RESTRICTION OF SCALARS AND CUBIC TWISTS OF ELLIPTIC CURVES

Dongho Byeon, Keunyoung Jeong, and Nayoung Kim

Abstract

Let K be a number field and L a finite abelian extension of K. Let E be an elliptic curve defined over K. The restriction of scalars $\operatorname{Res}_{K}^{L} E$ decomposes (up to isogeny) into abelian varieties over K $$
\operatorname{Res}_{K}^{L} E \sim \bigoplus_{F \in S} A_{F}
$$ where S is the set of cyclic extensions of K in L. It is known that if L is a quadratic extension, then A_{L} is the quadratic twist of E. In this paper, we consider the case that K is a number field containing a primitive third root of unity, $L=K(\sqrt[3]{D})$ is the cyclic cubic extension of K for some $D \in K^{\times} /\left(K^{\times}\right)^{3}, E=E_{a}: y^{2}=x^{3}+a$ is an elliptic curve with j invariant 0 defined over K, and $E_{a}^{D}: y^{2}=x^{3}+a D^{2}$ is the cubic twist of E_{a}. In this case, we prove A_{L} is isogenous over K to $E_{a}^{D} \times E_{a}^{D^{2}}$ and a property of the Selmer rank of A_{L}, which is a cubic analogue of a theorem of Mazur and Rubin on quadratic twists.

1. Introduction

Let K be a number field and L a finite abelian extension of K. Let E be an elliptic curve defined over K. The restriction of scalars $\operatorname{Res}_{K}^{L} E$ (for the definition, see $\S 2$) of E from L to K decomposes (up to isogeny) into abelian varieties over K

$$
\operatorname{Res}_{K}^{L} E \sim \bigoplus_{F \in S} A_{F},
$$

where S is the set of cyclic extensions of K in L (for details, see $\S 2$ or [1, $\S 3]$).
In [1], Mazur and Rubin studied the Selmer rank of E / L by using the Selmer ranks of A_{F}. In [2], as an application to the simplest case that L is a quadratic extension, they obtained many remarkable results on the Selmer rank of E / L. We note that if L is a quadratic extension, then A_{L} is the quadratic twist of E (for an example of the proof, see [4, $\S 2.1 .2$ and $\S 2.2 .2]$).

In this paper, we consider the next simple case that K is a number field containing a primitive third root of unity, $L=K(\sqrt[3]{D})$ is the cyclic cubic

[^0]extension of K for some $D \in K^{\times} /\left(K^{\times}\right)^{3}$ and $E=E_{a}: y^{2}=x^{3}+a$ is an elliptic curve with j-invariant 0 defined over K. In this case, we prove the following theorem.

Theorem 1.1. Let K be a number field containing a primitive third root of unity and $L=K(\sqrt[3]{D})$ the cyclic cubic extension of K for some $D \in$ $K^{\times} /\left(K^{\times}\right)^{3}$. Let $E=E_{a}: y^{2}=x^{3}+a$ be an elliptic curve with j-invariant 0 defined over K and $E_{a}^{D}: y^{2}=x^{3}+a D^{2}$ the cubic twist of E_{a}. Then A_{L} is isogenous over K to $E_{a}^{D} \times E_{a}^{D^{2}}$.

Let $G:=\operatorname{Gal}(L / K)$ be the Galois group L over K. If $F \in S$, let ρ_{F} be the unique faithful irreducible rational representation of $\operatorname{Gal}(F / K)$. Since the correspondence $F \leftrightarrow \rho_{F}$ is a bijection between S and the set of irreducible rational representations of G, the semisimple group ring $\mathbb{Q}[G]$ decomposes

$$
\mathbb{Q}[G] \cong \bigoplus_{F \in S} \mathbb{Q}[G]_{F},
$$

where $\mathbb{Q}[G]_{F}$ is the ρ_{F}-isotypic component of $\mathbb{Q}[G]$. As a field, $\mathbb{Q}[G]_{F}$ is isomorphic to the cyclotomic field of $[F: K]$-th roots of unity.

Suppose that L is a cyclic extension of K with a prime degree p. Since $\mathbb{Q}[G]_{L}$ is isomorphic to the p-th cyclotomic field, the maximal order of $\mathbb{Q}[G]_{L}$ has the unique prime ideal above p, which we denote by \mathfrak{p}. Let $\operatorname{Sel}_{p}(E / K)$ be the p-Selmer group of E / K and $\operatorname{Sel}_{\mathfrak{p}}\left(A_{L} / K\right)$ the \mathfrak{p}-Selmer group of A_{L} / K (see $\S 2$ for the definitions). Define the Selmer ranks

$$
\begin{aligned}
d_{p}(E / K) & :=\operatorname{dim}_{\mathbb{F}_{p}} \operatorname{Sel}_{p}(E / K), \\
d_{\mathfrak{p}}\left(A_{L} / K\right) & :=\operatorname{dim}_{\mathbb{F}_{p}} \operatorname{Sel}_{\mathfrak{p}}\left(A_{L} / K\right)
\end{aligned}
$$

In our case, we prove the following theorem on the Selmer rank of A_{L}, which is a cubic analogue of [2, Theorem 1.4] on quadratic twists.

Theorem 1.2. Let K be a number field containing a primitive third root of unity, $L=K(\sqrt[3]{D})$ the cyclic cubic extension of K for some $D \in K^{\times} /\left(K^{\times}\right)^{3}$ and $\mathfrak{f}(L / K)$ the conductor of L / K. Let $E=E_{a}: y^{2}=x^{3}+a$ be an elliptic curve with j-invariant 0 defined over K. If $d_{3}\left(E_{a} / K\right)=r$ and $E_{a}(K)[3]=0$, then

$$
\mid\left\{L=K(\sqrt[3]{D}): d_{\mathfrak{p}}\left(A_{L} / K\right)=r \text { and } N_{K / \mathbb{Q}} f(L / K)<X\right\} \left\lvert\, \gg \frac{X}{(\log X)^{5 / 6}}\right.
$$

2. Preliminaries

Let L be a finite abelian extension of a number field K with Galois group $G:=\operatorname{Gal}(L / K)$. Let \bar{K} be an algebraic closure of K with Galois group $G_{K}:=$ $\operatorname{Gal}(\bar{K} / K)$. Let E be an elliptic curve defined over K. Then the definition of the restriction of scalars ($[5, \S 1.3]$ or $[4$, Definition 2.2]) of E from L to K is following.

Definition 2.1. The restriction of scalars of E from L to K, denoted by $\operatorname{Res}_{K}^{L} E$, is a commutative algebraic group over K along with a homomorphism

$$
\eta_{L / K}: \operatorname{Res}_{K}^{L} E \rightarrow E
$$

defined over L, with the universal property that for every variety X over K, the map

$$
\operatorname{Hom}_{K}\left(X, \operatorname{Res}_{K}^{L} E\right) \rightarrow \operatorname{Hom}_{L}(X, E) \text { defined by } f \mapsto \eta_{L / K} \circ f
$$

is an isomorphism.
Suppose \mathcal{I} is a free \mathbb{Z}-module of finite rank with a continuous right action of G_{K} and there is a ring homomorphism $\mathbb{Z} \rightarrow \operatorname{End}_{K}(E)$. A twist of a power of E denoted by $\mathcal{I} \otimes_{\mathbb{Z}} E$ is defined in [3, Definition 1.1].

Definition 2.2. Let $s:=\operatorname{rank}_{\mathbb{Z}}(\mathcal{I})$ and fix an \mathbb{Z}-module isomorphism $j: \mathbb{Z}^{s} \xrightarrow{\sim}$ \mathcal{I}. Let $c_{\mathcal{I}} \in H^{1}\left(K, \operatorname{Aut}_{\bar{K}}\left(E^{s}\right)\right)$ be the image of the cocycle $\left(\gamma \mapsto j^{-1} \circ j^{\gamma}\right)$ under the composition

$$
H^{1}\left(K, \mathrm{GL}_{s}(\mathbb{Z})\right) \rightarrow H^{1}\left(K, \operatorname{Aut}_{K}\left(E^{s}\right)\right) \rightarrow H^{1}\left(K, \operatorname{Aut}_{\bar{K}}\left(E^{s}\right)\right)
$$

induced by the homomorphism $\mathbb{Z} \rightarrow \operatorname{End}_{K}(E)$. Define $\mathcal{I} \otimes_{\mathbb{Z}} E$ to be the twist of E^{s} by the cocycle $c_{\mathcal{I}}$, i.e., $\mathcal{I} \otimes_{\mathbb{Z}} E$ is the unique commutative algebraic group over K with an isomorphism $\phi: E^{s} \xrightarrow{\sim} \mathcal{I} \otimes_{\mathbb{Z}} E$ defined over \bar{K} such that for every $\gamma \in G_{K}$,

$$
c_{\mathcal{I}}(\gamma)=\phi^{-1} \circ \phi^{\gamma} .
$$

Definition 2.3. For every cyclic extension F of K in L, define

$$
\mathcal{I}_{F}:=\mathbb{Q}[G]_{F} \cap \mathbb{Z}[G] \quad \text { and } \quad A_{F}:=\mathcal{I}_{F} \otimes_{\mathbb{Z}} E
$$

We note that $A_{K}=E$ and $\operatorname{Res}_{K}^{L}(E)$ is isogenous to $\bigoplus_{F \in S} A_{F}$ by [1, Theorem 3.5].

From the universal property of $\operatorname{Res}_{K}^{L} E$, for each $\sigma \in G$, there is

$$
\sigma_{L / K, E} \in \operatorname{Hom}_{K}\left(\operatorname{Res}_{K}^{L} E, \operatorname{Res}_{K}^{L} E\right)
$$

such that $\eta_{L / K} \circ \sigma_{L / K, E}=\eta_{L / K}^{\sigma}$. So we have the following ring homomorphism

$$
\theta_{E}: \mathbb{Z}[G] \rightarrow \operatorname{End}_{K}\left(\operatorname{Res}_{K}^{L} E\right) \text { defined by } \alpha=\sum_{\sigma \in G} a_{\sigma} \sigma \mapsto a_{\sigma} \sigma_{L / K, E}
$$

We denote $\theta_{E}(\alpha)$ by $\alpha_{E} \in \operatorname{End}_{K}\left(\operatorname{Res}_{K}^{L} E\right)$.
Proposition 2.4 ([3, Proposition $4.2(\mathrm{i})])$. If $\mathbb{Z}[G] / \mathcal{I}$ is a projective \mathbb{Z}-module, then

$$
\mathcal{I} \otimes_{\mathbb{Z}} E=\bigcap_{\alpha \in \mathcal{I}^{\perp}} \operatorname{ker}\left(\alpha_{E}: \operatorname{Res}_{K}^{L} E \rightarrow \operatorname{Res}_{K}^{L} E\right)
$$

where \mathcal{I}^{\perp} is the ideal of $\mathbb{Z}[G]$ defined by $\mathcal{I}^{\perp}:=\{\alpha \in \mathbb{Z}[G]: \alpha \mathcal{I}=0\}$.

Lemma 2.5 ([3, Lemma 5.4(i)]). Let F / K be cyclic of degree n with a generator σ. Then

$$
\mathcal{I}_{F}=\Psi_{n}(\sigma) \mathbb{Z}[G] \quad \text { and } \quad \mathcal{I}_{F}^{\perp}=\Phi_{n}(\sigma) \mathbb{Z}[G],
$$

where $\Phi_{n} \in \mathbb{Z}[x]$ is the n-th cyclotomic polynomial and $\Psi_{n}(x)=\left(x^{n}-1\right) / \Phi_{n}(x)$ $\in \mathbb{Z}[x]$.

Suppose that L is a cyclic extension of K with a prime degree p and \mathfrak{p} is the unique prime ideal of $\mathbb{Q}[G]_{L}$ above p.

Definition 2.6. For every prime v of K, let $H_{\mathcal{E}}^{1}\left(K_{v}, E[p]\right)$ denote the image of the Kummer injection

$$
E\left(K_{v}\right) / p E\left(K_{v}\right) \hookrightarrow H^{1}\left(K_{v}, E[p]\right)
$$

and let $H_{\mathcal{A}}^{1}\left(K_{v}, A_{L}[\mathfrak{p}]\right)$ denote the image of the Kummer injection

$$
A_{L}\left(K_{v}\right) / \mathfrak{p} A_{L}\left(K_{v}\right) \hookrightarrow H^{1}\left(K_{v}, A_{L}[\mathfrak{p}]\right)
$$

Definition 2.7. Define the Selmer groups

$$
\begin{aligned}
& \operatorname{Sel}_{p}(E / K):=\operatorname{ker}\left(H^{1}(K, E[p]) \longrightarrow \bigoplus_{v} H^{1}\left(K_{v}, E[p]\right) / H_{\mathcal{E}}^{1}\left(K_{v}, E[p]\right)\right) \text { and } \\
& \operatorname{Sel}_{\mathfrak{p}}\left(A_{L} / K\right):=\operatorname{ker}\left(H^{1}\left(K, A_{L}[\mathfrak{p}]\right) \longrightarrow \bigoplus_{v} H^{1}\left(K_{v}, A_{L}[\mathfrak{p}]\right) / H_{\mathcal{A}}^{1}\left(K_{v}, A_{L}[\mathfrak{p}]\right)\right)
\end{aligned}
$$

We note that there is a natural identification of G_{K}-modules $E[p]=A_{L}[\mathfrak{p}]$ inside $\operatorname{Res}_{K}^{L} E$ (cf. [1, Proposition 4.1 and Remark 4.2]).
Definition 2.8. For every prime v of K, define

$$
\delta_{v}(E, L / K):=\operatorname{dim}_{\mathbb{F}_{p}}\left(H_{\mathcal{E}}^{1}\left(K_{v}, E[p]\right) / H_{\mathcal{E} \cap \mathcal{A}}^{1}\left(K_{v}, E[p]\right)\right),
$$

where $H_{\mathcal{E} \cap \mathcal{A}}^{1}\left(K_{v}, E[p]\right):=H_{\mathcal{E}}^{1}\left(K_{v}, E[p]\right) \cap H_{\mathcal{A}}^{1}\left(K_{v}, E[p]\right)$.
Proposition 2.9 ([1, Corollary 4.6]). Suppose that \mathcal{S} is a set of primes of K containing all primes above p, all primes ramified in L / K, and all primes where E has bad reduction. Then

$$
d_{p}(E / K) \equiv d_{\mathfrak{p}}\left(A_{L} / K\right)+\sum_{v \in \mathcal{S}} \delta_{v}(E, L / K) \quad(\bmod 2) .
$$

3. Proof of Theorem 1.1

For the rest of this paper, let K be a number field containing a primitive third root of unity $\omega, L=K(\sqrt[3]{D})$ the cyclic cubic extension of K for some $D \in K^{\times} /\left(K^{\times}\right)^{3}, E_{a}: y^{2}=x^{3}+a$ an elliptic curve with j-invariant 0 defined over K, and $E_{a}^{D}: y^{2}=x^{3}+a D^{2}$ the cubic twist of E_{a}.

Proposition 3.1. If we define isomorphisms over L

$$
\begin{aligned}
& \phi_{1}: E_{a} \xrightarrow{\sim} E_{a}^{D} \text { by }(x, y) \mapsto\left(D^{\frac{2}{3}} x, D y\right), \\
& \phi_{2}: E_{a} \xrightarrow{\sim} E_{a}^{D^{2}} \text { by }(x, y) \mapsto\left(D^{\frac{4}{3}} x, D^{2} y\right),
\end{aligned}
$$

and G_{K}-invariant subgroup of $E_{a} \times E_{a}^{D} \times E_{a}^{D^{2}}$

$$
T_{a}^{L}:=\left\langle\left\{\left(P, \phi_{1}(P), \phi_{2}(P)\right)^{\gamma} \in E_{a} \times E_{a}^{D} \times E_{a}^{D^{2}} \mid 3 P=0, \gamma \in G_{K}\right\}\right\rangle,
$$

then

$$
\operatorname{Res}_{K}^{L} E_{a}=\left(E_{a} \times E_{a}^{D} \times E_{a}^{D^{2}}\right) / T_{a}^{L}
$$

with the following homomorphisms
$\eta_{L / K}:\left(E_{a} \times E_{a}^{D} \times E_{a}^{D^{2}}\right) / T_{a}^{L} \rightarrow E_{a}$ defined by $(P, Q, R) \mapsto P+\phi_{1}^{-1}(Q)+\phi_{2}^{-1}(R)$.
Proof. We will show that $\left(E_{a} \times E_{a}^{D} \times E_{a}^{D^{2}}\right) / T_{a}^{L}$ satisfies the universal property of $\operatorname{Res}_{K}^{L} E_{a}$ with $\eta_{L / K}$ in Definition 2.1. Suppose X is a variety over K and $\varphi \in \operatorname{Hom}_{L}\left(X, E_{a}\right)$. Let $[3]^{-1}: E_{a} \rightarrow E_{a} / E_{a}[3]$ be the inverse map of the induced isomorphism from multiplication by 3 , let

$$
\lambda: E_{a} / E_{a}[3] \rightarrow\left(E_{a} \times E_{a}^{D} \times E_{a}^{D^{2}}\right) / T_{a}^{L}
$$

defined by $P \mapsto\left(P, \phi_{1}(P), \phi_{2}(P)\right)\left(\bmod T_{a}^{L}\right)$, and let σ be the generator of $\operatorname{Gal}(L / K)$ which maps $\sqrt[3]{D}$ to $\sqrt[3]{D} \omega$. Define

$$
\begin{aligned}
\tilde{\varphi} & :=\lambda \circ[3]^{-1} \circ \varphi+\left(\lambda \circ[3]^{-1} \circ \varphi\right)^{\sigma}+\left(\lambda \circ[3]^{-1} \circ \varphi\right)^{\sigma^{2}} \\
& \in \operatorname{Hom}_{K}\left(X,\left(E_{a} \times E_{a}^{D} \times E_{a}^{D^{2}}\right) / T_{a}^{L}\right) .
\end{aligned}
$$

Then we have

$$
\begin{aligned}
\eta_{L / K} \circ \lambda \circ[3]^{-1} \circ \varphi=\varphi, & \\
\eta_{L / K} \circ\left(\lambda \circ[3]^{-1} \circ \varphi\right)^{\sigma}=0 & \text { (because } \phi_{1}^{\sigma}=[\omega] \phi_{1}, \phi_{2}^{\sigma}=[\omega]^{2} \phi_{2} \\
& \text { and } \left.[1]+[\omega]+[\omega]^{2}=[0]\right),
\end{aligned}
$$

$$
\eta_{L / K} \circ\left(\lambda \circ[3]^{-1} \circ \varphi\right)^{\sigma^{2}}=0 \quad(\text { by the same reason }),
$$

where $[\omega]:(x, y) \mapsto\left(\omega^{2} x, y\right)$ is an endomorphism of E_{a}, E_{a}^{D}, and $E_{a}^{D^{2}}$. Thus $\eta_{L / K} \circ \tilde{\varphi}=\varphi$.

For any $(P, Q, R) \in\left(E_{a} \times E_{a}^{D} \times E_{a}^{D^{2}}\right) / T_{a}^{L}$, we have

$$
\begin{array}{rll}
(P, Q, R) \stackrel{\eta_{L / K}}{\longmapsto} & P+\phi_{1}^{-1}(Q)+\phi_{2}^{-1}(R) \\
& \stackrel{[3]^{-1}}{\longrightarrow} & P^{\prime}+\phi_{1}^{-1}\left(Q^{\prime}\right)+\phi_{2}^{-1}\left(R^{\prime}\right) \\
& \left(P^{\prime}+\phi_{1}^{-1}\left(Q^{\prime}\right)+\phi_{2}^{-1}\left(R^{\prime}\right),\right. \\
& \phi_{1}\left(P^{\prime}\right)+Q^{\prime}+\phi_{1}\left(\phi_{2}^{-1}\left(R^{\prime}\right)\right), \\
& \left.\phi_{2}\left(P^{\prime}\right)+\phi_{2}\left(\phi_{1}^{-1}\left(Q^{\prime}\right)\right)+R^{\prime}\right) \quad\left(\bmod T_{a}^{L}\right), \\
(P, Q, R) \stackrel{\left(\lambda \circ[3]^{-1} \circ \eta_{L / K}\right)^{\sigma}}{\longmapsto} & \left(P^{\prime}+[\omega]^{2} \phi_{1}^{-1}\left(Q^{\prime}\right)+[\omega] \phi_{2}^{-1}\left(R^{\prime}\right),\right. \\
& {[\omega] \phi_{1}\left(P^{\prime}\right)+Q^{\prime}+[\omega]^{2} \phi_{1}\left(\phi_{2}^{-1}\left(R^{\prime}\right)\right),} \\
& \left.[\omega]^{2} \phi_{2}\left(P^{\prime}\right)+[\omega] \phi_{2}\left(\phi_{1}^{-1}\left(Q^{\prime}\right)\right)+R^{\prime}\right) \quad\left(\bmod T_{a}^{L}\right),
\end{array}
$$

$$
\begin{aligned}
(P, Q, R) \stackrel{\left(\lambda \circ[3]^{-1} \circ \eta_{L / K}\right)^{\sigma^{2}}}{\longmapsto} & \left(P^{\prime}+[\omega] \phi_{1}^{-1}\left(Q^{\prime}\right)+[\omega]^{2} \phi_{2}^{-1}\left(R^{\prime}\right),\right. \\
& {[\omega]^{2} \phi_{1}\left(P^{\prime}\right)+Q^{\prime}+[\omega] \phi_{1}\left(\phi_{2}^{-1}\left(R^{\prime}\right)\right), } \\
& {\left.[\omega] \phi_{2}\left(P^{\prime}\right)+[\omega]^{2} \phi_{2}\left(\phi_{1}^{-1}\left(Q^{\prime}\right)\right)+R^{\prime}\right)\left(\bmod T_{a}^{L}\right), }
\end{aligned}
$$

where P^{\prime} (resp. Q^{\prime}, R^{\prime}) is an element satisfying $[3] P^{\prime}=P$ (resp. [3] $Q^{\prime}=$ $\left.Q,[3] R^{\prime}=R\right)$. So

$$
\left(\lambda \circ[3]^{-1} \circ \eta_{L / K}\right)+\left(\lambda \circ[3]^{-1} \circ \eta_{L / K}\right)^{\sigma}+\left(\lambda \circ[3]^{-1} \circ \eta_{L / K}\right)^{\sigma^{2}}=\mathrm{id} .
$$

Hence for every $f \in \operatorname{Hom}_{K}\left(X,\left(E_{a} \times E_{a}^{D} \times E_{a}^{D^{2}}\right) / T_{a}^{L}\right)$, we have

$$
\begin{aligned}
& \left(\widetilde{\eta_{L / K}} \circ f\right) \\
= & \left(\lambda \circ[3]^{-1} \circ \eta_{L / K} \circ f\right)+\left(\lambda \circ[3]^{-1} \circ \eta_{L / K} \circ f\right)^{\sigma}+\left(\lambda \circ[3]^{-1} \circ \eta_{L / K} \circ f\right)^{\sigma^{2}} \\
= & \left(\lambda \circ[3]^{-1} \circ \eta_{L / K}\right) \circ f+\left(\lambda \circ[3]^{-1} \circ \eta_{L / K}\right)^{\sigma} \circ f+\left(\lambda \circ[3]^{-1} \circ \eta_{L / K}\right)^{\sigma^{2}} \circ f \\
= & f .
\end{aligned}
$$

Thus the map

$$
\operatorname{Hom}_{K}\left(X,\left(E_{a} \times E_{a}^{D} \times E_{a}^{D^{2}}\right) / T_{a}^{L}\right) \rightarrow \operatorname{Hom}_{L}\left(X, E_{a}\right)
$$

defined by $f \mapsto \eta_{L / K} \circ f$ is an isomorphism.
Proposition 3.2. Let $A_{L}=\mathcal{I}_{L} \otimes_{\mathbb{Z}} E_{a}$ in Definition 2.3. Then there is a surjective morphism over K with a finite kernel

$$
\theta: E_{a}^{D} \times E_{a}^{D^{2}} \rightarrow A_{L}
$$

Proof. We continue the notations $K, L, \sigma, E_{a}, E_{a}^{D}, T_{a}^{L}, \eta_{L / K}, \sim \sim$ in Proposition 3.1 and its proof. Recall that $\operatorname{Res}_{K}^{L} E_{a}$ is $\left(E_{a} \times E_{a}^{D} \times E_{a}^{D^{2}}\right) / T_{a}^{L}$ with the homomorphism $\eta_{L / K}$. Note that for the $\sigma \in \operatorname{Gal}(L / K)$, its induced endomorphism $\sigma_{E_{a}} \in \operatorname{End}_{K}\left(\operatorname{Res}_{K}^{L} E_{a}\right)$ is precisely

$$
\sigma_{E_{a}}(P, Q, R)=\widetilde{\eta_{L / K}^{\sigma}}(P, Q, R)=\left(P,[\omega]^{2} Q,[\omega] R\right),
$$

and hence $\Phi_{3}(\sigma)_{E_{a}}$ is given by

$$
\Phi_{3}(\sigma)_{E_{a}}(P, Q, R)=\left(\sigma^{2}+\sigma+1\right)_{E_{a}}(P, Q, R)=(3 P, 0,0)
$$

Thus by Proposition 2.4 and Lemma 2.5, we have

$$
\begin{aligned}
A_{L} & :=\mathcal{I}_{L} \otimes_{\mathbb{Z}} E_{a}=\operatorname{ker}\left(\Phi_{3}(\sigma)_{E_{a}}: \operatorname{Res}_{K}^{L} E_{a} \rightarrow \operatorname{Res}_{K}^{L} E_{a}\right) \\
& =\left\{(P, Q, R) \in\left(E_{a} \times E_{a}^{D} \times E_{a}^{D^{2}}\right) / T_{a}^{L} \mid(3 P, 0,0) \equiv(0,0,0)\left(\bmod T_{a}^{L}\right)\right\} \\
& =\left\{(P, Q, R) \in\left(E_{a} \times E_{a}^{D} \times E_{a}^{D^{2}}\right) / T_{a}^{L} \mid P \in E_{a}[3]\right\} .
\end{aligned}
$$

Define

$$
\theta: E_{a}^{D} \times E_{a}^{D^{2}} \rightarrow A_{L} \text { by }(Q, R) \mapsto(0, Q, R)
$$

Then θ is a morphism over K with a finite kernel. For $(P, Q, R) \in A_{L}$,

$$
(P, Q, R)=\left(P, \phi_{1}(P), \phi_{2}(P)\right)+\left(0, Q-\phi_{1}(P), R-\phi_{2}(P)\right)
$$

$$
\equiv\left(0, Q-\phi_{1}(P), R-\phi_{2}(P)\right)\left(\bmod T_{a}^{L}\right)
$$

Thus θ is surjective.
Proof of Theorem 1.1. It follows from Proposition 3.1.

4. Proof of Theorem 1.2

To compare $d_{3}\left(E_{a} / K\right)$ and $d_{\mathfrak{p}}\left(A_{L} / K\right)$, we apply [2, $\S 2$ and $\left.\S 3\right]$ to our case. By [1, Proposition 5.2], we have the following lemma which is same to [2, Lemma 2.9].

Lemma 4.1. Let v be a prime of K, w a prime of L above v and $N_{L_{w} / K_{v}}$: $E_{a}\left(L_{w}\right) \rightarrow E_{a}\left(K_{v}\right)$ the norm map. Under the isomorphism $H_{\mathcal{E}}^{1}\left(K_{v}, E_{a}[3]\right) \cong$ $E_{a}\left(K_{v}\right) / 3 E_{a}\left(K_{v}\right)$, we have

$$
H_{\mathcal{E} \cap \mathcal{A}}^{1}\left(K_{v}, E_{a}[3]\right) \cong N_{L_{w} / K_{v}} E_{a}\left(L_{w}\right) / 3 E_{a}\left(K_{v}\right)
$$

Remark. In [2, Definition 2.6], $\delta_{v}(E, L / K)$ is defined by

$$
\operatorname{dim}_{\mathbb{F}_{p}} E\left(K_{v}\right) / N_{L_{w} / K_{v}} E\left(L_{w}\right),
$$

where $p=2$. By Lemma 4.1, [2, Definition 2.6] is same to Definition 2.8 for our case.

By Lemma 4.1, we have the following lemmas which are similar to [2, Lemma 2.10 and Lemma 2.11].

Lemma 4.2. Let $\Delta_{E_{a}}$ be the discriminant of E_{a}. If at least one of the following conditions (i)-(iv) holds:
(i) v splits in L / K,
(ii) $v \nmid 3 \infty$ and $E_{a}\left(K_{v}\right)[3]=0$,
(iii) v is real and $\left(\Delta_{E_{a}}\right)_{v}<0$,
(iv) v is a prime where E_{a} has good reduction and v is unramified in L / K, then $H_{\mathcal{E}}^{1}\left(K_{v}, E_{a}[3]\right)=H_{\mathcal{A}}^{1}\left(K_{v}, E_{a}[3]\right)$ and $\delta_{v}\left(E_{a}, L / K\right)=0$.

Proof. See the proof of [2, Lemma 2.10].
Lemma 4.3. If $v \nmid 3 \infty, E_{a}$ has good reduction at v and v is ramified in L / K, then

$$
H_{\mathcal{E} \cap \mathcal{A}}^{1}\left(K_{v}, E_{a}[3]\right)=0 \quad \text { and } \quad \delta_{v}\left(E_{a}, L / K\right)=\operatorname{dim}_{\mathbb{F}_{3}}\left(E_{a}\left(K_{v}\right)[3]\right) .
$$

Proof. See the proof of [2, Lemma 2.11]
By Proposition 2.9, Lemma 4.2, and Lemma 4.3, we have the following proposition which is similar to [2, Proposition 3.3].
Proposition 4.4. Suppose that all of the following primes split in L / K :

- all primes where E_{a} has bad reduction,
- all primes above 3 ,
- all real places v with $\left(\Delta_{E_{a}}\right)_{v}>0$.

Let \mathcal{T} be the set of (finite) primes \mathfrak{q} of K such that L / K is ramified at \mathfrak{q} and $E_{a}\left(K_{\mathfrak{q}}\right)[3] \neq 0$. Let

$$
\operatorname{loc}_{\mathcal{T}}: H^{1}\left(K, E_{a}[3]\right) \rightarrow \bigoplus_{\mathfrak{q} \in \mathcal{T}} H^{1}\left(K_{\mathfrak{q}}, E_{a}[3]\right)
$$

and

$$
V_{T}:=\operatorname{loc}_{\mathcal{T}}\left(\operatorname{Sel}_{3}\left(E_{a} / K\right)\right) \subset \bigoplus_{\mathfrak{q} \in \mathcal{T}} H_{\mathcal{E}}^{1}\left(K_{\mathfrak{q}}, E_{a}[3]\right)
$$

Then we have

$$
d_{\mathfrak{p}}\left(A_{L} / K\right)=d_{3}\left(E_{a} / K\right)-\operatorname{dim}_{\mathbb{F}_{3}} V_{\mathcal{T}}+d
$$

for some d satisfying

$$
\begin{aligned}
& 0 \leq d \leq \operatorname{dim}_{\mathbb{F}_{3}}\left(\bigoplus_{\mathfrak{q} \in \mathcal{T}} H_{\mathcal{E}}^{1}\left(K_{\mathfrak{q}}, E_{a}[3]\right) / V_{\mathcal{T}}\right) \text { and } \\
& d \equiv \operatorname{dim}_{\mathbb{F}_{3}}\left(\bigoplus_{\mathfrak{q} \in \mathcal{T}} H_{\mathcal{E}}^{1}\left(K_{\mathfrak{q}}, E_{a}[3]\right) / V_{\mathcal{T}}\right) \quad(\bmod 2) .
\end{aligned}
$$

Proof. Define strict and relaxed 3-Selmer groups $\mathcal{S}_{\mathcal{T}} \subset \mathcal{S}^{\mathcal{T}} \subset H^{1}\left(K, E_{a}[3]\right)$ by the exactness of

$$
\begin{aligned}
& 0 \rightarrow \mathcal{S}^{\mathcal{T}} \rightarrow H^{1}\left(K, E_{a}[3]\right) \rightarrow \bigoplus_{\mathfrak{q} \notin \mathcal{T}} H^{1}\left(K_{\mathfrak{q}}, E_{a}[3]\right) / H_{\mathcal{E}}^{1}\left(K_{\mathfrak{q}}, E_{a}[3]\right) \text { and } \\
& 0 \rightarrow \mathcal{S}_{\mathcal{T}} \rightarrow \mathcal{S}^{\mathcal{T}} \longrightarrow \bigoplus_{\mathfrak{q} \in \mathcal{T}} H^{1}\left(K_{\mathfrak{q}}, E_{a}[3]\right)
\end{aligned}
$$

Then we have $\mathcal{S}_{\mathcal{T}} \subset \operatorname{Sel}_{p}\left(E_{a} / K\right) \subset \mathcal{S}^{\mathcal{T}}$. By Lemma 4.2 we also have $\mathcal{S}_{\mathcal{T}} \subset$ $\operatorname{Sel}_{\mathfrak{p}}\left(A_{L} / K\right) \subset \mathcal{S}^{\mathcal{T}}$ and by Lemma 4.3 we have $\operatorname{Sel}_{p}\left(E_{a} / K\right) \cap \operatorname{Sel}_{\mathfrak{p}}\left(A_{L} / K\right)=\mathcal{S}_{\mathcal{T}}$.

Let $V_{\mathcal{T}}^{L}:=\operatorname{loc}_{\mathcal{T}}\left(\operatorname{Sel}_{\mathfrak{p}}\left(A_{L} / K\right)\right) \subset \bigoplus_{\mathfrak{q} \in \mathcal{T}} H_{\mathcal{A}}^{1}\left(K_{\mathfrak{q}}, E_{a}[3]\right)$ and $d:=\operatorname{dim}_{\mathbb{F}_{3}} V_{\mathcal{T}}^{L}$.
Then the theorem follows from the same argument in the proof of $[2$, Proposition 3.3].

By Proposition 4.4, we have the following proposition which is similar to [2, Corollary 3.4].

Proposition 4.5. Suppose $E_{a}, L / K$, and \mathcal{T} are as in Proposition 4.4.
(a) If $\operatorname{dim}_{\mathbb{F}_{p}}\left(\bigoplus_{\mathfrak{q} \in \mathcal{T}} H_{\mathcal{E}}^{1}\left(K_{\mathfrak{q}}, E_{a}[3]\right) / V_{\mathcal{T}}\right) \leq 1$, then

$$
d_{\mathfrak{p}}\left(A_{L} / K\right)=d_{p}\left(E_{a} / K\right)-2 \operatorname{dim}_{\mathbb{F}_{p}} V_{\mathcal{T}}+\sum_{\mathfrak{q} \in \mathcal{T}} \operatorname{dim}_{\mathbb{F}_{p}} H_{\mathcal{E}}^{1}\left(K_{\mathfrak{q}}, E_{a}[3]\right) .
$$

(b) If $E\left(K_{\mathfrak{q}}\right)[3]=0$ for every $\mathfrak{q} \in \mathcal{T}$, then $d_{\mathfrak{p}}\left(A_{L} / K\right)=d_{3}\left(E_{a} / K\right)$.

Proof. For (a), see the proof of [2, Corollary 3.4(i)]. (b) follows from (a) because \mathcal{T} is empty in this case.

Let $M:=K\left(E_{a}[3]\right)$ and \mathfrak{S} be the set of elements of order 2 in $\operatorname{Gal}(M / K)$.

Lemma 4.6. Suppose that $E_{a}(K)[3]=0$. Then $\operatorname{Gal}(M / K) \cong \mathbb{Z} / 2 \mathbb{Z}$ or $\mathbb{Z} / 6 \mathbb{Z}$, depending on whether $K \ni \sqrt[3]{-4 a}$ or not, so $|\mathfrak{S}|=1$.

Proof. The lemma follows from

$$
E_{a}[3]=\left\{O,(0, \pm \sqrt{a}),(\sqrt[3]{-4 a}, \pm \sqrt{-3 a}),(\sqrt[3]{-4 a} \omega, \pm \sqrt{-3 a}),\left(\sqrt[3]{-4 a} \omega^{2}, \pm \sqrt{-3 a}\right)\right\}
$$

Let $N:=K\left(27 \Delta_{E_{a}} \infty\right)$ be the ray class field of K modulo $27 \Delta_{E_{a}}$ and all infinite primes. Define a set of primes of K

$$
\mathcal{P}:=\left\{v: v \text { is unramified in } N M / K \text { and } \operatorname{Frob}_{v}(M / K) \subset \mathfrak{S}\right\}
$$

where $\operatorname{Frob}_{v}(M / K)$ denotes the Frobenius conjugacy class of v in $\operatorname{Gal}(M / K)$, and two sets of ideals $\mathcal{N}_{1} \subset \mathcal{N}$ of K

$$
\begin{aligned}
& \mathcal{N}:=\{\mathfrak{a}: \mathfrak{a} \text { is a cubefree product of primes in } \mathcal{P}\}, \\
& \mathcal{N}_{1}:=\{\mathfrak{a} \in \mathcal{N}:[\mathfrak{a}, N / K]=1\}
\end{aligned}
$$

where $[\cdot, N / K]$ denotes the global Artin symbol.
Lemma 4.7 ([2, Lemma 4.1]). There is a constant c such that

$$
\left|\left\{\mathfrak{a} \in \mathcal{N}_{1}: N_{K / \mathbb{Q}} \mathfrak{a}<X\right\}\right|=(c+o(1)) \frac{X}{(\log X)^{1-|\mathfrak{S}| /[M: K]}}
$$

Proposition 4.8. Suppose that $E_{a}(K)[3]=0$. For $\mathfrak{a} \in \mathcal{N}_{1}$, there is a cyclic cubic extension L / K of conductor \mathfrak{a} such that $d_{\mathfrak{p}}\left(A_{L} / K\right)=d_{3}\left(E_{a} / K\right)$.
Proof. Fix $\mathfrak{a} \in \mathcal{N}_{1}$. Then \mathfrak{a} is principal, with a totally positive generator $\alpha \equiv 1$ $\left(\bmod 27 \Delta_{E_{a}}\right)$. Let $L:=K(\sqrt[3]{\alpha})$. Then all primes above 3 , all primes of bad reduction, and all infinite primes split in L / K. If v ramifies in L / K, then $v \mid \mathfrak{a}$, so $v \in \mathcal{P}$. Thus the Frobenius of v in $\operatorname{Gal}(M / K)$ has order 2, which shows that $E_{a}\left(K_{v}\right)[3]=0$. Now the proposition follows from Proposition 4.5(b).

Proof of Theorem 1.2. It follows from Lemma 4.6, Lemma 4.7 and Proposition 4.8.

References

[1] B. Mazur and K. Rubin, Finding large Selmer rank via an arithmetic theory of local constants, Ann. of Math. (2) 166 (2007), no. 2, 579-612. https://doi.org/10.4007/ annals.2007.166.579
[2] , Ranks of twists of elliptic curves and Hilbert's tenth problem, Invent. Math. 181 (2010), no. 3, 541-575. https://doi.org/10.1007/s00222-010-0252-0
[3] B. Mazur, K. Rubin, and A. Silverberg, Twisting commutative algebraic groups, J. Algebra 314 (2007), no. 1, 419-438. https://doi.org/10.1016/j.jalgebra.2007.02.052
[4] A. Silverberg, Applications to cryptography of twisting commutative algebraic groups, Discrete Appl. Math. 156 (2008), no. 16, 3122-3138. https://doi.org/10.1016/j.dam. 2008.01.024
[5] A. Weil, Adeles and Algebraic Groups, Progress in Mathematics, 23, Birkhäuser, Boston, MA, 1982.

Dongho Byeon
Department of Mathematical Sciences
Seoul National University
Seoul 08826, Korea
Email address: dhbyeon@snu.ac.kr
Keunyoung Jeong
Department of Mathematical Sciences
Ulsan National Institute of Science and Technology
Ulsan 44919, Korea
Email address: kyjeong@unist.ac.kr
Nayoung Kim
Department of Mathematical Sciences
Seoul National University
Seoul 08826, Korea
Email address: na0@snu.ac.kr

[^0]: Received December 26, 2019; Accepted April 24, 2020.
 2010 Mathematics Subject Classification. 11G05.
 Key words and phrases. Elliptic curve, cubic twist, restriction of scalars.

