp. [3]Q' =
Q, B8R =R). So

(Ao l3™ ompyx) + (Ao 37 omp k)7 + (Ao [8] T onLyk)” =id.
Hence for every f € Homp (X, (E, x EP x EaDz)/TaL), we have

(P,Q,R)

(77L/K © f)
= (Ao [3]7! onp/kof)+ (Ao 871 o Nk © f)7 + (Ao 8] "o NL/K © f)172
=AoB tonk)of+ A3 ton k)70 f+ (Ao 3] o 77L/K)02 of
= f.
Thus the map
Homy (X, (Eq, x EP x EP*)/TF) — Homy (X, E,)
defined by f + 1k o f is an isomorphism. 0

Proposition 3.2. Let A;, = I;, ®z E, in Definition 2.3. Then there is a
surjective morphism over K with a finite kernel

0:EP x EP® - A;.
Proof. We continue the notations K , L, o, E,, EP , T nL/K » - in Propo-

a

sition 3.1 and its proof. Recall that Resk F, is (E, x EP x EC?Q) / T with the
homomorphism 7, /5. Note that for the o € Gal(L/K), its induced endomor-

phism og, € EndK(Resf(Ea) is precisely
05, (P,Q,R) = 17 1 (P,Q, R) = (P, [W]*Q, [W]R),
and hence ®5(0) g, is given by
®3(0)g, (P,Q,R) = (6> +o+ 1)g,(P,Q,R) = (3P, 0,0).
Thus by Proposition 2.4 and Lemma 2.5, we have
Ap =15 ®z E, = ker (‘bg(O‘)Ea : Resf(Ea — Resf{Ea)
= {(P,Q,R) € (E, x EP x EP*)/ T | (3P, 0, 0) = (0, 0, 0) (mod T*) }
= {(P,Q,R) € (B, x EY x EP")/ T} | P € E,[3]}.

Define )
0:EP xEP” — A by (Q,R) — (0,Q,R).
Then 6 is a morphism over K with a finite kernel. For (P,Q, R) € Ay,

(P,Q,R) = (P, $1(P), ¢2(P)) + (0, Q — ¢1(P), R — ¢2(P))
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= (0, Q — ¢1(P), R—¢3(P)) (mod T})).

Thus 6 is surjective. i

Proof of Theorem 1.1. Tt follows from Proposition 3.1. O

4. Proof of Theorem 1.2

To compare d3(E,/K) and dy(Ar/K), we apply [2, §2 and §3] to our case.
By [1, Proposition 5.2], we have the following lemma which is same to [2, Lemma
2.9].

Lemma 4.1. Let v be a prime of K, w a prime of L above v and Np /, :
Eo(Ly) = Eu(K,) the norm map. Under the isomorphism HE(K,, E,[3]) =
E.(K,)/3E.(K,), we have

HénA(vaEa[g]) = NLw/KuEa(Lw)/gEa(Kv>‘
Remark. In [2, Definition 2.6], 6, (E, L/K) is defined by
dimg, E(Ky)/Np,, /r, E(Lw),
where p = 2. By Lemma 4.1, [2, Definition 2.6] is same to Definition 2.8 for

our case.

By Lemma 4.1, we have the following lemmas which are similar to [2, Lemma
2.10 and Lemma 2.11].

Lemma 4.2. Let Ag, be the discriminant of E,. If at least one of the following
conditions (i)-(iv) holds:

(i) v splits in L/ K,

(i) v 1300 and E,(K,)[3] =0,

(iii) v s real and (Ag, ), <0,

(iv) v is a prime where E, has good reduction and v is unramified in L/ K,
then H(K,, E,[3]) = H4(K,, E,[3]) and §,(E,,L/K) = 0.

Proof. See the proof of [2, Lemma 2.10]. O

Lemma 4.3. Ifv {300, E, has good reduction at v and v is ramified in L/ K,
then

Hioa(Ky, Ey[3]) =0 and 6,(E,, L/K) = dimp, (E,(K,)[3]).
Proof. See the proof of [2, Lemma 2.11] O

By Proposition 2.9, Lemma 4.2, and Lemma 4.3, we have the following
proposition which is similar to [2, Proposition 3.3].

Proposition 4.4. Suppose that all of the following primes split in L/K:

e all primes where E, has bad reduction,
e all primes above 3,
e all real places v with (Ag,), > 0.
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Let T be the set of (finite) primes q of K such that L/K is ramified at q and
Eq.(Kq)[3] #0. Let

locr : H'(K, Eq[3]) = EDH" (Kq, Ea[3])
qeT

and
V= locy(Sels(E, /K)) @Hg
qeT
Then we have
dy(AL/K) = d3(E,/K) — dimp, V7 + d

for some d satisfying

0<d < dimp, | DHE(Kq, Ea[3])/Vr | and
qeT

d = dimg, | PHE(Kq, Ea[3])/Vr | (mod 2).
qeT

Proof. Define strict and relaxed 3-Selmer groups S ¢ 87 ¢ H'(K, E,[3]) by
the exactness of

0— ST HY ) = EPH (Kq, Ea[3])/HE (Kq, Eq[3]) and
agT
0= Sr— 87 — PH'(K,, Ea[3)).
qeT

Then we have S7 C Sel,(E,/K) € S7. By Lemma 4.2 we also have S; C

Sel,(Az/K) € 87 and by Lemma 4.3 we have Sel,(E,/K)NSel,(Ar/K) = St

Let V£ = locr(Sely(AL/K)) C @ HY(Kq, E,[3]) and d = dimp,VE.
qeT

Then the theorem follows from the same argument in the proof of [2, Proposi-

tion 3.3]. 0

By Proposition 4.4, we have the following proposition which is similar to
[2, Corollary 3.4].

Proposition 4.5. Suppose E,,L/K, and T are as in Proposition 4.4.
(a) If dimg, (Dyer HE(Kq, Eo[3])/V7) < 1, then

dy(AL/K) = dy(Ea/K) — 2dimg, V- + Y _ dimg, H} (Kq, Ea[3]).
qeT
(b) If E(K4)[3] =0 for every q € T, then dy(Ar/K) = d3(Eq/K).
Proof. For (a), see the proof of [2, Corollary 3.4(i)]. (b) follows from (a) because
T is empty in this case. O

Let M := K(F,[3]) and & be the set of elements of order 2 in Gal(M/K).
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Lemma 4.6. Suppose that E,(K)[3] =0. Then Gal(M/K) = Z/2Z or Z/6Z,
depending on whether K 5 ¥/—4a or not, so |&| = 1.

Proof. The lemma follows from

E,[3] = {0, (0,+Va), (¥ —4a,+v/=3a), (V—4daw, £v/—3a), (¥ —4aw?, £/ —3a)}.
O

Let N := K(27Apg,00) be the ray class field of K modulo 27A g, and all
infinite primes. Define a set of primes of K

P :={v: v is unramified in NM/K and Frob,(M/K) C &},

where Frob, (M/K) denotes the Frobenius conjugacy class of v in Gal(M/K),
and two sets of ideals N7 C N of K

N :={a: ais a cubefree product of primes in P},
N ={aeN:[a,N/K|=1},
where [+, N/K] denotes the global Artin symbol.

Lemma 4.7 ([2, Lemma 4.1]). There is a constant ¢ such that

X
(log X )1~ ISI/[M:K]

Proposition 4.8. Suppose that E,(K)[3] = 0. For a € Ny, there is a cyclic
cubic extension L/K of conductor a such that dy(Ar/K) = d3(E,/K).

‘{Cl eN: NK/QCL < X}| = (C+0(1))

Proof. Fix a € N1. Then a is principal, with a totally positive generator o = 1
(mod 27Apg,). Let L := K({/a). Then all primes above 3, all primes of bad
reduction, and all infinite primes split in L/K. If v ramifies in L/K, then v|a,
so v € P. Thus the Frobenius of v in Gal(M/K) has order 2, which shows that

E.(K,)[3] = 0. Now the proposition follows from Proposition 4.5(b). O

Proof of Theorem 1.2. It follows from Lemma 4.6, Lemma 4.7 and Proposition

4.8. O
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