Browse > Article
http://dx.doi.org/10.4134/JKMS.2013.50.2.241

CUBIC SYMMETRIC GRAPHS OF ORDER 10p3  

Ghasemi, Mohsen (Department of Mathematics University of Urmia)
Publication Information
Journal of the Korean Mathematical Society / v.50, no.2, 2013 , pp. 241-257 More about this Journal
Abstract
An automorphism group of a graph is said to be $s$-regular if it acts regularly on the set of $s$-arcs in the graph. A graph is $s$-regular if its full automorphism group is $s$-regular. In the present paper, all $s$-regular cubic graphs of order $10p^3$ are classified for each $s{\geq}1$ and each prime $p$.
Keywords
symmetric graphs; s-regular graphs; regular coverings;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. Archdeacon, P. Gvozdnjak, and J. Siran, Constructing and forbidding automorphisms in lifted maps, Math. Slovaca 47 (1997), no. 2, 113-129.
2 M. Alaeiyan and M. Ghasemi, Cubic edge-transitive graphs of order $8p^2$, Bull. Austral. Math. Soc. 77 (2008), no. 2, 315-323.
3 B. Alspach, D. Marusic, and L. Nowitz, Constructing graphs which are 1/2-transitive, J. Austral. Math. Soc. Ser. A 56 (1994), no. 3, 391-402.   DOI
4 D. Archdeacon, R. B. Richter, J. Siran, and M. Skoviera, Branched coverings of maps and lifts of map homomorphisms, Australas. J. Combin. 9 (1994), 109-121.
5 Y. Cheng and J. Oxley, On weakly symmetric graphs of order twice a prime, J. Combin. Theory Ser. B 42 (1987), no. 2, 196-211.   DOI
6 M. D. E. Conder, Trivalent (cubic) symmetric graphs on up to 2048 vertices, http: //www.math.auckland.ac.nz/ conder/ (2006).
7 M. D. E. Conder and C. E. Praeger, Remarks on path-transitivity in finite graphs, European J. Combin. 17 (1996), no. 4, 371-378.   DOI   ScienceOn
8 J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, Atlas of Finite Groups, Clareandon Press, Oxford, 1985.
9 D. Z. Djokovic, Automorphisms of graphs and coverings, J. Combin. Theory ser. B 16 (1974), 243-247.   DOI
10 D. Z. Djokovic and G. L. Miller, Regular groups of automorphisms of cubic graphs, J. Combin. Theory Ser. B 29 (1980), no. 2, 195-230.   DOI
11 S. F. Du, J. H. Kwak, and M. Y. Xu, Linear criteria for lifting automorphisms of elementary abelian regular coverings, Linear Algebra Appl. 373 (2003), 101-119.   DOI   ScienceOn
12 Y. Q. Feng and J. H. Kwak, Constructing an infinite family of cubic 1-regular graphs, European J. Combin. 23 (2002), no. 5, 559-565.   DOI   ScienceOn
13 Y. Q. Feng and J. H. Kwak, An infinite family of cubic one-regular graphs with unsolvable automorphism groups, Discrete Math. 269 (2003), no. 1-3, 281-286.   DOI   ScienceOn
14 Y. Q. Feng and J. H. Kwak, One-regular cubic graphs of order a small number times a prime or a prime square, J. Aust. Math. Soc. 76 (2004), no. 3, 345-356.   DOI
15 Y. Q. Feng, J. H. Kwak, and M. Y. Xu, Cubic s-regular graphs of order $2p^3$, J. Graph Theory 52 (2006), no. 4, 341-352.   DOI   ScienceOn
16 Y. Q. Feng and J. H. Kwak, Cubic symmetric graphs of order a small number times a prime or a prime square, J. Combin. Theory Ser. B 97 (2007), no. 4, 627-646.   DOI   ScienceOn
17 Y. Q. Feng and J. H. Kwak, Classifying cubic symmetric graphs of order 10p or $10p^2$, Sci. China Ser. A 49 (2006), no. 3, 300-319.   DOI   ScienceOn
18 Y. Q. Feng, J. H. Kwak, and K. S. Wang, Classifying cubic symmetric graphs of order 8p or $8p^2$, European J. Combin. 26 (2005), no. 7, 1033-1052.   DOI   ScienceOn
19 Y. Q. Feng and K. S.Wang, s-regular cyclic coverings of the three-dimensional hypercube Q3, European J. Combin. 24 (2003), no. 6, 719-731.   DOI   ScienceOn
20 R. Frucht, A one-regular graph of degree three, Canad. J. Math. 4 (1952), 240-247.   DOI
21 J. L. Gross and T. W. Tucker, Generating all graph coverings by permutation voltage assignment, Discrete Math. 18 (1977), no. 3, 273-283.   DOI   ScienceOn
22 P. Lorimer, Vertex-transitive graphs: symmetric graphs of prime valency, J. Graph Theory 8 (1984), no. 1, 55-68.   DOI
23 Z. P. Lu, C. Q. Wang, and M. Y. Xu, On semisymmetric cubic graphs of order $6p^2$, Sci. China Ser. A 47 (2004), no. 1, 1-17.
24 A. Malnic, Group actions, coverings and lifts of automorphisms, Discrete Math. 182 (1998), no. 1-3, 203-218.   DOI   ScienceOn
25 A. Malnic, D. Marusic, P. Potocnik, and C. Q.Wang, An infinite family of cubic edge-but not vertex-transitive graphs, Discrete Math. 280 (2004), no. 1-3, 133-148.   DOI   ScienceOn
26 A. Malnic and D. Marusic, Imprimitive graphs and graph coverings, in: D. Jungnickel, S. A. Vanstone (Eds.), Coding Theory, Design Theory, Group Theory: Proc. M. Hall Memorial Conf., J. Wiley and Sons, New York, 1993, pp. 221-229.
27 A. Malnic, D. Marusic, and P. Potocnik, On cubic graphs admitting an edge-transitive solvable group, J. Algebraic Combin. 20 (2004), no. 1, 99-113.   DOI
28 A. Malnic, D. Marusic, and P. Potocnik, Elementary abelian covers of graphs, J. Algebraic Combin. 20 (2004), no. 1, 71-97.   DOI
29 A. Malnic, D. Marusic, and N. Seifter, Constructing infinite one-regular graphs, European J. Combin. 20 (1999), no. 8, 845-853.   DOI   ScienceOn
30 A. Malnic, D. Marusic, and C. Q. Wang, Cubic edge-transitive graphs of order $2p^3$, Discrete Math. 274 (2004), no. 1-3, 187-198.   DOI   ScienceOn
31 A. Malnic, R. Nedela, and M. Skoviera, Lifting graph automorphisms by voltage assignments, European J. Combin. 21 (2000), no. 6, 927-947.   DOI   ScienceOn
32 A. Malnic and P. Potocnik, Invariant subspaces, duality, and covers of the Petersen graph, European J. Combin. 27 (2006), no. 6, 971-989.   DOI   ScienceOn
33 D. Marusic, A family of one-regular graphs of valency 4, European J. Combin. 18 (1997), no. 1, 59-64.   DOI   ScienceOn
34 D. Marusic and R. Nedela, Maps and half-transitive graphs of valency 4, European J. Combin. 19 (1998), no. 3, 345-354.   DOI   ScienceOn
35 N. Seifter and V. I. Trofimov, Automorphism groups of covering graphs, J. Combin. Theory Ser. B 71 (1997), no. 1, 67-72.   DOI   ScienceOn
36 D. Marusic and T. Pisanski, Symmetries of hexagonal molecular graphs on the torus, Croat Chemica Acta 73 (2000), 969-981.
37 D. Marusic and M. Y. Xu, A 1/2-transitive graph of valency 4 with a nonsolvable group of automorphisms, J. Graph Theory 25 (1997), 133-138.   DOI
38 R. C. Miller, The trivalent symmetric graphs of girth at most six, J. Combin. Theory Ser. B 10 (1971), 163-182.   DOI
39 M. Skoviera, A construction to the theory of voltage groups, Discrete Math. 61 (1986), 281-292.   DOI   ScienceOn
40 W. T. Tutte, A family of cubical graphs, Proc. Camb. Phil. Soc. 43 (1947), 459-474.   DOI
41 W. T. Tutte, On the symmetry of cubic graphs, Canad. J. Math. 11 (1959), 621-624.   DOI